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New technology is of little use if it is not adopted, and surveys show that less than 10% of
firms use Artificial Intelligence. This paper studies the uptake of AI-driven automation and its
impact on employment, using a dynamic agent-based model (ABM). It simulates the
adoption of automation software as well as job destruction and job creation in its wake.
There are two types of agents: manufacturing firms and engineering services firms. The
agents choose between two business models: consulting or automated software. From the
engineering firms’ point of view, the model exhibits static economies of scale in the software
model and dynamic (learning by doing) economies of scale in the consultancy model. From
themanufacturing firms’ point of view, switching to the softwaremodel requires restructuring
of production and there are network effects in switching. The ABMmatches engineering and
manufacturing agents and derives employment of engineers and the tasks they perform, i.e.
consultancy, software development, software maintenance, or employment in
manufacturing. We find that the uptake of software is gradual; slow in the first few years
and then accelerates. Software is fully adopted after about 18 years in the base line run.
Employment of engineers shifts from consultancy to software development and to new jobs
in manufacturing. Spells of unemployment may occur if skilled jobs creation inmanufacturing
is slow. Finally, the model generates boom and bust cycles in the software sector.
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1 INTRODUCTION

Due to recent advances in algorithms and technology based on Artificial Intelligence (AI), intelligent
automation systems are rapidly moving into the workplace. AI technologies such as Deep Learning
have become accessible to industry as a result of growing digitisation, the consequent availability of
data, computation power and powerful tools, propelled by research by the leading technology
companies. Nevertheless, the adoption of technology is gradual, often with long lags between
innovation and adoption1. A survey of firms’ use of AI released by Statistics Sweden in November

Edited by:
Martim Brandão,

King’s College London,
United Kingdom

Reviewed by:
Matthew Studley,

University of the West of England,
United Kingdom
Taewoo Nam,

Sungkyunkwan University, South
Korea

Tania Treibich,
Maastricht University, Netherlands

*Correspondence:
Hildegunn Kyvik Nordås

hildegunn.kyvik-nordas@oru.se

Specialty section:
This article was submitted to

Ethics in Robotics and Artificial
Intelligence,

a section of the journal
Frontiers in Robotics and AI

Received: 02 December 2020
Accepted: 21 April 2021
Published: 10 May 2021

Citation:
Kyvik Nordås H and Klügl F (2021)

Drivers of Automation and
Consequences for Jobs in Engineering

Services: An Agent-Based
Modelling Approach.

Front. Robot. AI 8:637125.
doi: 10.3389/frobt.2021.637125

1Over the past 200 years in 166 countries it has taken 45 years on average from innovation to adoption of technology (Comin
and Hobijn, 2010).
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2020, for example, finds that only 5.4% of the firms surveyed use
AI. In the United States, the 2018 Annual Business Survey found
that 10.3% of firms use at least one of the advanced business
technologies classified as AI2. Against this backdrop, it is clear
that to assess the impact of AI on the future of work, one first
needs to understand what determines the uptake of AI in firms.
This paper contributes to filling this gap. It studies the uptake of
AI-based automation and its determinants as a market
interaction between developers and users of AI-based
automation software.

It contributes to the literature in three major ways.
First, studies on the adoption of AI are few despite the

observed long lags between innovation and adoption. It is well
documented in the literature that adoption of new technology
goes together with investment in intangible assets, including skills
and organisational innovations (Brynjolfsson and Hitt, 2000;
Rock, 2019). Nevertheless, standard models of technology
adoption do not feature organisational changes. Our novel
approach contributes to filling this gap by modelling AI-
adoption as a switch in business model. Before AI-adoption,
engineers serve their manufacturing clients through face-to-face,
on-site interaction. AI-adoption implies using AI technology to
automate the engineering tasks. Among the technologies we have
in mind are machine learning, intelligent planning, automated
reasoning, text mining and natural language generation. Many of
these AI approaches have become applicable outside purely
academic contexts due to accessible tools and platforms3.
These automation technologies are embedded in software,
such as intelligent systems for computer-assisted design
(CAD), systems supporting additive manufacturing (3D
printing), software for advanced construction of digital twins,
software performing advanced data analysis and complex tests for
verifying control software. Engineers switch from a consultancy
model to developing, maintaining and licensing such software to
clients. Manufacturers switch to a more skills-intensive software-
supported production technology. The driving forces that we
analyse are economic and institutional, notably uncertainties
about user costs and benefits of the new technology, the
switching costs to a different business model, the need for
skills upgrading, and regulatory incentives or disincentives.
Our focus on the demand side of technology diffusion
provides new insights that can inform a balanced R&D, skills-
and labour market policy.

Second, the study focuses on AI-adoption in services, noting
that professional services are at the cusp of using AI-enabled
automation4. Indeed, the Swedish AI adoption survey found that
services sectors that produce and use ICT intensively have the
highest AI-adoption rate in the economy. While AI is on its way
into most professional services, engineering has a long history of

developing technology for modern manufacturing, for instance
through computer assisted design (CAD) feeding into computer
assisted manufacturing (CAM). Here, with advanced image
processing and new approaches combining data-driven
learning and (spatial) reasoning, AI-based software can
automate knowledge-intensive services previously performed
by specifically educated engineers. The vision of Industry 4.0
(Lasi et al., 2014; Wang et al., 2018; Rock, 2019) further drives
these developments. Today, civil engineers top the list of
occupations most affected by AI while three other engineering
occupations feature among the top 20 (Felten et al., 2019).
Despite the susceptibility to automation, engineers are among
the occupations with the fastest job growth in recent years5.
Engineering is therefore of particular interest for understanding
the relationship between AI and jobs in high-skilled services
occupations.

A recent EU enterprise survey on the use of technologies based
on AI found that about 60% of AI-using firms buy software or
ready-to-use systems from external services suppliers6. Our
modelling strategy reflects this empirical observation. Thus,
engineering firms are the external suppliers of AI-enabled
software and ready-to-use systems, engaging in market
interactions with manufacturers. Most existing studies focus
on the impact of robotics for automation in manufacturing.
One reason for this is that while data on robot use is readily
available, data on AI-enabled software use is not.

This leads to our third major contribution, which is to develop
an agent based model (ABM) to study the joint adoption of AI in
services and manufacturing. ABMs are particularly suitable for
dynamic processes where outcomes are uncertain and agents
interact (Dawid, 2006). Furthermore, it is apposite when the
future is likely to be qualitatively different from the past such as
during technological transitions (Farmer and Foley, 2009). Our
ABM captures the interactions between the agents and the
environment in which they operate and generates important
insights on the trajectory of AI adoption. Notably, the model
generates the boom and bust cycles often observed during the
early stages of technology adoption. The combination of
traditional economic modelling and the rigorous agent-based
perspective used in our study results in a rather complex, yet
comprehensive model. Using a stringent agent-based perspective,
we avoid the “invisible hand” that automatically and instantly
clears markets. Instead agents decide strictly based own
experience, perception and individual economic reasoning,
allowing us to trace out the process of technology adoption
step by step. Agent-based approaches to economic modelling
per se are not new (Tesfatsion, 2006; Hamill and Gilbert, 2016;
Gatti et al., 2018), yet still far from being a mainstream approach
in economic modelling.

Our model has two types of agents, engineering firms and
manufacturing firms; and two business models, which we label
consultancy and software respectively. Consultancy is the

2See https://www.scb.se/contentassets/4d9059ef459e407ba1aa71683fcbd807/uf0301_
2019a01_br_xftbr2001.pdf for Sweden and Zolas et al. (2021) for the US.
3Accessibility of AI technology is not just improved by platforms for Machine
Learning or Deep Learning, such as (Keras or Pytorch), but also by initiatives such
as OpenAI https://beta.openai.com/or AI4EU https://www.ai4eu.eu/.
4See for instance (Baldwin and Forslid, 2020).

5see https://ec.europa.eu/eurostat/web/main/data/database.
6See https://digital-strategy.ec.europa.eu/en/library/european-enterprise-survey-
use-technologies-based-artificial-intelligence.
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traditional business model where engineering firms deploy
consultants to clients, working with them on-site and face-to-
face to solve problems. In the software model consultants are
replaced by in-house engineers working with intelligent systems
for automating engineering services. Manufacturers buy such
software through licensing agreements, paying a license fee, or
they may opt for cloud-based software-as-a-service, paying an
annual subscription rate. The model generates a change of
business model when engineers have gathered sufficient
experience to create software solutions that automate services
that were previously provided by consultants. Gathering this
experience is modelled as learning-by-doing and represents
dynamic economies of scale. Manufacturers decide whether to
license software or stick to the consultancy model based on the
expected costs and benefits of doing so. The benefits are uncertain
at the time of the decision. Our analysis shows that it is hesitance
on the part of manufacturers that holds back the uptake of AI-
based software.

The rest of the paper is organised as follows: Section two
discusses related research while section three develops a
conceptual framework that captures the interaction between
engineering firms, their clients and the environment in which
they operate. The framework is coded into a dynamic ABM in
section four. Section five presents the simulation results, while
section six summarises and concludes.

2 RELATIONS TO PREVIOUS WORK

The literature on adoption of AI in the workplace is new and to
the best of our knowledge this is the first paper to simulate the
adoption of AI in business services. It builds on the theoretical
literature on technology diffusion and adoption pioneered by
Nelson and Phelps (1966); Rosenberg (1972); Davies and Davies,
(1979); Stoneman and David (1986) and others. The theory is
inspired by the stylised fact that the adoption of new technology
follows an S-curve with slow uptake at an early stage, followed by
a sharp rise in adoption when a critical mass is reached, until the
market is saturated and the curve flattens (Gort and Klepper,
1982; Hall and Khan, 2003)7.

Two different classes of theoretical models can explain such a
pattern. The first envisages technology diffusion as the
propagation of information, using models similar to those
explaining epidemics. Observing that technology spreads much
slower than epidemics and information, a learning process is
added to the theory. Thus, firms learn by using new technology,
and some of the accumulated tacit knowledge enters the public
domain over time (Rogers, 1995).

The other major theory of technology adoption focuses on the
characteristics of early technology adopting firms. Such models
feature differences in firm size, productivity and abilities as
explanatory variables. A new technology is fraught with
uncertainty about its potential benefits, which introduces
expectations as an important component of the theory.

Furthermore, to reap the full benefit from a new technology,
complementary investments in skills, reorganisation of
production and rearranging relations to suppliers and
customers are needed8. Therefore, the largest, most productive
or otherwise most capable firms adopt new technology first
(Davies and Davies, 1979; Rogers, 1995).

Recent survey data from the US and Sweden finds that it is
indeed the largest and most productive firms that adopt AI. This
explains the early, slow diffusion part of the S-curve. The
subsequent acceleration in uptake may stem from
standardisation of the technology as experience with using it
accumulates, substantially reducing uncertainty over time.
Network effects can also be important when the benefits from
adopting the technology depends on suppliers or customer
adopting it too. Then, the switching cost to the new
technology declines as the number of users increases. Our
model builds on the second strand featuring firms that differ
in productivity, uncertainty about the benefits of new technology
and switching costs. Our model also features network effects as
well as learning by doing that reduces uncertainty and adoption
costs over time. It generates the S-curve predicted by the
theoretical literature in a setting of interaction between supply
and demand and technology that has the features of AI-driven
software, i.e. substituting for skilled workers, high cost of software
development but zero marginal cost of adding another user
(Varian, 2019).

Turning to the literature on technology and jobs, the most
common approach to studying the impact of AI-related
technology on jobs is to break jobs down to tasks and analyse
the task content of different occupations (Autor et al., 2003;
Acemoglu and Restrepo, 2018; Neves et al., 2019). The approach
is to identify tasks that can be automated, vs. tasks that
complement AI, and make predictions about the future of
work from these metrics. In our context, this would generate
business models where engineers may offer both software and
consultancy, or it could generate deeper specialisation in the
engineering sector where automatable tasks are performed by
software while new tasks are performed by engineering
consultants. However, this literature assumes that all tasks that
can be automated are automated instantly, and thus assumes
away adoption costs. Our contribution to the literature is
precisely to focus on the scenario where existing technology is
not instantly adopted, which is clearly the empirically most
relevant case. The scenario is mentioned in Acemoglu and
Restrepo (2018), but is not further developed. We explore and
endogenise the uptake of technology as a function of wages, the
cost of switching to AI-driven software, including the cost of
reorganising production, and the expected gains from switching
to new technology. Our model also features reallocation of
engineering jobs across activities from consultancy to software
development and maintenance, and to employment in

7See also (Geroski, 2000) for a review of the literature.

8Such complementary investment can be up to an order of magnitude larger than
the initial investment in technology such as computers and other information
technology (Milgrom and Roberts, 1990; Brynjolfsson and Hitt, 2000; Bessen, 2002;
Bresnahan et al., 2002).
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manufacturing where engineers work on technical problem
solving using AI-driven software.

On methodology, our paper relates to Agent-based Modelling
and Simulation that has become an established micro-simulation
approach in social sciences, economics (Gallegati and Richiardi,
2009; Hamill and Gilbert, 2016), ecology and for modelling
complex systems in general (Klügl and Bazzan, 2012). The
underlying metaphor of such a model is a set of interacting
agents—that can be basically seen as situated intelligent,
autonomous actors (Wooldridge, 2009). A model captures
agents’ decision making in their individual environmental
context which may be changing and influenced by multi-level
feedback loops. During simulation, overall dynamics are
generated. Consequently, agent-based simulation is particularly
apt for modelling endeavours which involve heterogeneous
agents, with transient dynamics and without the necessity of
an equilibrium-based model. Technology adoption, which has all
these features, is best understood through the lens of interacting
agents. Our paper integrates insights from economics and Agent-
Based Modelling by assigning decision making rules from
economic theory to individual interacting agents within the
framework of an ABM.

3 THE MODEL

3.1 Intuition
We propose a dynamic model consisting of two types of agents:
engineering firms and their manufacturing clients. Manufacturers
produce final goods according to a production function which
combines production workers employed by themanufacturer and
services inputs sourced from engineering firms. We distinguish
two types of relationships between the engineering firms and the
manufacturer: consultancy and software.

The consultancy model involves engineers working with the
client, on-site, face to face, to solve problems and provide
necessary services for production. The problems and services
are client-specific and the ability to solve them rests with the
consultant. The engineering firm and the manufacturer enter a
contract which specifies the tasks the consultants are to perform
as well as the payment, which is an annual fee per consultant.
Contracts are setup anew every year; the number of consultants
needed depends on the productivity and size of the manufacturer.
Engineers are also explicitly modelled as discrete entities with
individual experience that increases when working for a highly
productive manufacturer.

In the software model the engineering firm establishes an R&D
department where assigned engineers develop software that
automates services adopting available AI technology such as
machine learning or reasoning based on the problem solving
experience of the engineers. The R&D activity requires a given
number of engineers; their salaries constitute a fixed cost which
the engineering firm recuperates through the licensing of the
resulting software. Once developed, the software can be licensed
to an unlimited number of manufacturers.

Each engineering firm offers its unique variety of the service,
and thus distinguishes its product from competitors. Such

product differentiation implies that the engineering firms may
charge customers a premium and mark up their price over
marginal cost. In the case of occupational licensing, engineers
have exclusive rights to perform a predefined set of tasks.
Furthermore, they may limit the number of licensed engineers
and thereby charge a higher mark-up.

Manufacturers are heterogeneous in terms of size and
productivity. Productivity is a measure of how effectively the
firm transform inputs into outputs. Thus, the more productive
firms use less engineering services per unit of output. Switching
business model from relying on external consultants to using
software, supported by in-house engineers, involves restructuring
of production for a seamless interface between fabrication and the
software. This requires upgrading of machinery and skills,
creating jobs for engineers to manage the interface between
the software and machinery, supervise production workers,
support management in technical decision making, and govern
the licensing contract with the engineering firm9. The dynamics
of the model consist of learning by doing on the part of engineers
working on problem-solving inmanufacturing firms and network
effects in the adoption of software.

3.2 Formal Model
Manufacturers, indexed i, are heterogeneous in terms of
productivity denoted θi, which follows a Pareto distribution.
The probability density function of the Pareto distribution is
given by g(θ) � k(θmin)k(θ)− (k+1) where θmin is the scale
parameter, which we set to unity, and k is the shape
parameter, which we tentatively set to 2.210. The
corresponding cumulative density function is 1 − (θmin/θ)k.
The manufacturers produce final output, denoted Y using
production workers indexed l and engineering services. Total
costs for the consultancy and software models respectively at time
t are:

TCi,c � [wi

α
+ φws

βcθi
]Yi (1)

Et[TCi,softw,t] � At

θi
w1−β

l wβ
s Yi + δ + c (2)

TC represents total cost of production. The two business
models are indexed c and softw respectively. In both cases we
apply constant elasticity of substitution production- and cost
functions. In the consultancy model we use the extreme case of a
Leontief specification where production factors are perfect
complements, while in the software model we apply the Cobb-
Douglas functional form where the elasticity of substitution
between factors is unity. These particular functional forms are
not critical for the results, but serve to distinguish between more
and less flexible technologies in the two business models.

9There is ample evidence that ICT and AI complement skills in the workplace. See
for instance (Berman et al., 1998; Autor et al., 2003; Bessen et al., 2018; Brynjolfsson
et al., 2019).
10This is close to empirical estimates of the shape parameter of productivity
distribution from firm level data (Feenstra, 2018). A shape parameter larger
than two ensures that the variance of the distribution can be identified.
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Variables and parameters: α represents the production worker
intensity while βc depicts the consultancy input intensity of
manufacturing production in the consultancy business model.
Wage rates for production workers and engineers are denoted by
wl and ws respectively, while the mark-up rate that engineering
firms obtain for their consultancy services is φ. A scale parameter
A, the license fee for software δ, and a stochastic element c are
additional parameters in the cost function for manufacturers that
opt for the software model. The stochastic element c is normally
distributed c ∼ N(0, σ2). Manufacturers will be in the market for
software if the expected cost of switching to software is lower than
continuing with the consultancy model. Figure 1 illustrates the
two cost functions where the horizontal axis represents
manufacturing firms’ productivity and the vertical axis total
cost. Clearly, software represents the lowest cost for high-
productivity firms, while consultancy is the better option for
low-productivity manufacturers11.

There are network effects related to the switch to the software
model as adopters reorganise production, including relations to
suppliers and customers around the software. Also professional
organisation’s investment into competence development speeds
up technology adoption. We capture this by modelling the scale
parameterA to be a declining function of the number of firms that
have switched to software. The network effect works with one
period lag.

At � At−1
nμsoftw,t−1

(3)

where 0< μ< 1. Demand for engineering consultancy services
from each manufacturing firm choosing that model is given by:

Ci � Yi

βcθi
(4)

Manufacturers that have switched to the software model will
seek to employ engineers according to the demand function:

Si,t � At

θi
[ β

1 − β

wl

ws
]
β

Yi (5)

Engineering firms, indexed over j hire engineers which are
deployed to client firms on a contractual basis in the
consultancy model. The contract covers one period and its
value varies across clients, depending on their size and
productivity as indicated in the demand function, Eq. 4. The
engineering firms incur wage costs only and they sell
consultancy services with a mark-up factor of φ > 1. The
consultancy revenue is thus φws ∑Ci. We choose units such
that one unit of consultancy services corresponds to the input
of one full-time consultant for one period. Profits from the
consultancy model at time t are:

πc,j,t � (φ − 1)∑Ci,t (6)

where the number of manufacturing clients changes over time. In
the software model, engineering firms establish an R&D
department and divert SF/λj,t engineers to staff it. The R&D
department uses available data sets and experience from previous
consultancy efforts to create AI-based software that provides the
services that are otherwise done by consultants. Thus, engineers
accumulate experience from working with clients, and harness
this experience into software that automates the
consultants’ work.

It is assumed that a minimum number of experienced
engineers is needed to successfully develop the software. So,
experience accumulated over years of working with clients is
an advantage when developing software, assuming that
experience helps to identify appropriate machine learning
architectures and to formalise knowledge for automated
reasoning. We model this by introducing the experience of the
engineer, denoted λ in the cost of developing the software. The
total cost of switching for the engineering firm is the wage costs

FIGURE 1 | Total cost comparison, consultancy and software.

11The figure is drawn for the parameter values depicted in Table 2.
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for the engineers working in the R&D department and the
foregone profits from no longer deploying them to clients as
consultants. Revenue in the software model will be the licence fee
δ times the number of manufacturers that license the software
from company j; nsoftw,j,tδ. Expected profits from the software
model at time t is thus:

Et[πsoftw,j,t] � Et[nsoftw,j,t]δ − wsSF
λj,t

φ (7)

The engineering firm knows the cost of developing software,
but at the point of decision whether to develop it, the number of
clients that will take up the software is unknown. The engineering
firm does, however, observe the productivity of the manufacturers
and thus can estimate how many of them are sufficiently
productive to gain from switching to software. Engineering
firms base their decision to develop software on expectations
about how many clients they may capture from the mass of
manufacturers that are sufficiently productive to benefit from
switching to the software model.

After software is available, manufacturers that decided to
switch their business model to software, randomly select
engineering companies that offer software. Random
selection is weighted by experience of the software provider
assuming that more experienced firms produce higher quality
software. Since the marginal cost of servicing another client is
zero, it is conceivable that one engineering firm could corner
the market.

It is clear from Eq. 7 that profits from switching to the software
model are lower the higher the mark-up factor φ, predicting that
engineering firms operating in a less competitive market, for
instance a small market with occupational licensing, are less
innovative than firms operating in a competitive market which
limits the ability to charge a high price12. Engineering firms will
develop the software if expected profits as defined in seven is
positive.

After the initial investment into software development, the
software life-cycle contains a number of periods with software
maintenance. It is assumed that data-driven software is
depreciating fast, and lasts for T periods. Each period between
its development and obsolescence a fraction ζ of the number of
engineers that are needed to develop the software, is sufficient to
maintain it. After T periods, the engineering firm needs to invest
again into full software development. We assume no influence of
the age or status of the software on its licensing fee13.

Experience accumulates from working on-site and face to face
with manufacturing clients. Furthermore, engineers gain more
experience from working with the most productive
manufacturers. An engineering firm j’s accumulated experience
is thus a function of the productivity of the manufacturers it has
worked with as follows:

λj,t ∫t

0
f (θij) dθ (8)

These eight equations, representing supply and demand for
engineering services in two business models constitute the
conceptual core of the ABM. The forces that drive the
adoption of software are engineers’ accumulated experience
from working with clients and network effects from its
adoption. What holds back the development of software is
comfortable profits from the consultancy model, uncertainty
about how many manufacturers will buy the software once the
cost of developing it is sunk on the part of the engineering firms,
and uncertainty about the gains from the switch to software on
the part of manufacturers. These countervailing forces ensure a
gradual adoption of software in the economy. The speed depends
on the size of the economy, the endowment of production
workers and engineers, the level and dispersion of productivity
among manufacturing companies as well as policy-induced
factors including occupational licensing and protection of
intellectual property rights.

4 THE AGENT BASED MODEL SETUP

The agents and their role and actions are presented in Table 1.
The environment consists of supply of production workers

and engineers, a set of exogenous parameters and decision rules
as spelled out in the model presented in Section 3. All agents act
in parallel and go through their individual processes within one
period. Figure 2 illustrates what happens in one period including
the synchronisation points between the activities that each
engineering company and each manufacturer agent perform in
parallel. So, manufacturer agents first determine their service
needs—this happens in parallel when each engineering company
either publishes their consultancy offer or offers software to be
licensed (only after period two in the simulation). Then,
manufacturers evaluate the offers and enter contracts or
license software. After the next synchronisation step,
production happens, partially with the help of consultants.
The next steps with different synchronisation points are
devoted to decision making for both manufacturers and
engineering companies. First the manufactures reason about
profitability of using software instead of hiring consultants and
signal their interest. This is observed by the engineering firms
who—with the information on potential size of the market for
software, decide about whether they want to produce software or
continue offering consultancy services. All decisions have
consequences on employment of engineers.

The simulation runs through the following phases14:

• In phase 0—during initialisation –, manufacturer agents
draw their productivity level from a Pareto distribution.

12International trade in engineering services would also limit the ability to charge a
high mark-up and thus spur innovation. Adding space and different wages across
countries could further exploit this point in future work.
13By explicitly integrating the software lifecycle into the model, we also capture the
idea that technology is not static, but needs to be updated from time to time.

14We labelled the phases after analysing all simulation runs, also illustrating the
shared observations. All experiments start with a situation in which all engineers
are employed at engineering companies who exclusively offer consultancy services.
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Manufacturers hire production workers, which are matched
to firms randomly, but the number of employees is
proportional to the firms’ productivity. Engineering firms
hire engineers, which are randomly matched to
engineering firms.

• In phase 1 – first year—all engineering firms adopt the
consultancy business model. Engineering firms and
manufacturers are matched randomly and manufacturers
produce final output.

• At the end of phase 1, all active firms observe their profits.
Engineering firms’ experience parameter is updated.
Engineering firms then consider, whether to develop
software and automate their service or continue with
offering consultancy services. The decision is based on
expected number of clients ready to switch to the software
model, and the cost of developing the software. The cost is
lower for the more experienced firms. For deciding about the
potential market for their software, the engineering firms
observe how many manufacturer agents would be interested
in software. They expect to sell to a random subset of those
manufacturers who are ready to switch. If expected profits

from selling software is positive, engineering firms will
establish an R&D department which will work on
software development. Redundant engineers, that means
those not engaged in the software development, are laid
off. Manufacturers decide whether actually to switch to the
software model. The decision is conditioned on software
being available as well as there being engineers available on
the market to hire in the new jobs created during the switch
to the software model. As a consequence, the most
productive manufacturers are the first to switch to
software. If expected profit from the software model is
smaller than that for continuing with the consultancy
model for all engineering firms, phase 1 is repeated and
consulting engineers gain more experience during each
repetition.

• In phase 2 at least one engineering firm has developed
software and earns a positive profit from licensing it. In
this phase the two business models coexist. Some
manufacturer agents having switched business model,
license software from a random supplier and hire
engineers to integrate the software into the production

TABLE 1 | Summary of the modelled entities, their roles and activities.

Agents Status Role and actions

Consultancy Software

Manufacturing firms Active Employ production workers Employ production workers
Enter consultancy contract License software

Employ engineers
Produce final output Produce final output

Engineering firms Active Employ engineers Employ engineers
Enter consultancy contract Develop and maintain software

License out software

Production workers Passive Work in manuf. firms Work in manuf. firms

Engineers Passive Work in eng. firms Work in any firm

Authorities Passive Occupational licensing, IPR protection

FIGURE 2 | Activities of the different agent types and their coordination. Note: The black vertical lines form synchronization bars meaning that all agents need to
have finished the activities before an individual agent can continue with the next activity after the bar.
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process, other manufacturer agents continue hiring
consultants. Manufacturers that do not license software
and do not find consultants, do not produce output, all
others do. Not all engineering firms developing software
may be profitable. Making a loss from software
development, causes engineering firms to immediately
return to offering consultancy services.

• Manufacturers’ cost of switching to software is adjusted by
the network effect given by Eq. 3. The more manufacturers
use software, the cheaper it becomes for latecomers to
switch, and eventually also the less productive
manufacturers can afford software. Manufacturer agents
who cannot recruit consultants nor can afford software, do
not produce in the current cycle, but wait for opportunities
in the next period. Software is maintained (bug fixes, new,
minor features in small updates) at a cost ζSF with 0< ζ < 1.
When a software has reached obsolescence, the engineering
firm decides again whether in a changed market, it could
generate profit when re-developing software. Experience of
engineers working as consultants is updated. Phase 2
continues until all manufacturing firms have switched to
software.

• In phase 3 all firms have switched to software. There is a
churning of engineering firms as software becomes obsolete
and new software is developed to replace it. At this stage,
engineers no longer gain experience from working directly
with clients, but more are employed to support the software
usage at the manufactures. There is still some dynamic
ongoing at the engineering firms, as manufacturers re-
select software in each period—we do not assume
commitment to a particular software product. As a
consequence, even when producing software in a market
in which every manufacturer uses software, some software
firms may lose customers to competitors, and possibly make
losses on their investments.

Exogenous variables and parameters are summarised inTable 2.15

The ABM was implemented using the SeSAm platform16

which is a fast prototyping environment for agent-based
simulations providing an activity diagram-like way of
implementing complex agent behaviour.

5 RESULTS

We start by running the simulations with baseline parameters as
reported in Table 2, including sensitivity analysis on the overall
size of the sector and the ratio of production workers to engineers.
We experiment next with policy relevant parameters: 1) the
mark-up rate, which is related to the strength of competition
in the engineering services market and 2) the license fee, which is
partly related to the strength of intellectual property rights
protection and partly to the strength of competition in the
market for software. Eventually, we want to explain what are
the relevant factors influencing how fast intelligent automated
solutions distribute in a market characterised by the parameters

TABLE 2 | Exogenous variables and parameters.

Symbol Description Value in the baseline
case

Number of engineering firms 30
Number of manufacturers 100

L Number of production workers 3000
S Number of engineers 1000
wl Salary, production worker 1
ws Salary, engineer 1.5
α Production worker intensity, manufacturing, consultancy model 1
βc Consultant intensity, manufacturing, consultancy model 1.5
β Engineer intensity, manufacturing, software model 0.2
θi Productivity level, manufacturing firm i Pareto distributed
A0 Scale parameter, manufacturing, software model 3
μ Strength of network effects of using software 0.02
δ License fee, software 10
γ Stochastic switching cost, manufacturing normally distributed
λ0 Initial experience, engineers 1
η Update factor for λ 0.1
φ Mark-up rate, consultancy 1.3
SF Number of engineers needed to develop software 18
ζ Software maintenance cost relative to development cost 0.5

15The parameter values reflect empirical relations observed in OECD countries.
Wages of production workers are the numeraire in the model and set to unity. Data
on employment by occupation and sector is not readily available, but the share of
university educated workers in the total labour force is about 20% in the EU and
23% in the US https://ilostat.ilo.org/topics/employment/. The wage premium for
professionals relative to plant and machine operators was about 1.4 in Sweden and
1.7 in the US in 2019 according to ILO statistics. https://ilostat.ilo.org/topics/
wages/. Technicians and associate professionals account for 16% of all employees in
manufacturing in the European Union, while computer, mathematical,
architecture and engineering professionals account for another 9% https://ec.
europa.eu/eurostat/databrowser/view/lfsa_eisn2/default/table?lang�en. The
mark-up rate is also consistent with rates in the literature, while the other
parameters are used to calibrate the model and to experiment with different
scenarios.
16www.simsesam.org.
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above as well as what is the actual impact and dynamics on the
employment of highly qualified engineers.

5.1 Baseline
We start by simulating the baseline scenario17. As described, we
start with a scenario where all firms are in the consultancy model.
Firms next decide whether to switch to the software model and
look for a supplier or customer for software. As Figure 3
indicates, a few manufacturing firms already switch to
software in the second year. All engineering firms anticipate
the market opportunity these firms constitute, and a large
share of them decides to develop software. However, the
customers are few, competition is fierce, and most early
software developers fail. As a consequence, those failing firms
give up to offer software18.

The uptake of software in manufacturing is gradual and about
half of all manufacturers have switched to software after 11 years.
The uptake does, however, accelerate after about a third of all
manufacturers have switched, and levels off when about 90% of
firms have switched19. During the first decade of relatively slow
uptake, there is a competitive fringe of engineering firms that

develops software, fails and exits as indicated by the zigzagging of
the blue line in the chart. After all manufacturers have switched to
the software business model, about 80% of engineering firms offer
software. There remains a competitive fringe of engineering firms
that exit when a loss from software happens, when a new
development is necessary, but too expensive or when simply
not a sufficient number of software licenses were acquired. A
start-up seeks consultancy contracts, but realises that demand for
such services is close to zero and quickly starts to develop software
as well.

What we see in our simulation shown in Figure 3 is a largely
demand-driven adoption of automation software, and a boom
and bust cycle in the automation software sector. The booms are
driven by all engineering firms simultaneously forming
expectations about the number or clients that will shift to
software (Eq. 7). However, not all software firms will find
customers for their software. Those who do not, exit the
software market and reestablish as consultant. This cycle is
similar to the so-called dot.com bubble that could be observed
in the 1990s when adoption of ICT took off, although in that case
the financial market amplified the cycle20.

For explaining this overall behaviour, a look into the dynamics
on the agent level is helpful. Figure 4 depicts the lifeline of two
randomly selected engineering firm agents. They both start out as
consultants and earn a positive profit. They both end up
profitably licensing software, and they both have at least one
unsuccessful attempt at switching to software. The first company
has two spells of consultancy after a commercially successful

FIGURE 3 | Percentage of companies having switched to the software model Note: Baseline setting as described in Table 2.

17We repeat every simulation 30 times. If not otherwise stated, diagrams show
averaged values. Where suitable, we also give the standard distribution which is
naturally higher in the transient phase 2 and low in phase 3.
18Technically, this may also be modelled as an exit of the firms that fail to sell the
software they have developed, while start-up engineering firms use the consultancy
model, or as a single firm switching between business models. The results are the
same either way.
19Recall that the model captures innovation using existing AI technology to develop
software. Considering software evolution with explicit software maintenance does
not account for technological game change, rather for small, yet continuous
improvements. Had the underlying AI-technology changed, a steady state
might not occur. The authors thank an anonymous referee for making this point.

20See for instance (Doms et al., 2004) for a study of the dot.com bubble in the
United States. Our model does not have a financial market, but still generates a
boom-bust cycle due to expectations and herd behaviour. The authors thank an
anonymous referee for making this point.
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software becomes obsolete, while the second company
experiences only one such event.

Figure 5 shows the business model dynamics for all engineering
firms over the complete simulation run. We observe that they have
all entered the software model after two years, but only three are
successful and continue in the third year to maintain and develop
their software. As time passes, the dynamics turn increasingly
toward a shifting between developing new and maintaining
existing software, but all firms experience occasional failures in
the market for automated software.

In addition to the technology uptake, we also want to analyse
dynamics of the composition of engineer employment. Figure 6
depicts the dynamic impact of technology adoption on
employment of engineers. All engineers work as consultants in
the first year. Consistent with the changing business model, they
gradually move to the R&D department in the engineering firm
where they develop and subsequently maintain software.
Consultants that cannot find a job in the R&D department are
laid off. Most of them find new jobs in manufacturing firms that
have switched to software and are looking for engineers to fill new

jobs created during the transition to a more sophisticated and
skills-intensive production process. Finally, some of the laid off
engineers do not find a new job immediately, and become
unemployed. We notice that with substantial economies of scale
in software development, the number of workers needed to develop
and maintain software is relatively small. Our simulations thus
predict that most of the changes in employment are from external
consultants to engineers working in manufacturing21.

An interesting parameter is β, the engineer intensity
influencing how many engineers are needed to support
complex software usage at the manufacturer (Eq. 5).

The unemployment rate among engineers following the
transition to software depends crucially on the ratio of

FIGURE 4 | Two examples of the lifeline of randomly selected engineering firms. Note: The middle row shows the selected business model (consultancy in yellow,
software in blue). Numbers in these cells denote the numbers of employed engineers in that year. The upper cells contain the profit the company made in cases of
consultancy, the lower cells profit or loss when trying to sell software.

FIGURE 5 | Business model dynamics of all engineering companies over 25 simulated years. Note: Yellow means that the agent offers consulting, dark blue: it
develops software, blue: it maintains software.

21Our model has a fixed number of workers and engineers. As software and
learning by doing reduces the unit cost of production, employment in
manufacturing and engineering firms may decline and unemployed workers
may seek work in other sectors. Transition of workers to other sectors is not
directly captured by our model. However, by keeping wages fixed, we implicitly
capture an outside option at the going wage for workers.
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production workers to engineers in the labour market and the
desired skills composition of employees in manufacturing
firms that have switched business model. Sensitivity
analyses depicted in Figure 7 shows that there will be full
employment of engineers at the end of the transition period if
β is larger than about a quarter. Sensitivity analyses also show
that with fewer engineers in the market relative to production
workers there could also be shortage of engineers at lower
levels of β. Our results reflect the S-curve of technology
adoption predicted by the theoretical literature e.g. (Gort
and Klepper, 1982; Hall and Khan, 2003). It is also
compatible with recent shifts in employment patterns
where the share of professional jobs in manufacturing has
increased from 5.7 to 9.4% from 2008 to 2019 in the European
Union, and the share of technicians and associate
professionals have increased from 13.4 to 15.6% during the
same period22. Finally, our results reflect work by Andrews
et al. (2015) which shows that the most productive firms are
the first to adopt new technology.

5.2 Experiments, the Mark-Up Rate
The mark-up rate reflects the strength of competition in the
market for consultant engineering services. High mark-up rates
may stem from occupational licensing that gives licensed
engineers exclusive rights to perform a defined set of
engineering tasks, a small market closed to foreign
competition, or simply a shortage of engineers for instance

due to low education capacity for engineers or a limited
number of engineering licenses issued.

From Eqs. 1 and 2 we see that a high mark-up rate makes
consultants relatively more expensive than software. On the other
hand a higher mark-up rate yields higher profits for the engineers
in the consultancy model (Eq. 6). Thus, manufacturers are more
likely to switch to software the higher the mark-up rate, while
engineering firms are less likely to switch the higher the mark-up
rate. It follows that if adoption of the software model is driven
from the demand side, the adoption rate increases as the mark-up
rises. If on the other hand the uptake is driven by a supply push,
then we would expect it to be delayed for longer the higher the
mark-up rate. Figure 8 clearly shows that this is a demand pull
story.23

Figure 9 shows employment of engineers by sector and
activity after 25 periods as a function of the mark-up rate. We
first notice that employment of engineers in manufacturing is
largely unaffected by the mark-up rate. After 25 periods all
manufacturers have switched to the software model and pay
engineers the going wage ws, rather than the marked-up
consultancy fee, so this is no surprise. Employment as
software developer is also largely unaffected by the mark-up
rate. Where we do see a significant difference is on the
employment of consultants and the unemployment rate for
engineers. The employment as consultant is actually very
brittle as there is practically no market for consultancy
services. Engineering firms that made a loss with software
provision, try to re-establish with consultancy, yet there is

FIGURE 6 | Development of employment over simulation time. Overall number of engineers is 1,000.

22Unfortunately, more detailed employment data by occupation and sector is not
publicly available. However, EU aggregates should be representative for developed
countries.

23There are parameter values where this may not be the case. These are however
outside the scope of what is reasonable considering available data.

Frontiers in Robotics and AI | www.frontiersin.org May 2021 | Volume 8 | Article 63712511

Kyvik Nordås and Klügl Automation in Engineering

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles


hardly any demand for consultancy services and thus the profit
from consultancy is zero. Such a company lays off all the newly
recruited engineers, but tries to re-recruit them again in the next
cycle, when deciding about producing software or offering
consultancy again. Yet, depending on the competition in
recruiting engineers, the full number may not be available
any more.

An important policy implication of the simulations is that the
potentially harmful delay of the uptake of technology due to

occupational licensing does not materialise in a demand-driven
market. This conclusion holds when the mark-up rate is
unrelated to the software license fee and thus, exclusive rights
do not extend to software licensing. We now turn to an
experiment where we let the license fee vary.

5.3 Experiments, the License Fee
As Figure 10 indicates, the adoption rate of software is slower, the
higher the license fee δ is set. From Eq. 2 we observe that cost of

FIGURE 8 | Mark-up rates and simulated year in which 100% manufacturers were using software. Note: Averaged over 30 simulation runs, standard deviation
shown as error bars. In the case of φ � 1.1,1.4 and 2.4 two runs was omitted as not converged.With φ � 1.3,1.6, 1.8 and 2.5 convergence was not reached in one single
run. We consider those cases as outliers with randomly generated manufacturers that are particularly small and omitted those from the analysis.

FIGURE 7 | Influence of β on the employment structure.
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production is higher for manufacturers the higher is δ, so there
will be fewer takers of software the higher is δ. This also results in
weaker network effects, further slowing down the uptake over
time (see Eq. 3). On the other hand, as depicted in Eq. 7 the
revenue of the engineering firms providing software is higher the

higher is δ, all else equal. Thus, the slower rate of transition to the
software model stems from the demand side.

A convergence toward a situation in which all manufacturers
use software happens also in scenarios with high licence fees.
Longer simulation runs with δ ≥ 20 confirm that the adoption rate

FIGURE 9 | Employment in simulated year 25 depending on the consultancy mark-up rate. Averaged over 30 simulation runs.

FIGURE 10 | Number of manufacturers who use software over simulated time with different settings of the licence fee Delta.
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eventually approaches 100%. For example, with δ � 25, the
population of firms converges into a stable situation with
slightly less than 100% of manufacturers using software

between years 50 and 60. In these simulations, two
engineering firms are too small to start software development
and try to hold on to the consultancy model.

FIGURE 11 | Employment of engineers in the simulated year 25. Note: Average over 30 runs, the error bar shows the standard deviation between runs. Delta is the
licence. All other parameter according to baseline scenario.

FIGURE 12 | Illustration of the dependency between size of a manufacturer and its decision to use software. Note: Delta � 50, in year 25. With γ, there is a random
element in the decision making: for sizes between 19 and 29 employed workers, both decisions are observed, yet with corresponding tendencies.
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A higher license fee also results in a higher rate of
unemployment among engineers during and after the
transition to software as illustrated in Figure 11. Consultancy
jobs are lost, and job creation in the R&D department to develop
and maintain software together with engineering jobs created in
manufacturing is insufficient to absorb the idle consultants.
However, sensitivity analyses with a higher β show that
unemployment among engineers is substantially reduced or
even eliminated when also δ is higher than in the baseline
scenario.

Finally, Figure 12 shows the number of manufacturing firms
that take up software in a scenario where software is very
expensive and the two business models co-exist also in the
long run. It illustrates that the first adopters are the largest
and most productive manufacturing firms. Further, since firms
may have different risk assessments related to switching to
software, there is a mix of software adopters and consultancy
users in the middle range of firm size and productivity levels.

6 CONCLUSION

Economic history documents that the adoption of technology is
gradual with long delays. Furthermore, it is amply documented in
the business literature that the adoption of new technology in
firms requires organisational changes and new skills, which
constitute significant switching costs for individual firms.
Nevertheless, recent literature on AI and the future of jobs
overlooks or abstracts from such switching costs and assume
that AI-based service automation technology is adopted as soon
as it is invented, with dramatic effects on jobs. To understand,
predict and prepare for the labour market implications of AI on
jobs a much better grasp on what drives the adoption of
technology is needed. Our paper contributes to filling this gap,
studying the adoption of AI-based automation jointly in
engineering services firms and their manufacturing customers.

Our simulations generate results that resonate with insights from
economic history. First, AI-based automation, like general purpose
technologies before, is adopted gradually. It starts at a slow pace, and
accelerates after reaching a critical mass of adoption. Second,
switching costs on the user side is the most important factor
holding back the adoption of new technology. Third, technology
does indeed destruct jobs, but it also generates new high-skilled jobs
in the technology-using sectors. Finally, our simulations generate a
boom and bust cycle on the supply side of the technology sector,
which resembles what we have observed in the past, for instance
during the dot.com bubble. This is not often observed in the
literature and is thus an important contribution to new insight.

A policy implication of our findings is that innovation policy is
not enough to foster technical progress. New technology is of little
use if it is not adopted. We find that the early adopters are the

largest andmost productive manufacturing firms and that network
effects of technology adoption can be strong. Furthermore, we find
that adoption of AI-based automation is associated with demand
for more skilled labour in using sectors. Policies aiming at fostering
technical progress therefore need to focus more on switching costs
on the user-side and on education and skills to make sure that the
potential users of new technology can find the skills needed to
restructure production around the technology.

The importance of the demand-side also suggest that
occupational licensing does not necessarily constitute a drag
on technology adoption as long as at least one engineering
firm offers software. However, if exclusive rights to offer a
service extends to software that automates the same service,
the license fee is likely to be higher than in a competitive
market, and the adoption rate may be substantially slowed down.

Finally, our results are relevant for other occupations and
sectors. First, AI-enabled automation software in engineering is
also relevant for the construction sector in a similar manner as in
manufacturing. Second, other high-skilled business services
occupations such as architects and management consultants
face similar technological changes as the ones simulated here
for engineering. Although these professions are currently way
behind engineering in using AI-based automation, they are
susceptible to such automation in the future. The accelerated
digital transformation during the Covid-19 crisis may, however,
have brought us closer to the steep part of the adoption curve for
some of these services. Developments in the engineering sector
modelled in this paper could thus be a harbinger of things to come
in other professions going forward.
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