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Combination antiretroviral therapy (ART) suppresses human immunodeficiency virus
(HIV) replication and improves immune function. However, due to the persistence of
long-lived HIV reservoirs, therapy interruption almost inevitably leads to a fast viral
rebound. A small percentage of individuals who are able to control HIV replication
for extended periods after therapy interruption are of particular interest because they
may represent a model of long-term HIV remission without ART. These individuals are
characterized by a limited viral reservoir and low reservoir measures can predict post-
treatment HIV remission. However, most individuals with a low reservoir still experience
fast viral rebound. In this Perspective, we discuss the possible reasons behind this and
propose to develop an integral profile, composed of viral and host biomarkers, that
could allow the accurate prediction of post-treatment HIV remission. We also propose
to incorporate information on the chromatin context of the proviral integration sites into
the characterization of the HIV reservoir, as this likely influences the reactivation capacity
of latent proviruses and, together with the actual number of intact proviruses, contributes
to the replication competence of the reservoir.

Keywords: HIV, viral reservoir, antiretroviral therapy, post-treatment controllers, predictive marker, biomarker,
profile

INTRODUCTION

Combination antiretroviral therapy (ART) can successfully manage human immunodeficiency
virus (HIV) replication but is not curative, due to the persistence of long-lived viral reservoirs
(Deeks et al., 2016; Ndung’u et al., 2019). The main reservoir is thought to reside in latently infected
resting CD4 + T cells in peripheral blood and lymphoid tissue, although other cell types such
as macrophages may contribute as well (Darcis et al., 2019; Ganor et al., 2019). Even after many
years of successful treatment, ART interruption typically leads to a viral rebound within 2–4 weeks;
however, some individuals, termed “post-treatment controllers,” are able to control HIV replication
after therapy interruption for extended periods and thus may represent a model of long-term
HIV remission without ART or functional cure (Hocqueloux et al., 2010; Steingrover et al., 2010;
Salgado et al., 2011; Goujard et al., 2012; Lodi et al., 2012; Van Gulck et al., 2012; Stöhr et al., 2013;
Sáez-Cirión et al., 2013; Assoumou et al., 2015; Kinloch-de Loes et al., 2015; Frange et al., 2016;
Maggiolo et al., 2018; Namazi et al., 2018; Violari et al., 2019). Therefore, recent years have seen
accelerated research into mechanisms of HIV control in these rare individuals and in the macaque
models of post-treatment control (PTC) (Strongin et al., 2020). Several excellent reviews on PTC
have been published (Cockerham et al., 2016; Goulder and Deeks, 2018; Martin and Frater, 2018;
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Etemad et al., 2019), and a mathematical model of the underlying
mechanisms has been proposed (Conway and Perelson, 2015).
PTC is more frequent after ART initiated during early HIV
infection (Namazi et al., 2018), which is not surprising given
that a low viral reservoir has been consistently measured in post-
treatment controllers (Goujard et al., 2012; Van Gulck et al.,
2012; Sáez-Cirión et al., 2013), and early ART initiation is much
more efficient in reducing the reservoir than ART initiated during
chronic infection (Strain et al., 2005; Jain et al., 2013; Buzon
et al., 2014). However, early ART initiation is not sufficient for
PTC as most early treated individuals, even those treated very
early after infection, still demonstrate fast viral rebound upon
therapy interruption (Gianella et al., 2015; Colby et al., 2018).
Longer ART duration has also been proposed to increase the
chances of PTC (Stöhr et al., 2013; Fidler et al., 2017), but
this factor on its own is insufficient to confer this phenotype.
Identification of individuals with a higher probability of PTC, in
whom it is safer to interrupt ART than in others, is of utmost
importance in light of HIV cure research, where every therapeutic
intervention necessitates an analytical treatment interruption
(ATI) to assess its efficacy. A low risk of viral rebound during
an ATI means low risks of reservoir replenishment, selection
of drug resistance, disease progression, and HIV transmission
(El-Sadr et al., 2006; Julg et al., 2019). The absence of reliable
predictive markers of viral rebound complicates clinical decision-
making on ATI and therefore hinders HIV cure research (Li
et al., 2015). To fill this knowledge gap, a number of studies have
been undertaken to identify biomarkers that could predict PTC
or the time to viral rebound after ART interruption (Williams
et al., 2014; Assoumou et al., 2015; Li et al., 2016; Sharaf
et al., 2018; Pasternak et al., 2020). The latter measure may be
more inclusive than the former, as PTC is a spectrum (Martin
and Frater, 2018), and its definitions differ between studies, in
particular in terms of the minimal duration of viral control
and of the threshold for the viral rebound (Sáez-Cirión et al.,
2013; Williams et al., 2014; Li et al., 2016; Namazi et al., 2018).
Variable definitions of PTC also contribute to the variability in the
frequency of post-treatment controllers between studies, which
ranges from < 1% to > 20% and is inversely proportional to
the duration of control (Hocqueloux et al., 2010; Sáez-Cirión
et al., 2013; Maenza et al., 2015; Namazi et al., 2018). To
standardize these definitions, Martin et al. proposed to reserve
the term “PTC” for the cases of long-term continuous HIV
control (several years) below the lowest possible detection limit
of commercial plasma viral load assays (20 copies/mL) and to
use the term “virological remission” for the intermediate cases
that do not fulfill these strict criteria (Martin and Frater, 2018).
Hence, using time to viral rebound as an outcome measure
allows the inclusion of all these intermediate cases, increasing
statistical power and potentially allowing additional insights
into the mechanisms of control. On the other hand, some
individuals who demonstrate various degrees of post-treatment
HIV remission undergo transient viral rebound shortly after
ART interruption before resuppressing the virus (Namazi et al.,
2018), and measuring the time from ART interruption to the
viral rebound will exclude these individuals. Clearly, improved
definitions of post-treatment remission are needed to guide
future HIV cure trials.

Predicting Post-treatment HIV
Remission: Time for a Comprehensive
Approach
A number of candidate predictive biomarkers for the virological
remission have been proposed. However, the measured markers,
timing of their measurement, thresholds for viral rebound, and
the statistical analyses that were performed differ significantly
between studies. This, in combination with limited sample sizes,
resulted in different and even some contradictory conclusions.
Several studies identified total HIV DNA, measured just before
ART interruption, as a predictor of time to viral rebound
(Goujard et al., 2012; Williams et al., 2014; Assoumou et al.,
2015), and this marker even outperformed the number of intact
proviruses in distinguishing individuals with post-treatment
virological remission from non-controllers in a recent study
(Sharaf et al., 2018). On the other hand, three independent
groups reported that cell-associated (CA) HIV unspliced RNA,
measured at ART interruption, could predict time to viral
rebound, while total HIV DNA was not predictive in these
studies (Li et al., 2016; Sneller et al., 2017; Pasternak et al.,
2020). It must be noted that CA RNA was not measured in most
studies that did identify total DNA as a predictor, precluding
a direct comparison between these markers. Importantly, we
demonstrated that the pre-treatment-interruption level of CA
unspliced RNA was predictive not only of the time to viral
rebound to both >50 and >400 copies/mL but also of the
magnitude of the viral rebound, independently of pre-ART
virological biomarkers (Pasternak et al., 2020). This suggests that
measurements of the “active reservoir” (Pasternak et al., 2013)
or “transcription-competent reservoir” (Baxter et al., 2018) can
help support the HIV cure-directed clinical trials (Abdel-Mohsen
et al., 2020). However, standardization of assays and the CA RNA
transcripts that are measured is warranted in order to obtain
meaningful results. Apart from the unspliced RNA, PCR-based
assays have been developed to measure levels of total, completed
(polyadenylated), or multiply spliced CA HIV RNA transcripts in
infected individuals (Pasternak et al., 2008; Shan et al., 2013; Yukl
et al., 2018). The assay for total CA RNA uses primers that bind to
the HIV TAR region and thus measures the level of transcription
initiation. This TAR RNA is more abundant than unspliced RNA,
but most of these transcripts are short and do not encode viral
proteins (Lassen et al., 2004; Yukl et al., 2018). On the other hand,
the presence of multiply spliced RNA may be a more proximal
surrogate of productive infection compared with unspliced RNA
only (Pasternak and Berkhout, 2018). However, multiply spliced
RNA is much less abundant than unspliced (Kaiser et al., 2007;
Pasternak et al., 2020), due to both proviral genetic defects (as
splicing requires the presence of several intact genomic regions)
and latency blocks to completion of transcription and splicing
(Yukl et al., 2018; Moron-Lopez et al., 2020). As a consequence,
it is challenging to detect multiply spliced RNA in ART-treated
individuals without ex vivo cellular stimulation, which explains
why it has not yet been assessed as a potential predictor of the
post-treatment remission.

In addition to CA RNA, plasma HIV RNA blips on ART
were also shown to predict shorter time to rebound (Fidler et al.,
2017). Further studies in larger cohorts are necessary in order

Frontiers in Microbiology | www.frontiersin.org 2 February 2021 | Volume 12 | Article 648434

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-12-648434 February 23, 2021 Time: 10:37 # 3

Pasternak et al. Post-treatment Remission and HIV Reservoir

to establish whether the total number of HIV proviruses, HIV
transcriptional activity, or a combination of these markers, can
be used to support HIV curative interventions. Although total
HIV DNA is mostly composed of replication-defective proviruses
(Bruner et al., 2016; Hiener et al., 2017), and a significant
proportion of CA RNA molecules might be transcribed from such
defective proviruses as well (Pollack et al., 2017; Imamichi et al.,
2020), both HIV DNA and CA RNA correlate with the inducible
provirus levels (Darcis et al., 2017; Cillo et al., 2018), suggesting
their utility as surrogate markers of the replication-competent
HIV reservoir (Avettand-Fènoël et al., 2016; Pasternak and
Berkhout, 2018). In any case, it is clear that a low viral reservoir
is extremely important for HIV remission, and mathematical
models have been developed that are based on the assumption
that the duration of remission is inversely proportional to the
replication-competent HIV reservoir size (Hill et al., 2014, 2016;
Conway and Perelson, 2015; Davenport et al., 2019). It would
therefore seem logical that ATI performed in a group of ART-
treated individuals with low reservoir measures may result in
HIV remission in a substantial proportion of cases. This has
indeed been attempted by several groups (Chun et al., 2010;
Calin et al., 2016; Colby et al., 2018; Pannus et al., 2020),
but the absolute majority of cases experienced a quick viral
rebound, suggesting that a low reservoir alone is insufficient for
HIV remission and that other factors need to be considered.
Here it must be noted that our understanding of the HIV
reservoirs and their importance for the prediction of the post-
treatment remission is still largely limited to the peripheral blood,
whereas tissue reservoirs might play an even more important
role. Different cellular and anatomical compartments, such as
follicular T helper cells in the lymph node germinal centers, may
serve as sanctuaries for HIV persistence under ART (Banga et al.,
2016; Chaillon et al., 2020) and fuel the viral rebound upon ATI
(De Scheerder et al., 2019). Although sampling peripheral blood
is obviously easier, better characterization of tissue reservoirs
can improve the predictive value of the HIV reservoir for the
post-treatment remission.

In addition to virological markers, several host biomarkers
have been proposed to predict post-treatment HIV remission.
Pre-ART levels of T-cell exhaustion markers (PD-1, Tim-3,
and Lag-3) have been shown to predict the time to viral
rebound, although their on-ART levels were not predictive (Hurst
et al., 2015). Two recent studies identified plasma and antibody
glycomic biomarkers, in particular digalactosylated G2 glycans
on IgG, as predictive markers of post-treatment remission (Giron
et al., 2020; Offersen et al., 2020). Moreover, pre-ATI levels of
HIV gp120-specific G2 glycans inversely correlated with CA
HIV unspliced RNA levels (Offersen et al., 2020), providing a
possible explanation why it was predictive of longer time to
rebound. Although the role of cytotoxic T lymphocytes (CTLs)
in post-treatment HIV remission is probably not as pronounced
as in spontaneous (“elite”) HIV control and post-treatment
controllers mostly lack protective HLA alleles (Goujard et al.,
2012; Sáez-Cirión et al., 2013; Maenza et al., 2015), this does
not mean that other components of the host immunity are
not important. In fact, ART initiated extremely early, during
the “hyperacute” HIV infection (Fiebig stage I), rarely results
in prolonged post-treatment remission (Henrich et al., 2017;

Colby et al., 2018), which is thought to reflect an insufficient
time window for maturation of the adaptive immune responses
(Goulder and Deeks, 2018). In contrast, the SPARTAC and
Primo-SHM studies where temporary ART was started during
primary infection, but not too early, resulted in some participants
experiencing various degrees of post-treatment remission (Stöhr
et al., 2013; Pasternak et al., 2020).

It therefore appears useful to develop a comprehensive
molecular profile, incorporating multiple viral and host
biomarkers, that could reliably predict post-treatment HIV
remission. Such a profile could be based on the principle of
diagnostic multivariate index assays that are already used in other
medical fields (Zhang, 2012). The advantage of such a composite
molecular profile, compared to single biomarker assays, is that
the aggregated information from complementary biomarkers
is expected to outperform each of the individual component
biomarkers in sensitivity, specificity, and predictive value.
Applied to the prediction of post-treatment HIV remission,
such a profile may be composed of metabolomic, lipidomic,
and proteomic biomarkers, in combination with virological
and immunological profiling. In addition, the expression of
recently identified cellular markers of the HIV reservoirs, such as
CD32a, CD30, CD20, PD-1, and others (Fromentin et al., 2016;
Descours et al., 2017; Abdel-Mohsen et al., 2018; Hogan et al.,
2018; Serra-Peinado et al., 2019; Darcis et al., 2020; Neidleman
et al., 2020; Adams et al., 2021), as well as T-cell phenotypic
markers (Hiener et al., 2017), could be incorporated in this
profile. Indeed, CD30+ CD4+ T cells, as well as expression of
some HIV restriction factors, were shown to increase before viral
rebound after ATI (De Scheerder et al., 2020; Prator et al., 2020).
Furthermore, Mitchell et al. (2020) recently demonstrated that
plasmacytoid dendritic cells can sense HIV replication before
detectable viremia following treatment interruption, which was
evidenced by a transient loss of IFNα production. Expression of
cellular factors that are involved in long-term cell survival and
proliferation vs. apoptosis could also play a role (Kuo et al., 2018;
Angin et al., 2019). In this regard, as no single molecule has yet
been described that marks all reservoir cells, a combinatorial
approach will again be beneficial and perhaps even necessary.
Ideally, the evolution of such a comprehensive molecular profile
could allow the development of a personalized approach to
HIV curative interventions. In particular, a gender-specific
approach might be necessary, since several (but not all) studies
demonstrated lower CA HIV RNA levels in women compared
to men (Scully et al., 2019; Falcinelli et al., 2020; Gianella et al.,
2020), and estrogen has been shown to repress HIV transcription
(Das et al., 2018). Such approach should also include the personal
medical history of each individual, namely the level of persistent
immune activation despite ART, the history of comorbidities that
is often associated with chronic inflammation, as well as current
and historical ART regimens, all of which may contribute to the
probability and timing of viral rebound.

Post-treatment Remission and the HIV
Reservoir Size: Are We Measuring the
Right Markers?
Low HIV reservoir is necessary but apparently not sufficient for
post-treatment remission, as even individuals with very low levels
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of reservoir markers experience fast viral rebound upon ART
interruption. As discussed above, one possible solution to this
problem is to identify other, complementary biomarkers, thus
increasing the predictive power of the resulting profile. However,
another possibility is that our current toolkit simply does not
allow sufficiently accurate measurement of the HIV reservoir size.
The latter is defined as the number of cells carrying replication-
competent proviruses, in other words integrated viral genomes
capable of reigniting viral spread upon ART interruption (Eisele
and Siliciano, 2012; Pasternak and Berkhout, 2016). However,
it is difficult to estimate the real HIV reservoir size, as PCR-
based methods that measure HIV DNA and RNA overestimate
the reservoir because most of proviruses are genetically defective
(Bruner et al., 2016). On the other hand, the quantitative viral
outgrowth assay (qVOA) will not score defective proviruses,
but is thought to underestimate the reservoir as only a small
fraction of genetically intact proviruses can be activated ex vivo
(Ho et al., 2013; Bruner et al., 2016; Kwon et al., 2020;
Martin et al., 2020). The most accurate surrogate marker of
the reservoir size is currently considered to be the number
of intact proviruses, estimated by either full-length proviral
sequencing (Bruner et al., 2016; Hiener et al., 2017; Pinzone
et al., 2019) or the recently developed digital droplet PCR-
based intact proviral DNA assay (IPDA) (Bruner et al., 2019).
Not all intact proviruses are replication-competent, as full-
length sequencing is only able to identify gross genetic defects,
such as large internal deletions, hypermutation, stop codons,
frameshift mutations, or defects in the major splice donor site
or the packaging signal, and will not identify other genetic
changes that may be deleterious for HIV replication. However,
most of the intact proviruses demonstrate normal replication
kinetics in vitro (Ho et al., 2013), suggesting that the majority of
proviruses identified as intact by full-length proviral sequencing
are replication-competent. In comparison, IPDA overestimates
the intact reservoir somewhat, as only ∼70% of proviruses that
are identified as intact by IPDA are also intact by full-length
proviral sequencing (Bruner et al., 2019).

There might be, however, another level of complexity to the
measurement of HIV reservoir. By applying the novel multiple
displacement amplification (MDA)-based matched integration
site and proviral sequencing (MIPSeq) technique, the Lichterfeld
group demonstrated that in individuals on prolonged ART,
in comparison to defective proviruses, intact HIV proviruses
were enriched for non-genic chromosomal positions and other
features of “deep latency” (Einkauf et al., 2019). This bias
was subsequently confirmed by another group that also used
the MDA method (Patro et al., 2019). More importantly,
the same technique, recently applied to the characterization
of the HIV reservoir in elite controllers, revealed that this
population demonstrates an even more extreme phenotype
than ART-treated individuals: 40% of intact proviral clones in
elite controllers were integrated into non-genic or pseudogenic
regions, compared to 13% in ART-treated individuals (Jiang et al.,
2020). Moreover, in contrast to ART-treated individuals, intact
proviral sequences from elite controllers were preferentially
integrated in centromeric satellite DNA or in other regions
associated with heterochromatin, and at an increased distance

to transcriptional start sites and accessible chromatin, and
were enriched in repressive chromatin marks. As infection of
CD4+ T cells from elite controllers ex vivo with a laboratory
HIV strain led to a normal integration pattern, it is likely that
this skewed integration pattern observed in vivo is the result
of selective elimination of cells infected with transcriptionally
competent intact proviruses over time by the immune system,
resulting in enrichment for intact proviruses that are in a state
of “deep latency” (also referred to as “blocked and locked”
state) and are unlikely to be reactivated (Jiang et al., 2020). It
was demonstrated 20 years ago that the provirus transcriptional
activity is influenced by the integration site (Jordan et al., 2001),
and indeed, levels of HIV transcription in elite controllers were
shown to be at least 10-fold lower than in ART-treated individuals
(Jiang et al., 2020), confirming the results of previous studies
(Van Gulck et al., 2012; Hatano et al., 2013). Interestingly,
Battivelli et al. (2018) found that HIV reactivation in a primary
CD4+ T-cell model of latency occurred in at most 5% of
the infected cells and depended on integration in an open
chromatin context, which was confirmed by another group that
demonstrated that inactive chromatin marks accumulate across
the provirus with time (Lindqvist et al., 2020). The proportions
of clonally expanded intact proviruses were shown to be larger
in elite controllers than in ART-treated individuals (Veenhuis
et al., 2018; Jiang et al., 2020), with the same pattern observed
in a post-treatment controller (Veenhuis et al., 2018). Moreover,
CD8+ T cells from the elite and post-treatment controllers were
capable of suppressing replication of their autologous clonally
expanded viruses in vitro (Veenhuis et al., 2018), suggesting that
these intact proviruses can undergo clonal expansion without
or with minimal viral gene expression (Hosmane et al., 2017;
Musick et al., 2019).

Taken together, these recent insights imply that the integration
site-imposed reactivation potential of a provirus could be as
important as its genetic intactness (Chomont, 2020). In other
words, not only the size of the reservoir, but also its repertoire
(not only in terms of chromatin context but also in terms
of diversity and clonality of proviral integration sites) matters
for the replication competence. Moreover, they bring into
doubt the concept that qVOA profoundly underestimates the
replication-competent reservoir, providing a possible explanation
why only a tiny fraction of intact proviruses can be reactivated
ex vivo. On the other hand, Ho et al. reported that most
non-induced intact proviruses in their study were integrated
into active transcription units, suggesting that other factors
exist that prevent intact provirus reactivation, at least ex vivo
(Ho et al., 2013). Although the reactivation abilities ex vivo
and in vivo cannot be directly compared, and there always is
a possibility that a provirus that cannot become reactivated
ex vivo even after multiple rounds of TCR stimulation, still
can reignite viral rebound in vivo after ART interruption,
we might consider the number of intact proviruses as the
upper, conservative, limit of the replication-competent reservoir.
In most infected individuals, the reservoir is probably much
lower than this limit and in order to be able to accurately
quantify the reservoir size, it would be necessary to combine
the measurement of genetic intactness with that of in vivo
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FIGURE 1 | Proposed molecular profile for the prediction of post-treatment
HIV remission.

reactivation potential, although measuring the latter is very
difficult if not impossible. As a surrogate, a simple score based
on the provirus intactness and the chromosomal context of
its integration site could be developed, as MDA-based and
other similar assays that simultaneously measure the provirus
intactness and map the integration site provide the possibility
to do this. Importantly, such a combined score may be able to
predict time to viral rebound after ATI and/or post-treatment
HIV remission better than other reservoir measures. To further
improve the predictive power, this score could be incorporated
into the molecular profile proposed above (Figure 1). Indeed,
although the mechanisms of control are different between most
elite and post-treatment controllers, studies have identified a
subpopulation of elite controllers with both markedly inefficient
ex vivo HIV reactivation from resting CD4+ T cells and low
HIV-specific CD8+ T-cell responses (Noel et al., 2016; Canouï
et al., 2017). This subpopulation may in fact resemble post-
treatment controllers, in most of which no protective HLA
alleles were found and CD8+ responses are also not particularly
strong, and the virus replication is probably controlled due to
infrequent reactivation from latency. Further research is needed
to establish whether the HIV integration site landscape in post-
treatment controllers resembles that of elite controllers (Jiang
et al., 2020). This should involve longitudinal studies to evaluate
immune selection for viral reservoir cells (Wang et al., 2018;
Huang et al., 2019).

Finally, if the proviral integration sites are so important for
the replication competence of the reservoir, is there something
that can be done therapeutically to facilitate HIV integration in
regions that are associated with the repression of transcription?
HIV preferentially integrates in actively transcribed genes (Han
et al., 2004; Marini et al., 2015) but long-term ART selects
for transcriptionally silent proviruses (Pinzone et al., 2019).

However, ART cannot do wonders and even after decennia
of suppressive therapy, most individuals will experience a fast
viral rebound upon ART interruption. Therefore, a number of
strategies to “block and lock” the provirus in the inactive state
are currently under investigation (reviewed in Moranguinho
and Valente, 2020; Vansant et al., 2020a). In particular, the
Debyser group developed a technique, based on the small-
molecule (LEDGIN) inhibition of the interaction between the
HIV integrase and its host cofactor LEDGF/p75, that allows
retargeting HIV integration from active genes to sites that
are less transcriptionally active, indeed resulting in lower HIV
transcription (Vranckx et al., 2016; Vansant et al., 2020b).
However, it is still unclear how this technique could be applied
in infected individuals, as the HIV reservoir is formed very early
after infection and once the provirus is integrated, it cannot be
retargeted. Interestingly, several groups recently reported that in
the untreated infection, the reservoir turns over quickly, and that
most proviruses in ART-treated individuals match circulating
HIV variants from shortly before ART initiation (Brodin et al.,
2016; Abrahams et al., 2019; Pankau et al., 2020). In this case,
treatment with LEDGINs or similar compounds shortly before
the start of ART could indeed result in a lower transcriptional
activity of the reservoir and, as a consequence, a higher frequency
of post-treatment HIV remission.

CONCLUSION

In summary, although a number of biomarkers are already
identified that can predict post-treatment HIV remission, there
are still major gaps in our understanding of its underlying
mechanisms. Consequently, ATIs are still the only way to assess
the efficacy of new HIV curative interventions, and criteria for the
recruitment of clinical trial participants remain unclear. Further
research is urgently needed to identify robust and validated
predictive biomarkers of post-treatment remission. In this regard,
the development of an integral biomarker profile as outlined
above should facilitate the efforts to achieve prolonged virological
control in the absence of ART.
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