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Social behaviors such as mating, parenting, fighting, and avoiding are essential
functions as a communication tool in social animals, and are critical for the survival
of individuals and species. Social behaviors are controlled by a complex circuitry
that comprises several key social brain regions, which is called the social behavior
network (SBN). The SBN further integrates social information with external and internal
factors to select appropriate behavioral responses to social circumstances, called social
decision-making. The social decision-making network (SDMN) and SBN are structurally,
neurochemically and functionally conserved in vertebrates. The social decision-making
process is also closely influenced by emotional assessment. The habenula has recently
been recognized as a crucial center for emotion-associated adaptation behaviors. Here
we review the potential role of the habenula in social function with a special emphasis
on fish studies. Further, based on evolutional, molecular, morphological, and behavioral
perspectives, we discuss the crucial role of the habenula in the vertebrate SDMN.
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INTRODUCTION

Social and reproductive behaviors are essential biological processes for the survival of individuals
or species in vertebrates and invertebrate species. In vertebrates, the neural foundation of the social
and reproductive behaviors is controlled by the brain circuitry that is called the social behavior (or
brain) network (SBN) (Newman, 1999). The SBN is evolutionarily, morphologically, biochemically
and functionally conserved throughout vertebrate species (Goodson, 2005; O’Connell and
Hofmann, 2011b, 2012; Goodson and Kingsbury, 2013; Ogawa et al., 2021). The SBN primarily
consists of cellular components sensitive to sex steroids and neuropeptide hormones, which
regulate innate social behaviors such as sexual behavior, aggression, and parental care (Newman,
1999; Goodson, 2005). On the other hand, despite the conserved structure of the SBN, phenotypes
and functions of social and reproductive behaviors are far more diverse and complex depending
on species, genera, sex, and sometimes among individuals. In humans, social functions are highly
complex, which have also been implicated in mental and psychiatric disorders associated with social
deficits (Heinrichs et al., 2009). In particular, the SBN can drive the behavioral output of social
functions, while it does not seem to be enough to drive the evaluation of social contexts. Hence,
the cross-talk between the SBN and the mesolimbic reward system, which mainly consists of the
dopaminergic system, has emerged as a more extensive important network for the social function,
called the social decision-making network (SDMN) (O’Connell and Hofmann, 2011a,b, 2012).
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Wei et al. (2021) systematically categorized the process of the
goal-directed innate social behavior in vertebrates based on four
stages: (I) detection phase, in which an individual identifies the
presence and location of a distant social target via unique sensory
cues emitted by the target; (II) approach phase, which is to reduce
the distance between an individual and a distal social stimulus for
a prerequisite of the remaining phases; (III) investigation (social
investigation) phase is for further close exploration of the social
stimulus, aiming to gather information about the conspecific;
and (IV) consummatory action phase is to accomplish the goal
of social behavior, which differs depending on types of behaviors.
These four phases are selectively regulated by the different nodes
of the SDMN and their stimulatory or inhibitory connectivities
(Wei et al., 2021). Depending on various factors including
the type of external and internal inputs, social experiences,
hormonal action and molecular/neuronal modifications of the
node and pathway, different types of social behavioral outputs
can be generated by the SDMN (Wei et al., 2021). Even within
the same individual or sex, the same node could also play
multiple roles dependent on hormonal, environmental and social
experiences. For example, during the consummatory action
phase, the ventrolateral part of the ventromedial hypothalamus
(VMHvl) is essential for aggression and female sexual behaviors
(Yang et al., 2013; Veening et al., 2014), and the medial preoptic
area (MPOA) is necessary for parental behaviors and male sexual
behavior (Hull and Dominguez, 2007).

However, how the SDMN could generate such a large
diverse behavioral phenotypes among individuals, sex, and
species remains unknown. A systematic comparative analysis
has enabled us to identify conserved molecular and neuronal
pathways that regulate a particular type of behavior in
diverse species or other sublineages (Toth and Robinson,
2007). Teleost fish represent the largest and most diverse
group among vertebrates, consisting of nearly 30,000 species
(Ravi and Venkatesh, 2018). Teleosts exhibit various social
and reproductive behaviors unique to species or genera
(Brown et al., 2011; Ogawa et al., 2021). Hence, the teleost
is an ideal model to identify the conserved neuronal and
molecular mechanism controlling the social and reproductive
behaviors and the regulatory mechanism for generating diverse
behavioral phenotypes.

Recently, the habenula, an evolutionarily conserved
epithalamic structure, has been implicated in social and
reproductive behaviors in rodents and teleosts (Ogawa et al.,
2021). The habenula encodes both the social context of rewarding
and aversive aspects of external stimuli, thus driving motivated
behaviors and decision-making in vertebrates (Boulos et al.,
2017; Fore et al., 2018). In rats, the habenula is implicated in
the positive aspect (rewarding effect) of social behaviors such
as the onset of maternal behaviors and social play (Corodimas
et al., 1992, 1993; Matthews-Felton et al., 1995; Felton et al.,
1998; van Kerkhof et al., 2013). On the other hand, the habenula
is also involved in the negative (stressful effect) aspect of social
functions such as social isolation (de Jong et al., 2010), anxiety
and fear (Yamaguchi et al., 2013), and aggression (Flanigan et al.,
2017). Interestingly, the habenula also plays an emerging role
in reward and stressful social events (e.g., rewarding context of

aggression) (Flanigan et al., 2020). In zebrafish (Danio rerio),
the habenula is involved in aversive social responses such as
anxiety (Mathuru and Jesuthasan, 2013), fear (Agetsuma et al.,
2010), and aggression (Chou et al., 2016). The habenula pathway
is structurally and neurochemically conserved in vertebrates
(Aizawa et al., 2012; Beretta et al., 2012; deCarvalho et al., 2014),
and hence, it is reasonable to consider the possible connection
between the habenula and the SDMN (Ike et al., 2020; Ogawa
et al., 2021). In this review article, we summarize the potential
role of the habenula in social function with particular emphasis
on fish studies. Further, based on evolutional, molecular,
morphological and behavioral perspectives, we discuss the
crucial role of the habenula in the vertebrate SDMN.

SOCIAL DECISION-MAKING NETWORK
IN VERTEBRATES

Social Decision-Making Network in
Mammals
In mammals, the SBN consists of the preoptic area (POA),
lateral septum (LS), anterior hypothalamus (AH), ventromedial
hypothalamus (VMH), extended medial amygdala [containing
the medial amygdala (MeA) and medial bed nucleus of the
stria terminalis (mBNST or BSTm)], and periaqueductal gray
(PAG) (Newman, 1999; Figure 1A and Table 1). Each of the
brain regions is sensitive to sex steroid hormones and has been
implicated in the control of multiple forms of social behavior
including aggression, sexual behavior, and various forms of social
communication such as social recognition, affiliation, bonding,
parental behavior and social stress responses (Goodson, 2005). In
mammals, each node for the SBN is interconnected and the SBN
also emerges with intrinsic and extrinsic systems (Rogers-Carter
and Christianson, 2019), which allows performing complex social
cognition and its associated behaviors (Rilling and Sanfey, 2011;
Mars et al., 2012). For instance, there are functional connectivities
between the SBN and the reward center (O’Connell and
Hofmann, 2011b), the corticostriatal pathway (Felix-Ortiz and
Tye, 2014; Ko, 2017), the nigrostriatal pathway, the mesocortical
pathway (Skuse and Gallagher, 2009) and the default mode
network (Mars et al., 2012). The connection between the SBN
and the mesolimbic reward structures composes the SDMN
(O’Connell and Hofmann, 2012; Figure 1A and Table 1),
which modulates behavioral reactions in a social situation reflect
the convergence of social information, external stimuli and
physiological state to produce appropriate responses (Rogers-
Carter and Christianson, 2019). The expression profiles of several
genes involved in the SDMN in 88 species across five vertebrate
lineages confirmed a high level of conservation of the SDMN in
vertebrates (O’Connell and Hofmann, 2012).

Social Decision-Making Network in Fish
In teleosts, several brain regions corresponding to mammalian
SDMN have been characterized based on comparative
neuroanatomy (Braford, 1995; Wullimann and Rink, 2002),
pharmacological, neurodevelopmental, neurochemical,
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FIGURE 1 | Schematic illustration of habenula connectivity with the social decision-making network (SDMN) in vertebrates. In mammals (A), the SDMN comprises
the social behavior network (SBN) (1–7) and the mesolimbic reward structures (6–13), but some structures are shared by the SBN and the mesolimbic reward
structures (6 and 7). In teleosts (B), each brain region that has been suggested to be homologous to the respective components of the mammalian SDMN is
indicated by the corresponding number (shown in parentheses). In mammals, the habenula consists of the medial (MHb) and lateral (LHb) subnuclei, which receive
direct (solid lines) or indirect (dotted lines) projection from the component of SDMN. In teleosts, the habenula consists of the dorsal (dHb) and ventral (vHb) subnuclei,
which are homologous to mammalian MHb and LHb, respectively. Similar to mammals, there is connectivity between the habenula and teleostean SDMN. However,
the detailed subnuclei-specific connectivity has not been precisely characterized in fish brain. The abbreviation of brain regions refers to Table 1.

TABLE 1 | Summary of proposed homologies of between brain nuclei/regions in social decision-making network of mammals (rodents) and teleosts.

Classification
of networks

Mammals (rodents)
(Newman, 1999)

Teleosts
(Goodson, 2005; O’Connell and Hofmann, 2011b, 2012)
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Medial preoptic area (MPOA) Preoptic area (POA)

Anterior hypothalamus (AH) Ventral tuberal nuclei (vTn)

Ventromedial hypothalamus (VMH) Anterior tuberal nuclei (aTn)

Periaqueductal gray (PAG) Central gray (GC)

Medial amygdala (MeA) Supracommissural part of the ventral pallium (Vs) and

Medial bed nucleus of the stria terminalis (mBNST) Postcommissural nucleus of the ventral telencephalon (Vp)

Lateral septum (LS) Ventral and lateral parts of the ventral telencephalon (Vv and Vl)

Ventral tegmental area (VTA) Posterior tuberculum (nPT)

Hippocampus (HPC) Lateral part of the dorsal telencephalon (Dl)

Basolateral amygdala (BLA or blAMY) Medial part of the dorsal telencephalon (Dm)

Ventral pallidum (VP) (unidentified)

Nucleus accumbens (NAcc) Dorsal and central parts of the ventral telencephalon (Vd and Vc)

Striatum (Str)

Medial habenula (MHb) Dorsal habenula (dHb)

Lateral habenula (LHb) Ventral habenula (vHb)

neurophysiological and genetic approaches (Chandroo et al.,
2004; Maximino et al., 2013; do Carmo Silva et al., 2018)
as summarized in Table 1. Among the component of the
SDMN, only limited nodes such as the POA and the PAG
(=griseum centrale/central gray, GC) are structurally and
biochemically well conserved in the fish brain (Goodson, 2005;
O’Connell and Hofmann, 2011b; Ogawa et al., 2021; Figure 1B).
On the other hand, some nodes in the SBN such as the AH,
VMH, MeA, BNST and LS, and major nodes of SDMN [e.g.,

hippocampus, ventral tegmental area (VTA), and nucleus
accumbens core (NAc)] in tetrapods have not been structurally
well defined in the fish brain (Goodson and Kingsbury, 2013).
However, based on molecular, developmental and functional
characterizations, the teleostean homolog of many tetrapod-
specific brain regions have been proposed (Northcutt, 2011;
Goodson and Kingsbury, 2013; Figure 1 and Table 1). In the
hypothalamus, the anterior and ventral tuberal nuclei (aTn
and vTn) are suggested as the mammalian VMH and AH
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homologs, respectively (O’Connell and Hofmann, 2011b).
Developmental and gene expression studies have pointed to
the supracommissural part of the ventral pallium (Vs) as the
putative homolog of the extended medial amygdala (Ganz et al.,
2012; O’Connell and Hofmann, 2012). However, the Vs is also
considered as a part of the postcommissural nucleus of the
ventral telencephalon (Vp) and the Vs/Vp has been suggested
to be a homolog of the entire amygdala, which includes the
central amygdala, MeA and BNST (Reiner and Northcutt, 1992;
Northcutt, 1995). On the other hand, the ventral and lateral parts
of the ventral telencephalon (Vv and Vl) have been suggested as
putative homologs of the LS based on biochemical and functional
evidence (O’Connell et al., 2012; Goodson and Kingsbury, 2013).

The presence of teleostean homologs of the mammalian
mesolimbic reward structures including the hippocampus, VTA,
ventral pallidum (VP), striatum, NAc, and basolateral amygdala
(BLA) are debatable because of their lack of structurally
homologous regions in fish brain. However, the number of
accumulated functional and neurochemical evidence suggest
their presence in the fish brain (O’Connell and Hofmann, 2011b).
The lateral part of the dorsal telencephalon (Dl) is considered to
be the putative homolog of the tetrapod hippocampus based on
brain circuitry and functional studies (O’Connell and Hofmann,
2011b). In goldfish (Carassius auratus), lesion of the Dl area
results in the impairment of spatial-temporal and emotional
learning (Portavella et al., 2002). Similarly, the lesions of specific
locations in the telencephalic pallia in goldfish suggest the
presence of two different memory systems in fish: the medial
telencephalic pallia is involved in an emotional memory system,
while and the lateral telencephalic pallia are involved in a spatial,
relational, or temporal memory system (Portavella et al., 2004).

The teleostean homolog of the VTA has long been debatable
as the midbrain (VTA- substantia nigra) dopaminergic neurons
are absent in the fish brains. However, the dopaminergic neurons
in the posterior tuberculum (nPT, also known as periventricular
posterior tuberculum) have been suggested as a possible homolog
of mammalian midbrain dopaminergic population because their
projections ascend to the striatal-like structure, similar to
mammals (Rink and Wullimann, 2001, 2002; Matsui, 2017). In
addition, in the brain of the African cichlid fish, Astatotilapia
burtoni, three regulatory genes (etv5, nr4a2, and pitx3) important
for maturation and maintenance of midbrain dopaminergic
cells in mammals are present in several dopaminergic cell
groups located in the POA, rostral periventricular pretectal
nucleus, posterior tuberal nucleus, and the nPT (O’Connell
et al., 2013). Hence, although the location of dopaminergic
cell populations is extremely variable across vertebrate species
(O’Connell and Hofmann, 2012), dopaminergic cell groups are
evolutionarily and functionally conserved across vertebrates.

In goldfish and zebrafish, the medial part of the dorsal
telencephalon (Dm), a subregion of the Vp has been postulated
to be essential for emotional learning and related processes
(i.e., avoidance learning), suggesting that the Dm could be
functionally homologous to the mammalian BLA (Portavella
et al., 2004; Portavella and Vargas, 2005; Maximino et al.,
2013; Lal et al., 2018). Based on neurochemical evidence, the
dorsal (Vd) and central (Vc) parts of the ventral telencephalon

have been suggested as putative striatal-like structure in
fish (Wullimann and Mueller, 2004). Collectively, key nodes
of the SDMN are evolutionarily conserved in tetrapods
and in the fish brain (O’Connell and Hofmann, 2011b;
Rodriguez-Santiago et al., 2021).

POSSIBLE CONNECTION BETWEEN THE
HABENULA AND THE SOCIAL
DECISION-MAKING NETWORK

Structure of the Habenula
Although the key nodes of the SDMN are biochemically and
functionally conserved in the vertebrate brains, they have
functional connectivity with several other brain regions that
reside outside the SDMN. The habenula is part of the epithalamic
structure, a dorsal posterior segment of the diencephalon
(Dicke and Roth, 2007). The habenula is involved in several
functions, including regulating midbrain monoaminergic
systems (dopamine and serotonin) and integrating cognitive
with emotional and sensory processing (Boulos et al., 2017).
In mammals, the habenula consists of two major subnuclei,
lateral (LHb) and medial (MHb), which have different circuitry
(afferents and efferents), chemical components and selective
functions (Hikosaka, 2010; Figure 2A). The structure of the
habenula is highly conserved in non-mammalian vertebrates.
In fish and amphibians, the habenula is subdivided into dorsal
(dHb) and ventral habenula (vHb) subnuclei, based on their
cytoarchitectural and molecular characteristics (Figure 2B;
Pandey et al., 2018). In non-mammalian vertebrates, the dHb is
structurally asymmetric (either left-directed or right-directed)
with different volumes of nuclei and their respective efferent
neural circuitry, while the vHb is symmetric (Concha and Wilson,
2001). Genetic mechanisms play a major role in generating the
asymmetric habenular structure. The left-right differences in
the number of neurons are controlled by the regulation of
developmental processes such as proliferation, differentiation,
migration, and cell death (Aizawa, 2013). In zebrafish, the dHb
is a left-directed asymmetric structure, which can be further
subdivided into the lateral (dHbL) and medial (dHbM) subnuclei
(Aizawa et al., 2005). Based on morphological, molecular and
biochemical features, the dHb and vHb have been characterized
as homologous regions of the mammalian MHb and LHb,
respectively (Aizawa et al., 2005; Amo et al., 2010; Pandey et al.,
2018). Several selective markers for the habenula have been
identified, which exhibit similar expression patterns in mammals
and teleosts (Aizawa and Zhu, 2019). GPR151, an orphan G
protein-coupled receptor (GPCR), is a selective marker for the
MHb in rodents (Broms et al., 2015), and is expressed in the dHb
in the zebrafish (Broms et al., 2015). Protocadherin 10a (Pcdh10),
a selective marker for the LHb in rats is expressed in the vHb
in the zebrafish (Amo et al., 2010; Aizawa et al., 2012). On the
other hand, Brn3a (POU domain, class 4, transcription factor 1),
a selective marker for the MHb in rodents (Quina et al., 2009)
is expressed only in the dHbL in the zebrafish (Aizawa et al.,
2005). Similarly, GPR139, another orphan GPCR rich in the
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FIGURE 2 | Schematics showing the habenular pathways in mammals and teleosts. (A) The habenula consists of two major subnuclei, medial habenula (MHb) and
lateral habenula (LHb) in mammals. LHb can be further divided into medial (LHbM) and lateral (LHbL) parts. MHb primarily projects to serotonergic center: the dorsal
and median raphe nuclei (DRN and MRN), and dopaminergic center: substantia nigra pars compacta (SNc) and ventral tegmental area (VTA) via the interpeduncular
nucleus (IPN). The MHb also sends projections to other brain regions such as the periaqueductal gray (PAG), nucleus incertus (NI), and locus coeruleus (LC). LHb
projects serotonergic raphe nuclei and midbrain dopaminergic center. However, LHbL act on serotonergic and dopaminergic centers via the rostromedial tegmental
nucleus (RMTg, which is also known as tail of the VTA). (B) In teleosts, the habenula structure consists of two subnuclei: dorsal habenula (dHb) and ventral habenula
(vHb), which are structurally and biochemically homologous to mammalian MHb and LHb, respectively. dHb and their pathways are structurally asymmetric, hence
they can be considered subnuclei: lateral (left) and medial (right) dHb (dHbL and dHbM). dHbL and dHbM project to the different regions of IPNs: dorsal (dIPN) and
ventral (vIPN) part of the IPN, respectively. dIPN further innervates to the griseum centrale (GC, a homolog of the mammalian PAG), while vIPN is connected to the
MRN. vHb sends projection to the ventro-anterior corner of the MRN, which may further extend toward the serotonergic DRN. Modified from Ogawa et al. (2021).

MHb in rodents (Süsens et al., 2006; Liu et al., 2015), is expressed
only in the vHb in the zebrafish (Roy et al., 2021). kiss1 is a
gene encoding neuropeptide, kisspeptin, which is predominantly
expressed in the vHb in some teleosts (Beretta et al., 2013; Ogawa
and Parhar, 2013; Pandey et al., 2018), is absent in the habenula
of mammalian species. Hence, the cytoarchitectural and the
molecular make-up of the habenula is relatively conserved with
minor variances among vertebrate species.

Neural Circuitry of the Habenula and
Their Connection With the Social
Decision-Making Network
Similar to the habenular structures, the neural circuitry of the
habenula in teleosts is also comparable to those in mammals

with minor variances (Yañez and Anadón, 1996; Hendricks
and Jesuthasan, 2007; Hikosaka et al., 2008; Miyasaka et al.,
2009; Gayoso et al., 2011; Amo et al., 2014; Namboodiri
et al., 2016; Turner et al., 2016; Figure 2). In vertebrates,
the habenula has a structural connection with the SDMN
(Figure 1). The LHb has been suggested as one of the core
cortical components of Brothers’ (Brothers, 1990) and Dunbar’s
(Dunbar, 2009) Cognitive Social Brain (Ike et al., 2020). In
mammals, the MHb receives projections from several nodes
of the SDMN including the POA, LS, and NAc (Figure 1A),
and the LHb also receives inputs from the SDMN including
the MeA, VP and BNST (Boulos et al., 2017; Figure 1A).
In addition, the LHb also act on the SDMN nodes including
the VTA and PAG via the rostromedial tegmental nucleus
(RMTg) (Hikosaka et al., 2008; Graziane et al., 2018). Although
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there are no direct connections between the habenula and
the hippocampus, electrical or iontophoretic activation of
LHb modulates hippocampal pyramidal cell activity, which
suggests functional coupling of LHb-hippocampus via indirect
connection (Ferraro et al., 1997; Geisler and Trimble, 2008;
Goutagny et al., 2013).

Although the selective origin from or terminal projection
sites within the habenula nuclei remains uncharacterized in fish,
neural tracer studies in fish have revealed afferent connectivity
of the habenula with some nodes of the fish SDMN such as
the Vv (the teleostean homolog of the LS), Vd (the homolog
of mammalian striatum), and POA (Villani et al., 1996; Yañez
and Anadón, 1996; Turner et al., 2016; Figure 1B). A recent
functional study demonstrated that microstimulation of the
Dl and Dm (the homolog of mammalian hippocampus and
BLA) elicit significant activation in the habenula neurons in
juvenile zebrafish (Bartoszek et al., 2021). Further, ongoing
neural activities in the dHb are significantly correlated with
the neural activities in the Dm and olfactory bulb, while vHb
activity correlates more with the activity in the Dl rather than
those in the Dm (Bartoszek et al., 2021). Although no direct
anatomical projections from the Dl or the Dm have been
identified to innervate the habenula in fish, the primary afferents
of the vHb originates from the ventral entopeduncular nucleus
(vENT = teleostean basal ganglia) in zebrafish (Amo et al.,
2014; Turner et al., 2016). Further, the vENT receives direct
innervation from the Dm and Dl in fish (Echteler and Saidel,
1981; Northcutt, 2006; Lal et al., 2018). Hence, there might be an
indirect connection between the habenula and the Dm/Dl regions
in fish (Figure 1B).

The habenula nuclei project to different targets in the brain
of teleosts, similar to mammals. In the zebrafish, the dHbL
and dHbM terminate in the dorsal and ventral part of the IPN
(dIPN and vIPN), respectively (Aizawa et al., 2005; Villalón
et al., 2012; Figure 2B). The dIPN neurons further project to
the dorsal part of the superior raphe, which terminates at the
GC (the homolog of mammalian PAG) (Yañez and Anadón,
1996; Agetsuma et al., 2010), while the vIPN is reciprocally
connected with the median raphe (MR) (Agetsuma et al., 2010).
In contrast, the vHb directly projects to the ventro-anterior
region of the MR (vaMR) (Amo et al., 2010; Nathan et al., 2015).
In mammals, there is connectivity between the habenula and the
mesolimbic (VTA-SNc) dopaminergic system (Christoph et al.,
1986; Brinschwitz et al., 2010). However, the habenula receives
afferent projection from the nPT (the homolog of mammalian
VTA) in fish (Yañez and Anadón, 1996; Turner et al., 2016).
These results suggest that the innervations from the SDMN to
the habenula in fish is structurally and functionally comparable
to those in mammals (Figure 1).

In addition to the connection with the SDMN, the habenula
also receives direct inputs from the mitral cells of the olfactory
bulbs (OB) in the zebrafish (Miyasaka et al., 2009, 2014;
deCarvalho et al., 2013). The olfactory inputs are important
cues for the animal’s social behaviors and the MeA receives
direct inputs from the OB in mammals (Keshavarzi et al., 2015).
Further, the activities of the habenula, in particular, dHb neurons
are triggered by a variety of sensory cues including olfactory

(Jetti et al., 2014; Krishnan et al., 2014; Chen et al., 2019),
visual (Dreosti et al., 2014; Cherng et al., 2020) and non-visual
cues (Lin and Jesuthasan, 2017; Eilertsen et al., 2021). The OB-
dHb pathway is also sensitive to the chemical components of
alarm pheromone or substances, a mixture of substances called
Schreckstoff in German (von Frisch, 1941) that triggers fear-
like avoidance behavior in zebrafish (Jesuthasan and Mathuru,
2008; Mathuru et al., 2012; Jetti et al., 2014; Choi et al., 2021).
However, the role of the OB-habenula circuitry in the modulation
of social behaviors associated with olfactory signaling such as
sexual behavior and social avoidance remains unknown.

REGULATORS OF REPRODUCTIVE AND
SOCIAL BEHAVIORS ON THE
HABENULA

Gonadal Steroid Sensitivities of the
Habenula
Gonadal (sex) hormones such as estrogens, androgen and
progesterone are key regulators of reproductive and social
behavior in vertebrates (Adkins-Regan, 2009; Jennings and de
Lecea, 2020). The SDMN functions are sensitive to gonadal
steroids, which are modulated via steroid hormone receptors.
In addition, the habenula is also sensitive to gonadal hormones
(Pfaff and Keiner, 1973; Yokosuka et al., 1997; Shughrue et al.,
1998; Wagner et al., 1998; Pérez et al., 2003; Shima et al.,
2003). In rodents, there are two estrogen receptor (ER) types
(ERα and ERβ), which are present in the LHb neurons (Pfaff
and Keiner, 1973; Yokosuka et al., 1997; Shughrue et al., 1998;
Wagner et al., 1998; Pérez et al., 2003; Shima et al., 2003). In the
brain of the postnatal mouse (P9), ERβ-immunoreactive cells are
detected in the MHb (Sugiyama et al., 2009). In female rats, ERβ

expression in the habenula is upregulated under low estrogen
levels, but they are significantly reduced when 17β-estradiol is
supplemented (Shima et al., 2003). Expression of receptors for
androgen (AR) and progesterone (PR) in the habenula has also
been demonstrated in some mammalian species. In the rat brain,
AR and PR mRNA is expressed in the habenula (Simerly et al.,
1990; Hagihara et al., 1992; Kato et al., 1994). In addition, there is
functional evidence for the sensitivity of habenula to androgens
such as the androgen-binding activity in the MHb of the golden
hamster (Doherty and Sherdan, 1981) and Fos induction in
the LHb followed by testosterone administration in male Syrian
hamster (DiMeo and Wood, 2006).

In some fish, ERs and AR are also present in the habenula,
but only in limited species. In goldfish, ER types (era1 and erb1)
genes are expressed in the vHb (Wang et al., 2013). In A. burtoni,
ERα, ERβ, ARα, and ARβ (mRNA and immunoreactivity) are
expressed in the habenula (Munchrath and Hofmann, 2010).
However, in medaka and the midshipman fish (Porichthys
notatus), expression of ERα and AR mRNA is absent in the
habenula (Forlano et al., 2005, 2010; Mitani et al., 2010). In
zebrafish, treatment with a selective agonist for ERβ (WAY-
200070) significantly increases c-fos expression in the habenula
(Chen et al., 2015). Hence, the habenula could possibly be
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involved in sex steroid-dependent modulation of reproductive
and sexual behaviors in fish.

Hypothalamic Neuropeptidergic Action
on Habenula
The habenula also receives inputs from the diencephalic
regions including the POA, which also play important roles
in the neuroendocrine regulation of reproduction including
sexual behavior in vertebrates. The POA–hypothalamic region
contains several cell groups expressing key neuroendocrine
regulators (neuropeptides) such as gonadotropin-releasing
hormone (GnRH), kisspeptin, vasopressin (AVP) and oxytocin
which are involved in the regulation of sexual behaviors in
vertebrates (Insel and Young, 2000; Zohar et al., 2010; Gonçalves
and Oliveira, 2011). In mammals and fish, the habenula
receives fiber projections of neuropeptidergic neurons and
expresses neuropeptides receptors, suggesting a possible role of
neuropeptidergic action on the habenula in vertebrate sexual and
social behaviors.

Gonadotropin-Releasing Hormone
Gonadotropin-releasing hormone is a hypothalamic
neuropeptide, which is primarily involved in the control of
the release of gonadotropin (luteinizing hormone, LH and
follicle-stimulating hormone) from the anterior pituitary. In
vertebrates, there are multiple GnRH paralogs and multiple
receptor (GnRHR) types (Parhar, 2002; Okubo and Nagahama,
2008). In mammals, there are two GnRH paralogs (GnRH1 and
GnRH2), while non-mammalian vertebrates possess two or three
GnRH paralogs (GnRH1, GnRH2, and GnRH3) in the brain
(Parhar, 2002; Oka, 2018). Each GnRH paralog is localized in
different brain regions and exhibit different roles. The GnRH1
neurons in the preoptic area are hypophysiotropic in nature
and function in the neuroendocrine control of reproduction,
while the non-hypophysiotropic GnRH2/GnRH3 neurons play
neuromodulatory roles in metabolism and social behavior
(Ogawa et al., 2022).

In mammals, GnRH neurons are sensitive to estrogens and
their terminals act on the median eminence to modulate pulsatile
and surge release of LH via estrogen feedback mechanism. In
addition, GnRH fibers and GnRHRs are widely distributed in
many brain regions, suggesting their multiple functions. GnRH1
and GnRH2 have also been implicated in the modulation of
female sexual behaviors in several species, such as musk shrews
(Temple et al., 2003), rodents (Sakuma and Pfaff, 1980, 1983;
Kauffman and Rissman, 2004), and primates (Kendrick and
Dixson, 1985; Barnett et al., 2006). In some tetrapods, GnRH1
fibers are also present in the habenula (Merchenthaler et al., 1984;
Muske et al., 1994; Rastogi et al., 1998). In rats, moderate to
strong expression of GnRHR1 mRNA has been detected in the
MHb (Jennes and Conn, 1994; Jennes and Woolums, 1994).
On the other hand, in the transgenic mice, GnRHR1 promoter-
driven yellow fluorescence protein expression is present in the
LHb (Wen et al., 2011). Similarly, in musk shrews, GnRHR2
receptor is distributed in several brain regions including the POA,
cingulate cortex, arcuate nucleus, infundibular stalk and habenula
(Temple et al., 2003). Interestingly, the majority of GnRH2 fibers

terminate in the MHb in musk shrews (Rissman et al., 1995). In
marmoset, the promoting effect of GnRH2 on sexual behavior
is not blocked with Antide, a potent antagonist for GnRHR1
(Barnett et al., 2006). Hence, GnRHR2 signaling in the habenula
could be primarily involved in promoting the effect of GnRH1 or
GnRH2 on female sexual behaviors.

The presence of GnRH fibers or GnRHR expression in the
habenula has also been demonstrated in several teleosts. In
zebrafish, goldfish and salmon (Oncorhynchus masou), GnRH2
and GnRH3 fibers are present in the habenula (Amano et al.,
1991; Kim et al., 1995; Song et al., 2014; Xia et al., 2014).
In A. burtoni, GnRHR2 mRNA is expressed in the habenula
(Chen and Fernald, 2006), while in the sea lamprey (Petromyzon
marinus), GnRHR1 and GnRHR2 are expressed in the habenula
(Hall et al., 2013). However, it remains unknown whether GnRH
fibers terminate and exhibit modulatory roles in the habenula in
fish because GnRH fibers and GnRH receptor are also present in
the pineal gland that receives direct afferent projections from the
habenula (Park et al., 1995; Sakharkar et al., 2005; Servili et al.,
2010; Schang et al., 2013). Unfortunately, no physiological and
behavioral study has demonstrated the role of GnRH-GnRHR
signaling in the habenula and its potential involvement in the
modulation of sexual behavior in fish.

Kisspeptin
Kisspeptin is a relatively newly identified neuropeptide, originally
identified as a gene product of metastasis suppressor gene, KISS1
in human melanoma cells (Lee et al., 1996; Kotani et al., 2001).
In 2003, two independent studies reported the role of kisspeptin
and its cognate receptor, GPR54 (Kiss1R or Kissr) in reproductive
function because of their role in GnRH-LH secretion during
the pubertal onset in mammals (de Roux et al., 2003; Seminara
et al., 2003). Gene synteny analyses revealed that the presence
of four ancestral Kiss genes (Kiss1, Kiss2, Kiss3, and Kiss4) and
respective Kissr orthologous genes (Kissr-1, -2, -3, and -4) in the
vertebrate genome (Lee et al., 2009; Pasquier et al., 2012). Kiss1
and Kissr-1 genes are present in mammals, while the remaining
paralogous genes might have been lost during evolution (Pasquier
et al., 2012). Most teleosts possess one or two (Kiss2 and/or Kiss1)
Kiss paralogs together with multiple Kissr (Kissr2 and/or Kissr1)
paralogs [also designated as Kissr2 and/or Kissr3, according to
the nomenclatures by Pasquier et al. (2012)].

In rodents, Kiss neurons are localized in the hypothalamus
with two distinct neuronal populations: one in the anteroventral
periventricular nucleus [AVPV, a part of the rostral
periventricular area of the third ventricle (RP3V)] and the
other in the arcuate nucleus (ARC) (Lehman et al., 2010). In
teleosts, expression patterns in the brain vary depending on Kiss
paralog types and species (Ogawa and Parhar, 2013). Kiss2 is
expressed in the preoptic-hypothalamic region in teleosts, which
is conserved among teleost species (Ogawa and Parhar, 2013).
On the other hand, Kiss1 is expressed in the POA and/or in the
vHb (Ogawa and Parhar, 2013). Furthermore, in the brain of
zebrafish, Kissr2 (the receptor exhibits higher affinity to Kiss2)
gene is widely distributed, while Kissr1 (the receptor for Kiss1) is
coexpressed with Kiss1 in the vHb (Kitahashi et al., 2009; Ogawa
et al., 2012). In zebrafish, Kiss1 neurons in the vHb project their
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axons to the IPN via the fasciculus retroflexus, which terminate
in the vaMR (Nathan et al., 2015). In some fish species that
possess only Kiss2, Kissr1 or Kissr2 is also expressed in the
habenula (Zmora et al., 2012; Ohga et al., 2017; Macedo-Garzón
et al., 2021). In rodents, Kissr but not Kiss1 is expressed in the
habenula (Lee et al., 1999; Herbison et al., 2010; Simonneaux
et al., 2013; Wagner et al., 2016). Further, rabies viral tracer
in mice revealed monosynaptic inputs from the IPN to caudal
ARC Kiss1 neurons (Yeo et al., 2019). These suggest that Kiss1
derived from the ARC-Kiss1 neurons could act on the IPN/MR
rather than the habenula in mice. The potential role of Kiss
within the habenula pathway is not fully understood. However,
in zebrafish, habenula Kiss1 neurons have been associated with
the modulation of serotonin neurons, fear-like responses and
aversive memory and learning (Ogawa et al., 2012, 2014; Lupton
et al., 2017; Sivalingam et al., 2020) (see section “Fear- and
Anxiety- Like Behaviors” for more details).

Neuropeptide Y
Neuropeptide Y (NPY) is one of the most evolutionarily
conserved neuropeptides, which primarily regulates energy
homeostasis (Mercer et al., 2011). In addition, NPY is also
involved in various physiological and neuronal processes
including reproductive and social behaviors (Shende and Desai,
2020). NPY activates its cognate GPCR, Y receptors (Y1-Y6) in
different brain regions and cellular locations (Shende and Desai,
2020). In mice, Y1 and Y2 receptors, which are post-synaptic
and pre-synaptic, respectively (Shende and Desai, 2020), are
expressed in the LHb (Kopp et al., 2002; Stanić et al., 2006). In
rats, exposure to NPY decreases the spontaneous firing rate of the
LHb, leading to hypoactivation of the LHb, which is modulated
by reduction of GABAergic transmission via the Y1 pathway
(Cheon et al., 2019, 2020). Although a possible involvement of the
habenula NPY-Y1 signaling in sexual and social behavior is not
well known, NPY has been implicated in stress-related responses
such as anxiety and depression (Shende and Desai, 2020), which
are closely associated with LHb dysfunction (Hikosaka, 2010;
Browne et al., 2018).

In some fish, NPY fibers or cell bodies are localized
in the habenula (Chiba et al., 1996; Castro et al., 1999).
While in zebrafish NPY fibers are absent in the habenula,
and NPY cells located in the dorsal ENT project only to
the dorsal telencephalon, but not to the habenula (Turner
et al., 2016). However, single-cell RNA-seq analysis of zebrafish
habenula neurons showed expression of NPY (npy) gene in
a subpopulation of habenula (cluster 14, GABAergic neurons)
and subtle expression levels of Y4 (npy4r) mRNA in the
habenula (Pandey et al., 2018). In fish, NPY has been mainly
implicated in the control of feeding behavior (Volkoff et al.,
2005). However, central administration of NPY and Y4 agonist
induces a reduction of locomotor activity and anxiolytic-like
effect in goldfish (Matsuda et al., 2011, 2012). Further, npy gene-
deficient zebrafish exhibit several anxiety-like behaviors, such as
a decrease in social interaction and decreased locomotion in the
black–white test (Shiozaki et al., 2020), which is probably similar
status to passive coping (Andalman et al., 2019). Hence, NPY
that is endogenously expressed within the habenula, rather than

NPY derived from outside of the habenula, could be involved in
modulating stress-related behaviors in teleosts.

Arginine Vasopressin
Arginine vasopressin (AVP) and its related peptide oxytocin are
members of the evolutionarily conserved nonapeptides family
derived from its ancestral vasotocin gene (Urano et al., 1992).
AVP and oxytocin are well known mediators of social interaction,
which influence various physiological processes and behaviors
including sexual and social behaviors, circadian rhythmicity and
stress response in mammals (Balment et al., 2006; Caldwell,
2017). In the brain of mammals, AVP is secreted by the
magnocellular neurons of the hypothalamic supraoptic (SON)
and paraventricular (PVN) nuclei, which are the main source
of AVP that is released into the bloodstream (Caldwell et al.,
2008). There are three major receptors for AVP: Avpr1a, Avpr1b,
and Avpr2, which are distributed in specific brain regions
(Caldwell et al., 2008). Avpr1a is widely distributed in several
brain regions including the main SDMN components such as
hippocampal formation, BNST, LS, suprachiasmatic nucleus,
VTA, and hypothalamic nuclei (Ostrowski et al., 1994; Szot et al.,
1994). Avpr1a (also designated as V1aR) is also expressed in
the LHb (Dumais and Veenema, 2016; Rigney et al., 2020). In
rodents, AVP-fibers in the habenula exhibit sexual dimorphisms
with a male-dominant fiber density (De Vries et al., 1981),
which are likely to originate from the BNST (De Vries and
Panzica, 2006; Rood et al., 2013). In male mice, the AVP-
V1aR signaling in the LHb has recently been implicated in
the regulation of male-typical social communication including
ultrasonic vocalization, but not other social functions such as
aggression (Rigney et al., 2020). On the other hand, AVP fibers
in the medial division of the LHb (LHbM) derived from the PVN
evoke GABA-mediated inhibition in the LHbM, which promotes
escape behavior during stress coping (Zhang et al., 2016), similar
to the role of NPY on GABAergic LHb neurons (Cheon et al.,
2019, 2020) (see above).

Like mammals, arginine vasotocin (AVT), the teleostean
homolog of AVP, has been implicated in the modulation of a
variety of social and reproductive behaviors in fish (Santangelo
and Bass, 2006; Godwin and Thompson, 2012). In zebrafish,
a gene expression profile study revealed that AVT expression
is most closely associated with aggression, and administration
of AVT inhibits dominant male and female aggression (Filby
et al., 2010). In the male clownfish (Amphiprion ocellaris),
intraperitoneal injections of V1aR antagonist significantly
reduces aggression and the motivation (probability) for winning
(Yaeger et al., 2014). In fish treated with V1aR antagonist,
c-Fos-positive cells in the POA and the nPT are significantly
reduced as compared to control fish (Yaeger et al., 2014). In
fish, AVT is localized only in magnocellular and parvocellular
nuclei within the POA and nPT, while AVP-fibers are distributed
throughout the brain (Goodson and Bass, 2001; Parhar et al.,
2001; Goodson, 2008; Godwin and Thompson, 2012). In fish,
three AVP receptors: V1a1, V1a2, and V2 receptors have been
identified from the Amargosa pupfish (Cyprinodon nevadensis
amargosae) (Lema, 2010). In A. burtoni and a grouper, rock
hind (Epinephelus adscensionis), V1a2 receptor (V1aR) mRNA
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and protein are expressed in key teleostean SDMN nodes
including the habenula and the IPN (Kline et al., 2011; Huffman
et al., 2012). However, the role of AVT-V1aR in the habenula
and its association with the modulation of aggression in fish
remains unknown.

ROLE OF THE HABENULA IN SOCIAL
BEHAVIORS

The SDMN is the major neuronal network of social behaviors
in vertebrates. In rodents, sex-specific and different types of
social behaviors such as sexual, aggressive, and infant and
parental behavior are modulated by different combinations
and connectivity of nodes of the SDMN (Wei et al., 2021).
Further, each node of the SDMN and its connectivity are
modulated by gonadal steroid actions (Wei et al., 2021). As
evident by anatomical and functional connectivities between
the habenula and the SDMN and sensitivity of the habenula
to sex steroids, the habenula has been implicated in the
regulation of several reproductive and social behaviors in
mammalian species.

Sexual Behavior
In rodents, social behaviors including sexual behavior are
triggered or suppressed by olfactory cues (detection phase),
which involves the pathway from the olfactory inputs to the
MeA (Ishii and Touhara, 2019). Next, estrogen inhibition of
the MPOA contributes to dopaminergic activation of the NAc,
which regulates sexual motivation and mediates the rewarding
components of sexual behavior (approaching phase) (Micevych
and Meisel, 2017). During the investigation phase, olfactory
inputs from the vomeronasal organ (VNO) to the accessory
olfactory bulb (AOB) are further transmitted to the MeA,
the posterior part of the BNST and posteriormedial cortical
amygdala (Spehr et al., 2006). These areas are crucial for the
transition from investigation mode to consummation phase
(Wei et al., 2021). Finally, the pathway from the VMHvl to
the PAG is essential for the facilitation of lordosis, while a
neural pathway from the ARC to the VMNvl-PAG pathway via
the MPOA mediates transient estrogen suppression of lordosis
(Tsukahara et al., 2014). As described above, the habenula has
connectivities with the SDMN including the nodes of the neural
circuitry of female mating behaviors, which include the MPOA,
NAc, VTA, and PAG.

The habenula has been implicated in estrogenic modulation
of female sexual behaviors in mammals (Pfaus et al., 1993;
Lonstein et al., 2000). In female rats, the estrogen and
progesterone-primed mating behavior is reduced after lesion
of the habenula (Modianos et al., 1974, 1975; Rodgers and
Schneider, 1979). In addition, the proceptive and receptive
components of female sexual behaviors are facilitated when
progesterone is implanted in the habenula (Tennent et al.,
1982), while this effect is blocked when a progestin receptor
antagonist is implanted into the LHb (Etgen and Barfield, 1986).
In female rodents, receptive (lordosis) behavior is facilitated
by progesterone following estrogen priming (Whalen, 1974;

Frye and Vongher, 1999). The facilitation of reproductive
behaviors are modulated by progesterone actions on the MPOA
and VMHvl (Yang et al., 2013; Micevych and Meisel, 2017).
In particular, the PR-positive VMHvl cells regulate female
receptivity and sexual behavior and aggression in males through
their projection to the PAG (Yang et al., 2013). The PAG serves
as the final output structure that relays this information to
hindbrain motor output neurons to induce a lordotic posture
and aggression (Sakuma and Pfaff, 1979; Siegel et al., 1999; Pfaff
et al., 2008). Lesions of the habenula also affects the hormonal
onset of maternal behavior (Corodimas et al., 1992). On the other
hand, the implantation of estrogen in the LHb does not have
any effect on maternal behavior in female rats (Matthews-Felton
et al., 1999), suggesting the neuromodulatory role of habenula
in the onset of maternal behavior could be modulated by an
estrogen-independent mechanism. Although the specific role of
the habenula in the regulatory pathway of female sexual behavior
remains unknown, the afferent input from the MPOA (Conrad
and Pfaff, 1976) and efferent projection to the PAG (Baker and
Mizumori, 2017) of LHb indicates its possible involvement in the
facilitation of sexual behaviors.

In contrast to mammals, the association between
reproductive/social behaviors and the habenula is limited
in non-mammalian vertebrates. Nevertheless, in male newt,
habenula ablation disrupts courtship behavior (Malacarne and
Vellano, 1982). In frogs, there is an association between the
habenula volume and seasonal reproductive activity (Kemali
et al., 1990). These studies imply the involvement of the habenula
in social/reproductive behaviors in non-mammalian vertebrates.
In teleosts, the teleostean homolog of the SBN seems to be
involved in regulating sexual behavior (Forlano and Bass,
2011). In male goldfish, a connection between the Vs and the
posterior part of Vv, and the anterior part of the preoptic area
(NPP), which are sensitive to gonadal steroids (Diotel et al.,
2011), play important roles in sexual behavior (Koyama et al.,
1984). Similarly, electric stimulation of the ventral telencephalic
regions (including the Vv and Vs) and the POA (including
the NPP and lateral part of the POA) elicit sexual behaviors in
male and female salmon (Oncorhynchus nerka) (Satou et al.,
1984). Similar to mammals, sexual behaviors are triggered by
olfactory cues (sex pheromones) in fish (Stacey et al., 1986;
Munakata and Kobayashi, 2010). In teleosts, the OB directly
projects to several brain areas including the telencephalic regions
(Vv and Dp) and the diencephalon (NPP and nPT) (Forlano
and Bass, 2011; Kermen et al., 2013). In zebrafish, Vv neurons
are broadly tuned resulting in an overlapping representation
of odor categories, whereas Dp neurons respond to specific
odor categories (Yaksi et al., 2009). In many fish including
zebrafish, prostaglandin F2α (PGF) is known to act as a female-
driven reproductive hormone, which facilitates ovulation and
spawning, but it also acts as a sex pheromone inducing male
sexual behaviors (Sorensen et al., 1988; Pradhan and Olsson,
2015). In zebrafish, PGF acts on two olfactory receptors that
are selective for PGF with different affinities in the olfactory
sensory neurons, which transmit their activities to several
brain regions including the Vv, NPP, the lateral hypothalamic
nucleus (LH) and the caudal zone (Hc) (Yabuki et al., 2016).

Frontiers in Behavioral Neuroscience | www.frontiersin.org 9 February 2022 | Volume 15 | Article 818782

https://www.frontiersin.org/journals/behavioral-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/behavioral-neuroscience#articles


fnbeh-15-818782 February 5, 2022 Time: 14:54 # 10

Ogawa and Parhar Habenula and Social-Decision Making

Further, in male fish with a gene mutation in the olfactory PGF
receptor, neural activities induced by PGF is significantly reduced
only in the Vv (Yabuki et al., 2016), suggesting that the Vv is
primarily involved in the regulation of pheromonal regulation
of sexual motivation in male fish. Although the involvement
of the habenula in male sexual behaviors is not well known in
fish, the habenula receives inputs from the Vv in fish (Villani
et al., 1996; Yañez and Anadón, 1996; Turner et al., 2016). In
addition, the habenula (dHbM) also receives direct inputs from
the OB region in zebrafish (Miyasaka et al., 2009; deCarvalho
et al., 2013). Hence, the habenula pathway could be potentially
involved in the modulation of olfactory cues-dependent sexual
behavior of fish.

Aggressive Behavior
In fish, neurochemical, neuroendocrine, neuropharmacological,
and neurogenetics aspects of aggression have been well examined
(Gonçalves et al., 2017; de Abreu et al., 2019; Silva et al., 2020),
which mainly involve the POA (Ogawa et al., 2021). On the
other hand, aggression is strongly associated with a wide variety
of social-cognitive processes such as perception, interpretation,
and decision (e.g., fight or flight) (Fiske and Taylor, 1991; Allen
et al., 2018). In fish, neural circuitry in social decision-making
has been studied using several behavioral models (Bshary et al.,
2014). Under the distinct states of social behavior by isolating
the fish, having them fight a real opponent, winners only display
aggressive behaviors, while losers display submissive behaviors
(Ogawa et al., 2003; Teles et al., 2015, 2016). On the other hand,
in the mirror-fighting model, whereby fish fight against their
own image on a mirror, fish only display aggressive behaviors
because they fight and cannot lose (Oliveira et al., 2005; Balzarini
et al., 2014). In male A. burtoni, expression of neural activity
marker genes such as egr-1 and c-fos are increased in the SBN
regions including the POA and the telencephalon in dominant
fish (Burmeister et al., 2005; Maruska et al., 2013). Further,
expression of egr-1 and c-fos in the SBN in A. burtoni are most
prominent in males that perceived an opportunity to ascend
in social status compared to stable subordinate and dominant
states (Maruska et al., 2013). In zebrafish, expression of c-fos
and egr-1 are induced in the telencephalic nuclei such as the
Dm, Dl, Vv, and Vs and POA in social winners (winners of
social of real-opponent interactions and mirror-fighters) (Teles
et al., 2015). In the mudskipper, Periophthalmus cantonensis,
c-fos expression is increased in the diencephalons, pons and
medulla, but not in the telencephalon during aggression (Wai
et al., 2006). On the other hand, in agitated fish evoked by
vibratory stimuli, c-fos expression is increased in the Dl, Dm,
thalamus, hypothalamus, pituitary and medulla (Wai et al., 2006).
These results suggest that neural activity in the diencephalon
and the medulla is likely to be associated with the locomotor
activity during agitation and aggression, while the activities
observed in the telencephalic regions could be associated with
the emotional (social motivation) component. Almeida et al.
(2019) revealed the rapid change in the activation pattern of
the SDMN induced by the perception of outcome or fighting
itself in male Mozambique tilapia (Oreochromis mossambicus).
They found that the expression of social behavior is better

explained by the overall pattern of activation of the SDMN
rather than by the activity of a specific region in the SDMN
(Almeida et al., 2019). Nevertheless, expression of c-fos in the
brain revealed distinct co-activation patterns in different social
environments (different social perception) (Teles et al., 2015;
Almeida et al., 2019). Hence, each social perception has different
sets of significant correlations among gene expression levels
between different network nodes, indicative of behavior state-
specific co-activation patterns.

The habenula has been implicated in aggressive behaviors
in rodents and fish (Chou et al., 2016; Flanigan et al., 2017;
Webster and Wozny, 2020). A functional magnetic resonance
imaging in male patients with the symptom of intermittent
explosive disorder (IED) shows a possible association between
the habenula activity and the severity of aggressive behavior (Gan
et al., 2019). However, based on animal studies, the habenula is
unlikely to regulate the expression of aggressive behavior since
the induction of c-fos in the habenula of aggressive animals was
not extensive (Delville et al., 2000). On the other hand, the LHb
in male mice has been recently associated with motivation and
reward in the context of aggression (Golden et al., 2016; Flanigan
et al., 2017). In mice, optogenetic stimulation of GABAergic
LHbM neurons enhances aggression only in socially aggressive
(dominant) males (Flanigan et al., 2020), indicating the inhibitory
role of GABAergic LHb neurons on aggression. Importantly,
these GABAergic LHb neurons coexpress receptors for estrogen,
orexin and vasopressin that are implicated in aggression (Zhang
L. et al., 2018). Indeed, optogenetic stimulation of orexin
terminals in the LHb increases aggression, while knockdown
of orexin receptor gene in GABAergic LHb neurons reduces
aggression (Flanigan et al., 2020). Further, manipulation of
orexin signaling within the habenula induces aggression without
affecting anxiety-like behaviors (Flanigan et al., 2020). A recent
study identified the involvement of dHb subnuclei in the
differential regulation of social decision-making: either fight
or escape in zebrafish (Chou et al., 2016). They found that
silencing the dHbL reduces the likelihood of winning a fight,
whereas silencing the dHbM increases the likelihood of winning
(Chou et al., 2016). Interestingly, 6-day starvation in adult
zebrafish facilitates winner behavior by induction of the synaptic
potentiation of the dHbL-dIPN pathway which is caused by
enhancement of the hypothalamic orexin signaling and the
subsequent biased alternative splicing of the AMPA receptor
gene in the dIPN (Nakajo et al., 2020). Although the orexin
receptor (hcrtr2) is also present in the habenula in zebrafish
(Imperatore et al., 2018), it remains unknown if orexin signaling
in the habenula is involved in the conflict resolution for social
dominance in zebrafish.

Fear- and Anxiety- Like Behaviors
Fear and anxiety are defined as the response of a subject to
real or potential threats that may impair its homeostasis. These
responses include physiological as well as behavioral parameters
(Belzung and Griebel, 2001). Clinically, anxiety is also considered
a pathological state or trait (=pathological anxiety) when non-
pathological ‘normal’ anxiety becomes excessive (Belzung and
Griebel, 2001). Similarly, fear is an innate emotional response.
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Both fear and anxiety are to be quantitatively and qualitatively
examined using animal models, fear- or anxiety-like behavioral
phenotypes are essential. Although fear-like and anxiety-like
behaviors are not social behaviors per se, fear and anxiety state
can be closely associated with social context, which is known
as social anxiety, social fear or social avoidance (Toth and
Neumann, 2013). Further, social stress has been considered an
excellent model to induce anxiety-like and fear-like responses
(Palanza, 2001). In addition, social behavior in animal models
have been widely used to study both anxiety and fear-related
disorders, depending on the precise social setting employed
and how the animals are manipulated (Vellucci, 1990). Hence,
the social context of fear- and anxiety-like behaviors are
associated with the SDMN functions. For example, amygdala
hyperactivity has been observed during symptom provocation
or negative emotional processing in patients with social stress-
related disorders such as social anxiety, depression, specific
phobia, panic disorder, and posttraumatic stress disorder (PTSD)
(Amit and Tor, 2007; Godlewska et al., 2012). Nonapeptides
such as AVP and oxytocin, key regulators of social functions,
which play significant roles in the modulation of SDMN
are implicated in the regulation of anxiety and depression
(Neumann and Landgraf, 2012).

The habenula has emerged as a critical regulator of anxiety-
and depression-like behaviors in animal models (Proulx et al.,
2014; McLaughlin et al., 2017; Browne et al., 2018). In addition,
patients diagnosed with major depressive disorder have an
abnormal habenular volume (Ranft et al., 2010; Schmidt et al.,
2017) and baseline activity (Sourani et al., 2012). Furthermore,
a couple of clinical evidence based on deep brain stimulation
in patients with treatment-resistant depression suggested the
LHb as a potential therapeutic target for major depressive
disorder (Sartorius et al., 2010; Wang et al., 2021). In depressive
mice model induced by subchronic variable stress (SCVS)
(LaPlant et al., 2009; Hodes et al., 2015), the firing rate of
LHb-VTA circuit neurons is drastically increased in female
mice (Zhang S. et al., 2018). In male rats, chronic stress
exposure induces bilateral atrophy of the MHb and the LHb,
accompanied by a reduction of the number of neurons and
glial cells, and increased anxiety-like behavior (Jacinto et al.,
2017). While chemical stimulation of the LHb by bilateral
microinjection of kainic acid facilitates inhibitory avoidance
related to anxiety, but impaired escape related to fear in rats
(Pobbe and Zangrossi, 2008).

In fish, the role of habenula in anxiety- and fear-like
responses has been relatively well studied using zebrafish models
with established behavioral paradigms (Okamoto et al., 2012;
Mathuru and Jesuthasan, 2013; Ogawa and Parhar, 2018; Bühler
and Carl, 2021). For example, following chemically induced
inactivation of dHb neurons (dHbl-dIPN pathway), freezing
behavior is enhanced in aversive conditioning paradigms in
both adult and larvae (Agetsuma et al., 2010; Lee et al.,
2010). Further, disruption of the dHbl-dIPN connection but
not the dHbm-vIPN pathway leads to anxiety-like behavior,
suggesting that the dHbl neurons are sensitive to aversive
stimuli (Duboué et al., 2017). The dHbl-dIPN pathway has also
been implicated in social decision-making, but it is related

to social conflict resolution (winner or loser) (Chou et al.,
2016). On the other hand, recent studies revealed that the
vHb appears to play an essential role in social decision-
making related to fear and anxiety in zebrafish (Okamoto
et al., 2021). In zebrafish chronically under threat, vHb
neurons are tonically activated in the presence of aversive
cues, which is accompanied by activated serotonergic raphe
neurons (Amo et al., 2014). This neuronal activity of vHb-
serotonin pathway is suggested to represent the expectation of
a social threat (social risk evaluation). Furthermore, the place
avoidance behavior can be induced by optogenetic stimulation
of vHb neurons (Amo et al., 2014). Hence, the vHb-MR circuit
is essential for representing expected danger and behavioral
programming, allowing adaptively avoiding potential social
hazards (Amo et al., 2014).

As described above (see section “Kisspeptin”), kisspeptin
(Kiss1) and its receptor (Kiss1R) are exclusively expressed in the
zebrafish vHb (Kitahashi et al., 2009). Central administration
of Kiss1 (zebrafish Kiss1-15 peptides) increases the expression
of genes associated with serotonin (Ogawa et al., 2012), which
indicates Kiss1 could indirectly act on serotonergic neurons
residing the vaMR. Further, in zebrafish administered with
Kiss1, odorant cue (alarm substances) induced fear responses
including erratic movement followed by freezing behavior is
significantly reduced (Ogawa et al., 2014). A similar effect
is observed when the Kiss1 neurons are chemically ablated
(Ogawa et al., 2014) or Kiss1 gene is mutated (Sivalingam,
2019). Interestingly, Kiss1 gene mutant zebrafish exhibits
avoidance learning impairment (Lupton et al., 2017). Similarly,
according to Okamoto et al. (2021), the vHb-silenced fish impair
social avoidance learning. Under a social conflict situation,
the socially subordinate fish tends to have less proximity to
the socially dominant individual to avoid being attacked by
the dominant (= social avoidance learning) (Krypotos et al.,
2015). However, the vHb-silenced fish repeatedly swims back
to the center of the tank where the dominant (winner)
fish is swimming, and continues to receive attacks by the
dominant fish (Okamoto et al., 2021). These observations
suggest the possible role of Kiss1-Kiss1R signaling in the vHb
in the modulation of stress coping in zebrafish. Although
the mechanism underlying the neuromodulatory role of Kiss1
remains unclear, an electrophysiological characterization in larval
zebrafish has shown concentration-dependent dual (stimulatory
and inhibitory) effects of Kiss1 peptides on vHb neural
activity: vHb neurons are depolarized at low concentrations
(10∼100 nM), whereas they are hyperpolarized at high
concentrations (1∼5 µM) (Lupton et al., 2017). In larval
zebrafish, activation of vHb neurons suppresses downstream
serotonergic neurons and induces passive coping (reduction
of mobility under stress), whereas inhibition of these neurons
prevents passivity (Andalman et al., 2019). We have previously
shown that exposure to cold stress (15◦C) significantly induces
Kiss1 gene expression in the zebrafish habenula (Shahjahan et al.,
2013). Hence, habenula Kiss1 could act as a sensor for stressful
or socially aversive conditions and modulate the subsequent
stress-coping behavior such as mobility (avoidance), anxiety and
aversion-associated learning.
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Apart from Kiss1 signaling, the habenula expresses a number
of molecules including neurotransmitters and their transporters
and receptors, neuropeptides and neuropeptide receptors, and
channels, which were recently revealed by several habenula-
specific single-cell RNA-seq analyses in mammals (Hashikawa
et al., 2020; Levinstein et al., 2020; Wallace et al., 2020) and fish
(Pandey et al., 2018). However, their molecular and functional
roles within the vHb remain unelucidated. We have recently
identified the expression of GPR139 in the vHb of zebrafish and
found that activation of GPR139 in the vHb could be involved
in the modulation of fear learning and decision-making process
(Roy et al., 2021). As treatment with a human GPR139-selective
agonist had no effect on odorant cue-induced fear response,
GPR139 and Kiss1 signaling in the vHb are independently
involved in aversion responses (Roy et al., 2021).

SUMMARY

Social and sexual behaviors are collectively controlled by the
specialized SDMN circuitry in vertebrates. SDMN is structurally,
biochemically and possibly functionally conserved from non-
mammalian vertebrates to humans. The SDMN circuitry
has numerous connectivity outside of the SDMN. Recently,
the habenula, an evolutionarily highly conserved epithalamic
structure, has emerged as a possible key brain region in decision-
making behaviors in a social interaction context. Accumulated
neuroanatomical and neurochemical evidence suggests that there
is a functional linkage between the habenula and the SDMN in
mammals and fish. For example, there is reciprocal connectivity

between the habenula and components of the SDMN. The
habenula receives neuronal inputs from several neuropeptides
regulating social and reproductive behaviors. The connectivity
between the habenula and the Vv could be potentially involved
in the modulation of olfactory cues-dependent sexual motivation
in fish. Recent behavioral and neurogenetic studies in zebrafish
have revealed that different habenular subnuclei selectively
regulate the different states of social behaviors. The dHb-dIPN
pathway modulates experience-dependent behavioral response
(anxiety) toward social threat. On the other hand, the vHb-
serotonergic pathway is involved in adaptive learning of social
avoidance. Taken together, the habenula plays a crucial role in
controlling different states of social behaviors and hence, it may
be considered an indispensable node of the SDMN in vertebrates.
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