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We calculate the thermal and conformational states of the spike glycoprotein

(S-protein) of SARS-CoV-2 at seven temperatures ranging from 3°C to 95°C by

all-atom molecular dynamics (MD) µs-scale simulations with the objectives to

understand the structural variations on the temperatures and to determine the

potential phase transitionwhile trying to correlate such findings of the S-protein

with the observed properties of the SARS-CoV2. Our simulations revealed the

following thermal properties of the S-protein: 1) It is structurally stable at 3°C,

agreeingwith observations that the virus stays active formore than twoweeks in

the cold supply chain; 2) Its structure varies more significantly at temperature

values of 60°C–80°C; 3) The sharpest structural variations occur near 60°C,

signaling a plausible critical temperature nearby; 4) The maximum deviation of

the receptor-binding domain at 37°C, corroborating the anecdotal observations

that the virus is most infective at 37°C; 5) The in silico data agree with reported

experiments of the SARS-CoV-2 survival times from weeks to seconds by our

clustering approach analysis. Our MD simulations at µs scales demonstrated the

S-protein’s thermodynamics of the critical states at around 60°C, and the stable

and denatured states for temperatures below and above this value, respectively.
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1 Introduction

The SARS-CoV-2 engulfs the world, even in tropical countries (Sarkar et al., 2020;

Tosepu et al., 2020), and it remains infectious for weeks at 3°C–4°C in the cold supply

chain (Dai et al., 2020; Rizou et al., 2020). Recent studies confirmed the negative

correlation between the spread of the COVID-19 and climate (Sobral et al., 2020;

Tosepu et al., 2020); moreover, the instantaneous reproduction number of SARS-

CoV-2 is closely related to the temperature (Rubin et al., 2020).

The biological experiments with more laboratory details verified that coronaviruses

are thermolabile. For example, SARS-CoV is inactivated after 75°C heat for 15 min, and

MERS becomes inactivated after 65°C heat for 1 min (Darnell et al., 2004; Leclercq et al.,
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2014). These impacts are also apparent in the recent laboratory

studies about SARS-CoV-2. It remains infectious in aerosols at

21°C–23°C for 3–24 h (Van Doremalen et al., 2020). The SARS-

CoV-2 remains active at 37°C for at least 24 h but inactive after

60°C heat for 15 min (Wang et al., 2020). When the incubation

temperature reaches 70°C, the virus is inactive within 5 min

(Chin et al., 2020). These confirm that SARS-CoV-2 gradually

loses viability with increasing temperature. The data available for

understanding is still sparse, and handling these clinical

specimens poses a biosafety risk to laboratory professionals

and workers (Wang et al., 2020). It is necessary to introduce

more computational simulations.

Understanding the biochemical and thermolabile properties

of SARS-CoV-2 requires a comprehensive understanding of the

structure at the atomic level. The S-protein is one of the

coronavirus’s initial and largest structural proteins (Li, 2016).

The outer membrane S-protein, similar with the genome to

SARS-CoV’s S-protein (Ahmed et al., 2020), is the primary

host interaction protein with host cell targets such as

ACE2 and is critical for cell adherence and pathogenicity

(Pöhlmann et al., 2012; Heise et al., 2018). The temperature

dependence of the SARS-CoV-2 characteristics, notably for

S-protein, is interesting in medical prediction because ambient

temperatures first alter the structure of the virus protein

membrane. The S-protein has two domains: the S1 domain is

on top and comprises the portion that interacts directly with host

cell receptors; the S2 domain, in contrast to the S1 subunit, forms

the stalk of the S-protein (de Groot et al., 1987), facilitating virion

fusion with cellular membranes (Walls et al., 2020). The receptor

binding domain (RBD) is responsible for binding to ACE2, which

is the initial step for entry into target cells (Lan et al., 2020). In

vitro binding studies confirmed that the RBD on SARS-CoV-

2 binds to ACE2 with a low nano band affinity, indicating a

crucial functional component in the S1 domain that induces the

binding to ACE2 (Tian et al., 2020; Walls et al., 2020). The RBD

of the S1 domain undergoes hinge-like conformational changes,

transitioning between the closed and open state (Heise et al.,

2018). The SARS-CoV-2 may withstand a higher temperature

than SARS-CoV, and RBD-ACE2 binding for SARS-CoV-2 is

more temperature-sensitive than SARS-CoV (He et al., 2020).

MD simulations also demonstrate a temperature-dependent

binding affinity of SARS-CoV-2 to the ACE2 (Zhou et al.,

2021) also provided the preliminary structural states of

S-protein by 200 ns at 10°C–50°C (Rath and Kumar, 2020). At

the outermost of the protein, N-terminal domain (NTD) is

increasingly exposed. The NTD and RBD sections are more

versatile, allowing for structural adaptation to host receptors

(Verkhivker, 2020). The structure and binding sites of such

S-proteins are well established, while other characteristics,

especially the stability under external factors, such as

temperature, remain elusive. Moreover, due to the

requirement to simulate over extended time scales, recent

studies for the S-protein are difficult to reach to µs-scale.

The computational simulations reveal more details and track

more trajectories, applying in multiple fields and works (Papaleo,

2015; Ostrowska et al., 2019; Mahmood et al., 2021; Zhang and

Huang, 2021). Our work uses all-atom molecular dynamics

(MD) simulation and understands its characteristics at the

atomic level critically. We conduct µs-scale simulations at 3°C

(of a cold supply chain), 20°C (typical room temperature), 37°C

(normal human body temperature), 60°C, 70°C, 80°C, and 95°C

(temperatures selected to locate the critical temperature). The

simulations are long enough to collect conformational samples of

the S-protein for applying statistical analysis to study the effect of

virus temperature stability. The analysis is based on a variety of

measurements from different perspectives, including the root-

mean-square deviation (RMSD), the number of hydrogen bonds

(H-bonds), the solvent-accessible surface area (SASA) of the

whole protein, and the mass deviation of the RBD. We also

correlate the in vitro data of the virus life scale with the

conformational change of the S-protein. Additionally, the

analysis of residue based root-mean-square fluctuation

(RMSF) and structural divergence are performed to isolate the

temperature-sensitive residues at given temperatures.

The RBD is buried and inaccessible to receptors in a close

state. The open state is necessary for binding with the receptors

and to be infectious (Vankadari and Wilce, 2020). The different

states of S-protein RBD, including open, close, and intermediate

states, give the different potential targets for vaccination and

therapeutic development (Lan et al., 2020). MD modeling has

been used to investigate the binding characteristics of SARS-

CoV-2; however, long-timescale MD simulations to study the

temperature influence on the S-protein’s closed state

conformation are uncommon. The recent work focuses on the

open state of S-protein and reveals the S-protein structure details

effect by 0°C–60°C in 100 ns (Khan et al., 2022). Therefore, our

work with longer simulations (reach 3 μs) and a wider range of

temperatures (3°C–95°C) exposes the closed state of S-protein

6VXX.PDB (Walls et al., 2020) trajectory and multi-granularity

analysis, providing new insights into the RBD closed state

influenced by temperature.

Our simulations of µs-long atomic resolutions have

demonstrated the S-protein’s conformational changes at seven

well-chosen temperatures. We discovered the existence, and the

possible critical temperature, of a phase transition that rives the

states of infectivity and non-infectivity. The temperatures are

clustered by unsupervised learning based on an in silico

measurements combination, and the clustering result agrees

well with published in vitro data. Finally, the spike opening,

represented by the deviation of the RBD (Zimmerman and

Bowman, 2021), at different temperatures are compared. The

simulations in this work are conducted on the most powerful

IBM supercomputers to help achieve a fast and accurate

quantitative understanding of the new virus structures to

complement the sparse and inconsistent in vitro experiments

with high-infectious virus cultivation.
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2 Methods and materials

2.1 Molecular dynamics parameters

Our MD experiments are conducted on the AiMOS

supercomputer, a heterogeneous system of IBM POWER9 CPUs

and Nvidia V100 GPUs. The S-protein data is obtained from the

protein data bank [PDB: 6VXX (Walls et al., 2020)].

CHARMM27 is employed to describe the system of the

S-protein and the SPC/E water molecules. The initial structure of

the S-protein 12 nm3 × 13 nm3 × 16 nm3 was immersed in a cubic

water box of 21 nm3 × 21 nm3 × 21 nm3. The periodic boundary

condition is applied to all three boundaries of the water box. The

total number of atoms is 8,05,218, of which 45,156 (5.6%) are for the

S-protein and 7,60,047 (94.4%) for water. Simulations are

performed using energy minimization by gradient optimization

and the canonical (NVT) ensemble. The charge neutrally is achieved

by adding 15 Na+ to the solvent to neutralize the −15 charge in

protein. During the MD simulations, S-protein coordinates are

recorded every 0.1 ns and finally reach 3 μs.

2.2 Data collection and analysis

We process the raw trajectory obtained from the simulation

by aligning the protein backbone in the center of box and rotating

and translating the protein backbone. The processed trajectories

of atomic positions support the data analysis in three-level. 1)

The protein level calculation measures the S-protein’s thermal

stabilities, including the backbone RMSD, the number of

mainchain-mainchain (M-M) and protein-water (P-W)

H-bonds, and SASA. The unsupervised learning method

K-means was performed based on those measurements to

cluster different temperatures into groups of viral survival

durations. The interchain communication and the free energy

landscape (FEL) are also considered in the protein level

calculation. 2) The domain level of the RBD mass deviation

was calculated to compare the spike opening between

temperatures. 3) The residue level RMSF and structural

divergence were applied to measure the fluctuations of

individual residues and catch the culprit residue clusters. The

flowchart outlines of our data analysis are shown in Figure 1.

2.2.1 Statistical analysis
To obtain a comprehensive conclusion of the temperature

impact, we performed a statistical analysis based on multi-

perspective measurements. The in silico data are used as

inputs of an unsupervised learning method based on K-means

to cluster different temperatures into four groups of viral survival

durations, second, minute, day, and week-long survival durations

accordingly. In this, the in silico data include the average,

standard deviation, kurtosis, and skewness of RMSD, as well

as the average and variation of the P-W H-bonds.

2.2.2 The free energy landscape
The FEL provides insight into the S-protein conformational

changes and the thermodynamics properties of the S-protein

folding process. The FEL, a measurement calculated for the

protein stability level, uses the deep valley to represent the

lowest energy stable states and the boundaries between deep

valleys to represent the intermediate conformations (Hoang

et al., 2004; Khan et al., 2020; Khan et al., 2022).

FIGURE 1
Data processing pipeline from collection to analysis.
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The first two principal components (PC1 and PC2) are used

to calculate the FEL by:

nF(PC1, PC2) � −kBT lnP(PC1, PC2)
where kB is the Boltzmann constant, T denotes temperature, and

P(PC1, PC2) is the normalized joint probability distribution for

PC1 and PC2. The PC1 and PC2 are calculated as the projection

of the last 500 ns trajectory on the eigenvectors. The eigenvectors

are diagonalized and calculated from the covariance matrix,

which considers the carbon alpha coordinates for S-protein.

2.2.3 Conformational changes of RBD analysis
The opening is quantified in terms of how far the center of

mass of an RBD (Arg319-Phe541) deviates from its position in

the close (or down) state (Zimmerman and Bowman, 2021).

Therefore, the RBD movements is measured by

Di �
����������������������������
(xi − x0)2 + (yi − y0)2 + (zi − z0)2

√

where Di is the deviation of RBD at frame i. (xi, yi, zi) are the
coordinates of the center of mass of an RBD at frame i, and

(x0, y0, z0) is the center of mass of an RBD at the first frame

(closed state) in the simulation.

2.2.4 Structural divergence analysis
The RMSF measures the time averaged root mean squared

fluctuation for each residue. Structural divergence, is used to

measure the residue-based structure conformational changes

between two comparing temperatures T and T0

SDi(T, T0) � Ri(T)log Ri(T)
Ri(T0)

where Ri(T) is the RMSF at temperatures T for residue i, and

T0 is the reference structure (37°C at our cases). The logarithm

measures the relative (structural) divergence of a given residue

at two different conditions (temperature, in our case). Simply,

if SDi(T, T0)> 0, the residue i deviates more in the condition

T, instead of the reference structure T0. This measure enables

FIGURE 2
The averaged structures over the last 0.5 μs of S-protein colored by the B-factors at each temperature.
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FIGURE 3
The RMSD evolving as a function of time (A1) and average distribution of the last 1.5 μs values (A2). Similar plots show the number of P-W
H-bonds (B1,B2), the numbers of M-M H-bonds (C1,C2), and the SASA (D1,D2). This manuscript will keep using the color scheme for 3°C–95°C.
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FIGURE 4
Clustering results of K-means using H-bond counts and average RMSD.

TABLE 1 Clustering of survival times based on conformational information of the S-protein.

Group Temperatures Features descriptions

Group 1 (cold) 3°C–4°C Blue group (Figure 4): weeks of survival time. In vitro data: the virus at 4°C can survive for more than 2 weeks (Chin et al., 2020).

Group 2 (normal) 20°C–37°C Green group (Figure 4): day-scale survival time. In vitro data: 7 days at 20°C and 1 day at 37°C (Chin et al., 2020).

Group 3 (high) 60°C–70°C Orange group (Figure 4): minute-scale survival time. In vitro data: 10 min at 56°C and around 1 min at 70°C (Chin et al., 2020).

Group 4 (very high) Above 70°C–95°C Red group (Figure 4): second-scale survival time. No in vitro data at this scale.

FIGURE 5
The averaged interface area (marked as IA) and the number of H-bond across the interface (marked as Hbond) between three chains for
S-protein from 3°C to 95°C.
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us to single out residues that are responsible for the overall

structural change.

3 Results and discussions

The average structures of S-protein within the last 0.5 μs for

each temperature are shown in Figure 2. The color and thickness

of the structure are scaled by the B-factor related to the mean

square isotropic displacement of the residues. The residue with a

high B-factor belongs to the flexible structure, while the low

B-factor represents the well-ordered structure.

3.1 The protein based

3.1.1 The RMSD
The evolution of the protein structure was monitored along the

MD trajectory by calculating the average RMSD of backbone atoms

taking the initial structure as the reference frame. The RMSDmoving

averagewith 0.02 μs window size is plotted against the simulated time

in Figure 3A1. The mean and standard deviation of the 1.5–3 μs

RMSD is shown in Figure 3A2. The S-protein shows very stably with

a small RMSD (0.37 nm) at 3°C, and the RMSD gradually increases

by ~35.1% to 0.5 nm at 20°C–60°C. The S-protein becomes more

unstable, with the RMSD increasing to 0.6–0.7 nm at 70°C–95°C.

FIGURE 6
The FEL of S-protein from 3°C to 95°C with same color scale, and the protein structure for minimum energy area at 80°C (left) and 95°C (right)
compared with the 3°C (blue) structure with zoomed unfolding structure.
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The S-protein could be possible to stay long-term stable at

cold temperatures with lower RMSD compared with room

temperature (the RMSD at 20°C is 32.4% higher than that at

3°C). The in silico result is consistent with the reported case that

salmon-attached coronavirus remains infectious for more than

1 week at 4°C (Dai et al., 2020). At 4°C, the virus is still stable with

TABLE 2 The averaged potential energy, entropy, and isochoric heat capacity for each temperature.

Temperature (°C) Potential energy (× 107 kJ/mol) Entropy [× 104 J/(Kmol)] Cv [J/(Kmol)]

3 −1.25 2.51 102.02

20 −1.22 2.78 98.41

37 −1.19 3.01 97.03

60 −1.16 3.34 92.41

70 −1.14 3.39 90.09

80 −1.12 3.59 89.77

95 −1.10 3.82 86.78

FIGURE 7
The distribution of RBD deviations in chains A, B, and C (from top to bottom) at 3°C, 20°C, 37°C, 60°C, and 70°C.
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only ~0.7-log reduction with infectious titers after 14 days (Chin

et al., 2020). Furthermore, the S-protein becomes more sensitive

to higher temperatures after 60°C. In particular, there appears a

noticeable jump at RMSD from 0.53 nm (60°C) to 0.62 nm (70°C)

that may serve as a signal for the presence of a critical heat

denaturation around 60°C. The laboratory results (Chin et al.,

2020) also showed a similar conclusion: the viral inactivation

time is greatly reduced to 5 min when the incubation

temperature increase to 70°C.

3.1.2 The number of H-bonds
In general, the H-bond shows a high consistency with the

system stability. A well-ordered protein structure tends to have

more H-bond, and when the structure becomes active, the

number of H-bond will decrease. The P-W and M-M H-bond

counts versus simulation time and average distribution,

including standards deviation, are presented in Figures

3B1–C2, respectively.

The average number of P-W H-bonds decreases quite

linearly by 22.1%, from 6,126 to 5,021, as the temperature

increases from 3°C to 95°C. However, the effect of increasing

temperatures from 3°C to 80°C on the mainchain is insignificant.

Compared with 1,254 M-M H-bonds at 3°C, only around

25 M-M H-bonds are broken, decreasing by 2%, at 80°C.

3.1.3 The SASA
The SASA of S-protein explores the solvent-accessible

conformational change. The SASA with 0.02 μs window size

FIGURE 8
RMSF for each residue on three chains within the last 0.5 μs simulation.
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moving average are plotted in Figure 3D1, and the average

distribution with standards deviation are shown in Figure 3D2.

The average of SASA keeps decreasing by 10% as the temperature

increases from 3°C to 95°C. The SASA shows a consistent trend with

the number of P-WH-bonds, revealing that access to the solvent is a

precondition to forming the H-bonds between water and protein.

3.1.4 Correlating in silico measurements with
virus’s survival times

The in silico data are used as inputs of an unsupervised

learning method to cluster different temperatures into

different groups of viral survival durations. The samples

are clustered by K-means, in terms of the virus life

duration, based on six features, including the average,

standard deviation, kurtosis, and skewness of RMSD, as

well as the average and variation of the P-W H-bond

counts. A moving window statistic is used with a

window size of 100 ns and a stride size of 10 ns. To

compare with in vitro data, we correlate four categories as

second, minute, day, and week-long survival durations for the

cluster n = 4 in the K-means method. The survival times of

the virus at different incubation temperatures were reported

by in vitro experiments (Chin et al., 2020). The samples

are grouped into four clusters which are colored green,

blue, orange, and red, shown in Figure 4 and described in

Table 1.

3.1.5 The interchain communication
The interface area and the number of H-bond across

the interface are calculated by PDBePISA (Krissinel and

Henrick, 2007) and shown in Figure 5 to reveal the

interaction between the three chains of S-protein. No

significant change of S protein from 3°C to 60°C was

detected in the interfacial area and interfacial H-bonds. The

interfacial area and the interfacial H-bonds increase in the

structurally unstable high temperatures from 70°C to 95°C

(with higher RMSD and lower H-bonds). Therefore, instead of

splitting the S protein, the interchain interactions will increase

when the S protein begins to denature due to increased

temperature.

3.1.6 The free energy landscape
The FEL demonstrating the energy stability of S-proteins at

3°C–95°C is shown in Figure 6. All seven temperatures are plotted

with the same color scheme, and the minimum energy area is

colored blue. The 3°C shows a deep valley for global energy

minima while the 80°C and 95°C reveal several different energy

minima states. The global blue areas describe more global

stability; however, more extra blue areas indicate more

transitions in the protein conformation with the

thermodynamically new favorable states. We catch the protein

conformation for minimum energy area at 80°C (left) and 95°C

(right) compared with the 3°C (blue) structure, with zoomed

unfolding structure.

The averaged potential energy, entropy, and isochoric

molar heat capacity (Cv) for the system are also

calculated in the simulations. The details of those data

are listed in Table 2. The averaged potential energy,

and entropy increase with rising temperature while the

Cv decreases. The increasing entropy contributes to

the S-protein thermal unfolding (Fitter, 2003; Dagan et al.,

2013; Cui et al., 2014; Li et al., 2021). The Cv decrease

shows that the contribution of atomic interactions to Cv

decreases with increasing temperature, and the total

kinetic energy fluctuations increase faster than that of

the total potential energy (Umirzakov, 2020).

TABLE 3 Structural divergence outliers list.

Temperature Chain Residue ID

60 A R214 F318 R408 T415 K529 S530 P812-R815 L858

B Y369 T415 I418 F464 R466 N616 E619 V620 N641 V642 Q644-R646

C F133 T208-I210 A372 S375 K417-A419 Y449 Y451 G504 T645 R646 V705 K795 F855 R995

70 A Y451 F497 Q498 F643-A647 S810-K811 S813-K814 F817 F855-L861 T912 N914

B A27 Y28 K41 F135 F140 L212 R357 R466 I468 Y489 R815 F823 K825 V826 Y904

C H69 D80 N81 K97 T108 L110-Ser112 T114 Q115 F133-F135 C166 I210-V213 D215-F220
S371 Y495 F643 T645 R646 K795 K811 Y1110 D1118 N1135

80 A C136-N137 D405 E406 R408-Y423 Y505 S704 T747 G858

B A27-N30 F32 T33 F58-S60 W64 F65 A67 H69 T95 E96 S98 I100 N122-T124 F135 D138 F140-Val143
N165 Y170 R190 F220 L244 H245 A263 T315 N317-R319 Y351 S371 A372 D398 F400 R403 R408-I410 A411-A419
Y421 Y423 F429 A435 R454 K462 R466 Y489- F497 N501 V503-Y505 Y508 V512 D568-D571 F592 T791-P793 P807-
F817 D820 N824 K825 I1081- F1089 R1091 I1114-I1130 I1132-N1135

C A27 T29 L84 P85 N87 K97 S98 I100 G107 T108 I210 N211 D215- F220 N234 T240 Y269 F318 R319 F374 I468 G545 F592-G594
V642-R646 V705 K795 G799 F800 F802 Q804 P807-K811 K814-T827 K854-N856 T912-L938 Q965
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FIGURE 9
Identifications of residue outliers causing protein structure divergences and the residue outlier clusters zoomed structure for 80°C.
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3.2 The domain-based

3.2.1 Conformational changes of RBD analysis
The distributions of the 1.5–3 μs RBD mass deviations for

all three chains, marked by the colors of the curves as usual

(Figure 3), are shown in Figure 7. The 37°C S-protein with a

large RBD deviation trajectory is caught in the simulation and

demonstrated in Figure 7.

The S-protein is more likely to adopt open structures

at 37°C, compared to other temperatures, with the deviation

of the RBD up to 0.8 nm. For 37°C, the RBD in chain

A shows an active state rather than being buried by NTD,

which may provide a hint for the virus infections. At 3°C,

the virus that can survive for over 2 weeks (Chin et al., 2020)

is less infectious. The in silico result: at this temperature,

the small RBD deviations of 0.15 nm implied that

RBD became hardly accessible to receptors for most of

the time.

3.3 The residue-based analysis

3.3.1 The RMSF
RMSF is a measurement of residue fluctuation in the

S-Protein. Although most residues stay in a stable state

with lower RMSF, some peak residues can be easily caught.

In our case, the RMSF is calculated in the last 0.5 μs time

window. In Figure 8, each point represented the RMSF of a

specific residue ordered by its residue ID and colored by the

color scale mentioned in Figure 3.

In the lower temperature group 3°C–20°C, no significant

residue has RMSF larger than 0.5 nm. In the higher temperature

group (37°C and 60°C), some individual residue RMSF reaches

0.5 nm. For 70°C, more residues have higher RMSF, especially the

N643-R646 cluster in Chain A, have RMSF larger than 0.5 nm.

More residue clusters are active in the very high-temperature

range.

At 80°C, some residue clusters’ average RMSFs are higher

than 0.5 nm, including C136-L141, G413-K417 in Chain A, and

C662-I664 in Chain C. At 95°C, the RMSFs of I210-Q218 and

K444-N448 in Chain A, F140-G142, and R214-D215 in Chain B,

as well as A27-Y28 and S810-K814 in Chain C are larger than

0.5 nm.

3.3.2 The structural divergence
We calculate the structural divergence in the interesting

temperature zone of 60°C–80°C. To spot the outliers of

residues that cause significant structure divergence, we set

SDi(T, T0) � 0.07 as the threshold with which we found the

outliers for 60°C–80°C listed in Table 3. The specific positions of

the residue distribution in the protein, with zoomed outliers’

clusters for 80°C, are shown in Figure 9. The dark yellow

represents the S1 domain, and the light yellow represents the

S2 domain. The cluster structure marked with balls are residue

outliers, and its red, green, and blue colors represent chain A, B,

and C, respectively.

At 60°C (11, 13, and 18 outliers in chain A, B, and C,

respectively) and 70°C (22, 15, and 34 outliers in chain A, B,

and C, respectively), outliers are evenly distributed in the entire

S-protein. At 80°C, among the 131 outliers in chain B, 45 are

concentrated in RBD, 40 out of 45 forming a cluster zoomed in

Figure 9. Moreover, 34 out of the 131 outliers in chain B are

concentrated in NTD, and 33 out of 34 constitute a cluster shown

in Figure 9. 51 out of 91 outliers form a cluster in chain C and are

concentrated on the carbon chain of S2. We capture a large

number of outliers in 80°C forming clusters considered as the

culprit residues that caused 80°C RMSD higher than other

temperatures.

4 Conclusion

Our simulations of µs-long atomic resolutions demonstrate

the S-protein’s conformational changes affected by temperature

varying and enable us to infer the existence and the possible

critical temperature for the S-protein. In the whole protein-

based, domain-based, and residue-based analysis, we could

get: 1) The S-protein of SARS-CoV-2 is structurally stable at

3°C with the lowest RMSD, the highest number of H-bonds, and

the stable RBD. Even in the residue-based analysis, no residue

can be caught for large RMSF. 2) All the measurements point out

a consistent signal that the heat effect difference between 60°C

and 70°C is significant, especially in the RMSD gap and outlier

residue clusters catch in the structure divergence analysis. 3) In

extremely high temperatures (80°C and 95°C), the S-protein is

most active with the highest RMSD and lowest number of

H-bonds; moreover, the RMSF provides evidence for the

culprit residue that leads S-protein to denature in the short-

term. More detailly, in µs-scale, 80°C are broken first in the RBD,

NTD, and carbon chain of the S2 domain in the structure

divergence analysis.

Our in silico results could be correlated with the published

in vitro results to correlate ambient temperature with the life

duration and infectivity of the virus. 4) The temperatures from

3°C to 95°C are clustered into four groups by an unsupervised

learning algorithm, and the clustering result agrees with in vitro

viral survival time scale from weeks to seconds (Chin et al., 2020)

(Figure 4). 5) The RBD mass deviation is large at 37°C while it is

low at cold temperature (3°C), room temperature (20°C), and

high temperatures (higher than 60°C). This indicates the

S-protein is more likely to adopt an open structure at 37°C,

although the life duration of the virus is shorter than it at 3°C.

For the first time, we present the µs-scale MD studies of the

temperature-varying conformation of a life-threatening S-protein.
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Our simulations on themost powerful IBM supercomputers achieve

a fast and accurate quantitative understanding of the new virus

structures and corroborate well with the published in vitro

experiments. Moreover, our simulations complement the effect

of a wide range of temperature on closed state S-protein.

One bottleneck of the current all-atom simulation is the

computing power, including computing resources and

algorithms. To improve the simulation speed, a multiscale

model concurrently considering components at their own

characteristic scales (Zhu et al., 2021) and an intelligent time-

stepping algorithm (Han et al., 2021) can effectively relieve the

computing load and shorten the simulation time. Advances on

machine learning based techniques also have been made towards

intelligent image processing for simulation parameter

determination (Zhang et al., 2021b; Sheriff et al., 2021) and

dynamics prediction (Zhang et al., 2021a), which enables long-

term study with affordable efforts.
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