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Abstract: Incentive mechanisms of crowdsensing have recently been intensively explored. Most of
these mechanisms mainly focus on the standard economical goals like truthfulness and utility
maximization. However, enormous privacy and security challenges need to be faced directly
in real-life environments, such as cost privacies. In this paper, we investigate offline verifiable
privacy-protection crowdsensing issues. We firstly present a general verifiable privacy-protection
incentive mechanism for the offline homogeneous and heterogeneous sensing job model. In addition,
we also propose a more complex verifiable privacy-protection incentive mechanism for the offline
submodular sensing job model. The two mechanisms not only explore the private protection issues of
users and platform, but also ensure the verifiable correctness of payments between platform and users.
Finally, we demonstrate that the two mechanisms satisfy privacy-protection, verifiable correctness
of payments and the same revenue as the generic one without privacy protection. Our experiments
also validate that the two mechanisms are both scalable and efficient, and applicable for mobile
devices in crowdsensing applications based on auctions, where the main incentive for the user is
the remuneration.
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1. Introduction

Recently, crowdsensing has received extensive attention since it can solve complex sensing issues
by pervasive mobile devices worn by the ordinary users. For instance, BX Tracker [1] measuring human
mobility and signal coverage based on GPS tracking in cellular networks, VTrack [2] having real-time
and omnipresent traffic state information and NoiseTube [3] drawing noise maps. Although these
crowdsensing applications have been developed, incentive mechanisms are indispensable for achieving
good-quality services. Consequently, some researchers such as Singer et al. [4,5], separately propose
auction mechanisms to incentivize extensive users to participate in crowdsensing applications so as to
meet the previous service demands [4–6]. These novel mechanisms not only guarantee the truthful
participation of users by adopting near-optimal prices of assignments for crowdsensing applications
with a budget constraint, but also satisfy the incentive compatibility, budget feasibility, constant
competitive ratio, thereby ensuring these mechanisms applicable to crowdsensing applications.

Despite their merits, payments’ verifiability and privacy issues as two critical human factors in
crowdsensing applications have not been fully explored. A common hypothesis made in the above
mechanisms is that the involved parties will follow the protocols honestly without the concern of
their privacy. However, some users could behave selfishly to protect their cost privacy, sensing
preferences’ privacy and identification privacy, thereby violating the hypothesis and making these
well-designed mechanisms inefficient. On the other hand, the platform needs to keep the set of current
winners secret to maximize his utility when facing the adversarial users. Thus, it is imperative to
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provide some measures to eliminate the privacy-leakage concerns of users and the platform so as to
achieve good service quality.

In addition to the privacy issue, the payments’ verifiability issue is also a crucial human factor for
the wide acceptance of the above crowdsensing applications. It is because that some controller of the
platform (the crowdsensing organizer) may misbehave, e.g., provide false results or insert a fictitious
bid and sensing preference so as to deceitfully pay users at a lower cost [7,8]. If the correctness
of the payments from the platform is not well guaranteed, users will be reluctant to participate in
crowdsensing applications. In practice, since it is an individual (e.g., a public servant) that administers
a real-world platform in a large corporation, or in a government department, the possibility of incorrect
operations from the platform exists in crowdsensing applications. For example, according to the
estimation of the World Bank, about $200 billion per year results from incorrect exchanging hands for
public sector procurement and close to $1.5 trillion resulted from the taint of incorrect operations to
the procurement projects. Thus, how to deal with the payments’ verifiability is crucial for the success
of crowdsensing applications.

Although both privacy and verifiability issues have been identified as two crucial human factors,
many existing research works [9–12] tend to investigate them seperately. For instance, some privacy
enhanced techniques [13,14] enable a user to hide his identity and sensing profile (i.e., cost and
sensing preferences like locations), but some verifiable strategies, especially the non-truthfulness
incentive strategies, may be hard to implement in the above truthful incentive mechanisms, since
the platform needs to greedily select winners and compute the threshold payment based on the
examination of a user’s sensing profile. However, the improvement of the verifiability needs
to reveal more information, thereby reducing privacy of users and platform. Therefore, how to
simultaneously address privacy and verifiability problems will become particularly challenging in
crowdsensing applications [15,16].

While the work in [17] investigated the online verifiable privacy-protection crowdsensing issue
only for the heterogeneous sensing job model, the offline verifiable privacy-protection crowdsensing
issues are more complex and challenging since the payment correctness of the platform is not verified
by participatory users who have left the mechanism. On the contrary, in this paper, we investigate the
offline verifiable privacy-protection crowdsensing issues. To address the above-mentioned challenges,
we present a first step towards building a crowdsensing system in which users can verify the payments
from the platform without revealing any additional information by applying the order preserving
encryption scheme (OPES) [18]. Our approach is to enable users to verify the payments with the help
of an auction issuer (AI): the AI chooses winners and greedily computes the threshold payment based
on encrypted user’s sensing profiles. Since these encrypted sensing profiles are order-preserving, the
threshold payment is the same as the one produced by the platform, thereby solving the verifiability
without reducing privacy of users and platform. Specifically speaking, we first introduce three
incentive mechanisms for crowdsensing applications with homogeneous sensing jobs, heterogeneous
sensing jobs and submodular sensing jobs (to be elaborated later). Then, we propose a general
verifiable privacy-protection incentive mechanism for homogeneous sensing jobs and heterogeneous
sensing jobs and that for submodular sensing jobs respectively, as shown in Table 1, where H-PVA
(Heterogeneous-user based Privacy-preservation Verifiable Auction) is an online mechanism based on
heterogeneous sensing jobs [17]. The two mechanisms are implemented by introducing the oblivious
transfer (OT), the bulletin board, and the timed lapse cryptography services (TLC), satisfying the
above-illustrated three desirable properties: the non-repudiation by the platform and users, verifiable
correctness, and secrecy [12]. Finally, analysis shows that our verifiable privacy-protection mechanisms
achieve the similar results as the generic mechanism without privacy preservation and verification.
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Table 1. Comparison of our work with competitive works.

Mechanism
Online or

Offline Homogenity Heterogenity Submodularity Truthfulness Verifiability
Private

Protection

H-PVA [17] Online No Yes No Yes Yes Yes

PVI-H Offline Yes Yes No Yes Yes Yes

PVI-S Offline No No Yes Yes Yes Yes

MSensing [6] Offline No No Yes Yes No No

OMZ [19] Online No No Yes Yes No No

Task pricing [5] Online No Yes No Yes No No

The rest of the paper is organized as follows. In Section 2, we briefly discuss the related work and
motivation. In Section 3, we present our relative models and our design goal. In Section 4, we introduce
novel incentive mechanisms for crowdsensing applications with the budget constraint. Based on these
mechanisms, in Section 5, we design two privacy-preserving verifiable incentive mechanisms satisfying
the above three desirable properties, followed by the security analysis and performance evaluation in
Sections 6 and 7. Finally, we draw our conclusions in Section 8.

2. Background and Related Work

Privacy-protection mechanisms have received extensive attentions in crowdsensing
applications [20–25]. The work of [26] applied the k-anonymity method to protect users’ privacy
by hiding a user’s location under a cloak of k− 1 other users. The works of [27,28] use the temporal
and spatial cloaking techniques to protect users’ privacy by blinding the participant’s location of
a cloaked area at a specific time for satisfying the privacy requirements. The work of [29] employs
a novel spatiotemporal probabilistic k-anonymity for blurring mechanisms based on tessellation and
protecting users’ privacy. The work in [22,30–32] considered the privacy protection based on the
privacy regulation in crowdsensing applications. Furthermore, the work in [31,32] mainly investigate
how participatory users fulfill the jobs for the platform while without revealing their identity. Different
from the above mechanisms, the work of [21] explores the differential privacy for protecting the privacy
of each user’s bid against the other honest-but-curious users. The work of [9,23] introduces the OT [33]
for protecting the users’ privacy. The work of [22] integrates the incentive, data aggregation and
perturbation for providing reliable data, and compensating their costs of sensing and privacy leakage.
The work of [34] introducing the optimal quality of information for protecting users’ privacy under
the condition of without knowing the trajectories of participants However, all of these works do not
consider the verifiability of user’s inputs and outputs.

Besides, verifiability of the payment is coexistence with the above privacy protection for an
incentive mechanism design. The verifiability of payments have been extensively explored in
traditional auction mechanisms. For instance, the work of [35–37] forms a proxy-OT based circuit for
validating the payment of the platform. The work of [7,38] keeps the platform knowing users’ bids for
performing a timed lapse cryptography service until the auction is closed so that it is impossible to rig
their bids for participatory users after bidding. However, all these works do not apply for realistic
crowdsensing applications, since they neglect the effect of a large of participants in crowdsensing
applications. More recently, a timed commitment encryption method is introduced to enhance the
level of the payment correctness from the platform. For example, the work of [11,12,17,39,40] apply
the timed commitment to address the verifiable correctness issue from different aspects. While, these
works are not feasible to real crowdsensing applications with the limited budget.

In this paper, to solve the above challenges, we introduce the bulletin board, OT, and TLC to
guarantee the privacy and verifiability for the offline crowdsensing applications without sacrificing
the platform’s utility and truthfulness.
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3. System Model and Problem Formulation

In this section, we expound our system model, auction model, adversarial model, and the bulletin
board, which will be applied to our verifiable privacy-protection incentive mechanisms. Further, the
detailed goal is introduced.

3.1. System Model

We take the following system model for crowdsensing applications into account, illustrated in
Figure 1. The system is composed of a crowdsensing application platform, which consists of multiple
sensing servers in the cloud, and many users, whose mobile devices are connected to the cloud by
wireless networks, e.g., cellular networks including GSM/3G/4G or WiFi connections. The requester
posts a crowdsensing task with a budget B > 0 to the platform. There are m available assignments
in each task. Receiving the task, the platform publicizes a crowdsensing campaign towards the area
of interest (AoI), aiming at finding some users to maximize the number of assignments performed
efficiently. Assuming that a set of users U = {1, 2, · · · , n} in the AoI is interested in the campaign.
In this paper, with respect to the model of sensing jobs completed by all users, we discuss the following
three sensing job models proposed in [4] for the crowdsensing campaign:

Homogeneous sensing job model: Both each sensing job assignment and the limit of the number
of assignments completed by each user are the same. Meanwhile, each user can complete only
a single assignment.

Heterogeneous sensing job model: Each sensing job assignment is the same, but the limit of the
number of assignments completed by each user is different. It means that different users can complete
different number of assignments.

Submodular sensing job model: Each sensing job assignment is different, and each user i can do
a subset Γi of assignments Γ.

Platform

Area of interest

Requester

Service area

User

User

User
User

User
User

User

Requester

Figure 1. Our crowdsensing system model.

If the campaign is oriented to users with the homogeneous sensing job model and the
heterogeneous sensing job model, receiving the campaign, each user i synchronously submits his
sensing profile Pi = (bi, li), where bi is obtained based on a true cost ci for performing a single
assignment and li is a limit for the number of assignments he is willing to work on. This means that if
he is a winner, he will be allocated at most li assignments, thereby the payment for each assignment
will exceed bi. In this case, the sensing job model is the heterogeneous sensing job model, which
indicates that different users can complete different number of assignments. When li = 1, the sensing
job model is reduced to the homogeneous sensing job model, which indicates that each user can
complete only a single assignment, i.e., the homogeneous sensing job model can be defined as the
subset of the heterogeneous model with li = 1.

If the campaign is oriented to users with the submodular sensing job model, receiving the
campaign, each user i synchronously submits his sensing profile Pi = (bi, Γi), where bi is obtained
based on a true cost ci for performing the sensing service with his assignments’ set Γi, i.e.,
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Γi ⊆ Γ = {τ1, τ2, · · · , τm}. We assume that li or Γi is fixed. Furthermore, under the budget constraint
B, the platform, when presented with the sensing profiles of all users, must decide a subset of users to
select, and how much payment to pay to each selected user. Our goal is to make incentive mechanisms
to achieve non-repudiation by users and platform, verification, and secrecy without sacrificing the
above standard economic goal such as utility maximization, truthfulness.

In practice, the above interactive process can be modeled as a sealed-bid auction between
users and the platform, in which an AI is attached between a crowdsensing platform and a set
of participatory users. The AI is semi-honest (passive or curious), and only checks the platform
randomly. Simultaneously the platform also needs to maintain a bulletin board. All public information
must carry appropriate digital signatures if they need to be posted to the bulletin board so that their
originators can be identified.

3.2. Adversarial Model

In the auction process with the budget constraint, the platform is supposed to know only the set
of current winners, and their sensing profiles. Each user i only learns whether he is the winner, and he
is paid if he is a winner. He does not know anything about others’ profiles except for the very limited
implicit information in the payment from the platform.

Assume that the platform and users are semi-honest adversaries in our mechanisms, and collusion
of bidders and platform does not exist. That is, the platform is interested in inferring each user’s private
information no matter he is a winner or not. Users try to infer others’ sensing profiles to maximize
their own utilities. Besides, the platform and users can also collude with each other. According to the
above auction model, we give the analysis of the privacy in our framework below.

Definition 1. Given all the communication strings C and its output of the auction Output during
the auction, an adversary’s advantage over the privacy information ζi of user i is defined as
Advζi = Pr[ζi|C, Output]− Pr[ζi|Output], where Pr[ζi] is the probability that a correct ζi is inferred. In
this paper, ζi can be the bid or sensing services Γi of user i.

Definition 2. A privacy-protection scheme satisfies k-anonymity, if a user cannot be identified by the sensitive
information with probability higher than 1/k [26].

In this paper, our security goal is to achieve a scheme such that the advantage is of a negligible
function of the security parameter or k-anonymity is guaranteed.

3.3. Problem Formulation

According to the above sensing job model, we need to consider two cases. One case is when
sensing job model is the homogeneous sensing job model or the heterogeneous sensing job model.
In the two models, a mechanismM = ( f , p) designed has an allocation function f : Rn

+ → Z
[n]
+ and

a payment function p : Rn
+ → Rn

+. The function f denotes the mapping from a set of n bids to an
assignments’ allocation for a chosen subset of users. In particular, in the homogeneous sensing job
model, if user i is chosen, fi = 1. The function p returns a payments’ vector (p1, · · · , pn) to users.
The goal of the platform aims to maximizing the number of assignments under the given budget B,
i.e., max ∑i∈S fi, subject to ∑i∈S fi pi ≤ B, ∀i, fi ≤ li. In particular, when li = 1, the above results are
also applicable to the homogeneous sensing job model.

The other case is when sensing job model is the submodular sensing job model. a mechanism
M = ( f , p) designed also has an allocation function f : Rn

+ → 2[n] and a payment
function p : Rn

+ → Rn
+. However, the allocation function is different from the previous one.

The function f here is a indicator function that returns 1 if user i is allocated and 0 otherwise. The utility
of user i is pi − ci if it is chosen, i.e., i ∈ S, 0 otherwise. The payment function p is the same to the
previous one. The goal of the platform can be denoted as maximizing the value from the selected
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users’ services under the given budget B, i.e., max V(S), subject to ∑i∈S pi ≤ B, where V(S) satisfies
the monotone submodularity.

However, the above goals also come with many privacy and security issues, such as users’ sensing
profiles, due to the two following reasons. One is that users are reluctant to reveal all their private
information to the platform and other users. The other is that both the winners and the platform have
the ability of verifying the payment resulted from our mechanisms. Thus, our mechanisms not only
satisfy the standard economic goals such as truthfulness, individual rationality, utility maximization,
but also fulfil the following three desirable ones: non-repudiation by users and platform, secrecy and
verifiable correctness, illustrated in [17].

4. Incentive Mechanisms for CrowdSensing Applications

In this section, to explicitly present our proposed mechanisms, we introduce three incentive
mechanisms for crowdsensing applications with homogeneous sensing jobs, heterogeneous
sensing jobs, submodular sensing jobs respectively. In essence, the incentive mechanisms for
crowdsensing applications require the truthfulness, computationally effectiveness, budget feasibility
and approximation (see [6]). Singer et al. present these mechanisms meeting the four conditions well.

To better understand the following incentive mechanisms, let us see the following familiar
example. Given a budget constraint B and subsets U = {1, 2, · · · , n} of some ground set, where each
user i corresponds to a subset of the ground set and a associated cost ci find a users’ subset S which
maximizes | ∪i∈S {i}| under the given budget. This is a typical coverage problem, called submodular
sensing job model here, in which each user’s value depends on the identity of the sensing data set it
holds. When each user’s value only depends on the cardinality of the sensing data set, rather than the
identity of the sensing data set it holds, it means that different users can complete different number
of sensing data, thereby simplifying the submodular sensing job model to heterogeneous sensing job
model. Furthermore, if each user only completes a single sensing data assignment, the heterogeneous
sensing job model will become a homogeneous sensing job model. For the simplicity of presentation,
we first introduce the incentive mechanism with homogeneous sensing job model.

4.1. Incentive Mechanism with Homogeneous Sensing Jobs

For crowdsensing applications with homogeneous sensing jobs, consider the above-mentioned
allocation function f : Sorting the n bids reported by n users so that b1 ≤ b2 ≤ · · · ≤ bn, and finding the
largest k so that bk ≤ B/k. That is, k is the location at which the hyperbola B/k intersects the curve of the
increasing costs.The set allocated here should be {1, 2, · · · , k}. That is, winners’ set S = {1, 2, · · · , k}.
Obviously, this is a monotone allocation function: a user can be not excluded when his bid is decreased.
In [4], the authors design the following incentive mechanism for crowdsensing applications with
homogeneous sensing jobs and show the mechanism satisfies the above four conditions.

More formally, firstly, sorting the users’ bids: satisfying b1 ≤ b2 ≤ · · · ≤ bn. Then finding the
largest integer k satisfying bk ≤ B/k. Finally, determine the set of allocated users to be S = {1, 2, · · · , k},
and provide same payment pi = min{B/k, bk+1}.

4.2. Incentive Mechanism with Heterogeneous Sensing Jobs

For crowdsensing applications with heterogeneous sensing jobs, the authors of [5] present the
following mechanism for determining near-optimal prices of jobs for crowdsensing applications with
heterogeneous sensing jobs. Their mechanism is illustrated as follows: Firstly, sort the users’ bids:
satisfying b1 ≤ b2 ≤ · · · ≤ bn. Then find the largest integer k satisfying bi ≤ B/∑j≤i f j. Finally,
determine the set of allocated users is given as S = {1, 2, · · · , k}, and provide the same payment
min{B/ ∑j≤i f j, bi+1/li+1} for completing a sensing job.

Obviously, the homogeneous user model can be viewed as a special case of the heterogeneous
user model, i.e., li = 1 for each user i.
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4.3. Incentive Mechanism with Submodular Sensing Jobs

For crowdsensing applications with submodular sensing jobs, the authors of [4,6,41] apply the
proportional share allocation rule proposed in [4] to address the extensive user participation issue
for crowdsensing applications, which is composed of two phases: the winner selection phase and the
payment determination phase [19]. We first introduce definition of the submodular utility function.

Definition 3 (Submodular Function). Let N be a finite set, a function U : 2Ω → R is submodular if
U(S ∪ {i})−U(S) ≥ U(T ∪ {i})−U(T), ∀S ⊆ T ⊆ Ω, where R is the set of reals.

From the above Definition 3, we can know the utility function U is submodular and derive
the following sorting according to the increasing marginal contributions relative to their bids from
users’ set to find the largest k satisfying bk ≤ UkB/U(S ∪ k).

U1/b1 ≥ U2/b2 ≥ · · · ≥ U|U |/b|U |, (1)

where Uk denotes Uk|Sk−1
(= U(Sk−1 ∪ {k})−U(Sk−1)), Sk = {1, 2, · · · , k}, and S0 = ∅. To calculate

the payment of each user, we can sort the users in U\{i} as follows:

Ui1(T0)/bi1 ≥ Ui2(T1)/bi2 ≥ · · · ≥ Uin−1(Tn−2)/bin−1 , (2)

The marginal value of user i at the position j is BUi(j)(Tj−1)/U(Tj). Assume that k
′

to be the
position of the last user ij ∈ U\{i}, such that bij ≤ Ui(j)(Tj−1)B/U(T ). To ensure the truthfulness,
each winner should be given the payment of the critical value. This indicates that user i can not win
the auction if it reports higher than this critical value. More details are given in Algorithm 1, where
bi(j) = Ui(j)(Tj−1)bij /Uij(Tj−1) and ηi(j) = Ui(j)(Tj−1)B/U(Tj−1 ∪ {i}).

Algorithm 1 An Auction Mechanism for Submodular Sensing Jobs Under the Budget Constraint

Input: User set U , the budget constraint B.
Output: The set of winners S.

1: // Phase 1: Winner selection
2: S← ∅; i← arg maxj∈U Uj(S)/bj;
3: while Ui(S)/bi ≥ U(S ∪ i)/B do

4: S← S ∪ i;
5: i← arg maxj∈U\S(Uj(S)/bj);
6: end while
7: // Phase 2: Payment determination
8: for each user i ∈ U do

9: pi ← 0;
10: end for
11: for each user i ∈ S do

12: U ′ ← U\{i}; T ← ∅;
13: repeat

14: ij ← arg maxj∈U ′\T (Uj(T )/bj);
15: pi ← max{pi, min{bi(j), ηi(j)}};
16: Tj−1 ← T ; T ← T ∪ {ij};
17: until bij > Ui(j)(Tj−1)B/U(T )
18: end for
19: return (S, p)
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However, although the above three mechanisms under the given budget constraint are so
promising, we also need to address the previous-mentioned challenges. To this end, in the following
section, we will explore two verifiable privacy-protection incentive mechanisms for homogeneous and
heterogeneous sensing jobs, and submodular sensing jobs.

5. Design Details

In this section, we first introduce basic cryptographic schemes. Then we apply the schemes
to design our verifiable privacy-protection mechanism for homogeneous, heterogeneous jobs and
submodular jobs respectively.

5.1. Basic Cryptographic Schemes

We firstly construct the time-lapse and OT cryptography services for making users’ sensing profile
secret. Then we give the blind digital signature for achieving the goal of non-repudiation by the
platform and users, and the computation of marginal utility and set union for making platform’ current
winners’ set secret. In the following details, we apply the bulletin board and the parameter α to ensure
verifiability of payments and the payment correctness.

5.1.1. Time-Lapse and OT Cryptography Services

In the following mechanisms we apply timed commitments on sensing profiles of all users
until the auction closes. Cryptographic methods, as presented in [42] can be used to implement
the timed-commitments. Considering the computation efficiency reasons, we choose a time lapse
cryptography (TLC) service from [43], which makes it possible to use commitments with the classical
hiding and binding properties. Besides, it prevents users from refusing to reveal committed sensing
profiles and also preventing the platform from dropping received commitments, claiming not to have
been able to reveal the committed sensing profiles. In our mechanisms, an auction issuer (AI), acting as
the TLC service provider, publishes a public key of a non-malleable encryption scheme, and sends the
corresponding private key only when the auction closes. Whenever timed commitments on sensing
profiles are applied, it means that a user encrypts her sensing profile by applying the AI-generated
public encryption key. Besides, receiving the corresponding private key, the platform can know the
encrypted sensing profile.

OT is a secret exchange way between two parties, e.g., users and a platform. Each user only know
one of n secrets, and the platform does not know which of the n secrets has been known. An efficient
1-out-of-z OT of integers [17,44] will be used in our works.

5.1.2. Blind Digital Signature

In our work, each user is a signer who is introduced only to keep the confidentiality of its the
following transformed bid and sensing subset of assignments to the platform as well as other users.
Considering the security, not all digital signature schemes can be used [10]. To these goals, we apply
the Nyberg-Rueppel signature scheme [45] (see Algorithm 2). Notably, we do not need the signer to
verify the authenticity of them, and on the other hand the platform can obtain their transformed bids
and sensing preference selections from all signers. Let signi(m) denote as the message m’ signature
from the user i and the value of the signature is an integer. Note that the signature scheme requires
the message to be an integer, therefore, we need to apply sign(b10kmc) for the input m if m is not an
integer like the bid, where k can be appropriately chosen to preserve the rank from {3, 4, · · · } and
ψ(x) denotes the output of the signature scheme. At the same time, we remove the signature by using
10−ksign−1(cm), where cm is obtained by the signature cm = signi(m). According to [10], the deviation
for the roundness of the signature is negligible. Thus, our assumption is reasonable.
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Algorithm 2 Blind Nyberg-Rueppel Signature

1: Initialize a prime number p, a prime factor q of p− 1, and an element g ∈ Z∗p with order q;
2: The signer selects k̃ ∈ Zp and sends r̃ = gk̃(mod p) to signee;
3: The signee randomly chooses α ∈ Zq, β ∈ Z∗q , computes r = mgα(mod p) and m̃ = rβ−1(mod q)

until m̃ ∈ Z∗q . Then, he sends m̃ to the signer;
4: The signer computes s̃ = m̃x + k̃(mod q) and sends s̃ to the signee;
5: The signee computes s̃ = s̃β + α(mod q), and the pair (r, s) is the the signature for m;
6: Check whether m = g−syrr(mod q) to verify the correctness.

5.1.3. Marginal Utility Computation

Besides the above losers’ sensing preferences, the current winner set S produced by the platform,
should be also kept secret to all users. In such problems, how to compute the marginal utility
without knowing S is challenging. We address it by introducing multivariate polynomial evaluation
protocol (MPEP), in which the polynomial are computed without revealing any xi input of various

users as follows: f (~x) = ∑m
k=1 (ck

n
∏
i=1

xdi,k
i ), where there is a group of open m powers for each user

and m coefficients to any participant as well as the attackers. We compute the marginal utility by
assuming that there are m sensing data points and n mobile users. Then we have m-dimensional
vector CS indicating whether m sensing data points are included in currently chosen sets S, where
ck,S = 1−∏n

j=1 (1− cj,k,S). If k-th data point is in user j’s subset Γj of assignments and user j is in S,
ck,S = 1, and 0 otherwise. Since each user knows whether it belongs to S, each winning user’s marginal
utility can be evaluated via one aggregator MPEP with the help of n users and only user i receives the
result by applying the above MPEP equation. Finally, the user i can divide his bid bi to the result to
compute the marginal-utility-per-bid value ωi. The detailed expression is given as follows:

ωi =
1
bi
(∑m

j=1 cj,S∪{i} −∑m
j=1 cj,S)

=
1
bi
(∑m

k=1 (1−∏n
j=1 (1− cj,k,S∪{i}))−∑m

k=1 (1−∏n
j=1 (1− cj,k,S))).

(3)

5.1.4. Privacy Preservation Set Union Computation for Platform

Since the current winner set S is required to be kept secret to all users, for the platform, how
to compute the set union without leaking its privacy, i.e., the current winner set S is a challenging
issue. In the paper, we address it by using Paillier cryptosystem [46] to the set union computation [47].
The detailed description is illustrated in Algorithm 3.

Algorithm 3 Privacy-Preserving set Union Computation

1: Initialize system parameter: two same-length prime numbers p,q, public keys n = pq, g ∈ Z∗n2 ,

private key λ = (p− 1)(q− 1), µ = λ−1mod n;
2: The platform computes the polynomial fA and sends the encrypted Ep( fS) to the user ui;
3: Upon receiving Ep( fS), the user ui chooses a random value r (choose uniformly) and computes a

tuple (Ep( fS(τ)× τ × r), Ep( fS(τ)× r)) for each assignment value τ ∈ S. He randomly permutes

all of the tuples and sends them to the platform;
4: For each tuple (Ep(x), Ep(y)), the platform decrypts x and y. If both values are 0, then the platform

continues to next tuple. Otherwise, the platform finds a good with the value x× y−1 and adds it to

the output set; As such, the marginal utility of the user ui can be obtained.
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5.2. Design Privacy-Preserving Details for Homogeneous and Heterogeneous Jobs

5.2.1. Initialization

The platform sends the following information to the AI: the deadline T, and its task identifier
TID, and the timed-lapse encryption key TPK applied by all users in commitments. If the AI accepts
them, he will set the probability of the auditions from users as α so that α ≥ pmax/(F + pmax), where
pmax and F are the maximal payment and fine paid from the platform respectively, and sends signed α

and signed auction details to the platform. If it is accepted by the platform, it will be posted to the
bulletin board. β = {β1, β2, · · · , βz} and χ = {χ1, χ2, · · · , χv} respectively are denoted as a set of
possible bids and a set of possible limits of the number of assignments, where β1 < β2 < · · · < βz

and χ1 < χ2 < · · · < χv hold, and requires each user i’s bid bi ∈ β and the limit of the number of
assignments li ∈ χ. The AI maps each bid value βi and limits value χi respectively to γi and τi, while
keeping the rank, i.e., γ1 < γ2 < · · · < γn holds and τ1 < τ2 < · · · < τn. Similarly, users’ bids and
limits are transformed by using the OPES for preserving their ranks. Assume that the above AI can
bootstrap the crowdsensing market application and all of the previous data signatured by the platform
signp can be posted on the bulletin board.

5.2.2. Commitment

Choosing a limit li of the number of assignments and a bid bi to form his sensing profile, user
i interacts with the AI. User i receives b̃i = γx and his limit l̃i = τx according to [17], which are
the rank-preserving encrypted values of βx and χx respectively, thereby forming his encrypted
sensing profile. Then user i encrypts the encrypted profile as ei = EKppub(b̃i|l̃i|ri) by applying the
platform’s Paillier encryption key Kppub and a randomly selected values ri. User i makes a commitment
ci = ETPK(ei|si|TID), where si is a randomly generated bit string for the correctness proof. Finally,
the user will sign this commitment, and send a bidding request BR = (signi(ci|TID)) to platform, if
used, before time T (see Figure 2, step 1©). The platform returns a signed receipt Ri = signp(ci|TID|T)
(see Figure 2, step 2©). At time T, the platform will post all the received true commitments c1, c2, · · · , cn

on the bulletin board.

Platform

1

6

Users

Commitment

Decommitment

Function GenBR()
   ei=EKppub(bi|ti|ri);
   ci=ETPK(ei|si|TID);
   BR=signi(ci|TID);

BR

Function GenR( )
    Ri=signi(ci|TID|T);
    Send Ri  and Post ci;

Request the AI to verify 
with the probability α;

Function PayDetermine(A )
 If(i is an element of A)

 pi = Min{B/k,bk+!};

5$$

2
Ri

Function WinnerSelection()
If ((bi)≤B/k)      

A = A ∪ {i};
 i=i+1;4

AI

Initialization Auction details

3
If (bidding information is 
not published) 
   Sends the information 
via the AI;

Send TSK

Outcomes
Signed outcomes

Verification

Figure 2. Our privacy-preserving verifiable framework for homogeneous and heterogeneous jobs.

Note that the secondary encryption is applied to hide the encrypted bids and the random strings,
thereby keeps anyone from learning any knowledge of the data prior to time T. Particularly, neither
the AI nor the platform has any meaningful information.

Furthermore, between time T and T + 1, for any user who has a receipt for a bid which is not
posted (see Figure 2, step 3©), his non-inclusion can be appealed and resorted to the AI.
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5.2.3. Decommitment

At time T + 1, employing the decryption key TSK posted by AI, both the platform and all users,
can recover their encrypted sensing profile ei as well as their random string ri. Applying the platform
decryption key, the platform also recovers random values r1, · · · , rk for the verification of correctness
and the pair for computing the auction’s results. The platform then computes the set of winners and
their corresponding payments from the platform based on the above auction mechanism under the
given budget. The platform posts the winner’s identity and the encrypted payment information so
that any party can verify the correct results on the bulletin board.

Algorithm 4 PVI-H // Privacy-Protection Verifiable Incentive Mechanism for Crowdsensing
Applications with Homogeneous Sensing Jobs or Heterogeneous Sensing Jobs

Input: User set U , the budget constraint B.
Output: S.

// Phase 1: Winner selection
1: Initialize: Each user i receives his encrypted sensing profile (b̃i, t̃i) by using the OT technology

in [17], and submits their commitments to the platform; At time T + 1, the platform makes a

decommitment and sorts users in U i.e., b̃1 < b̃2 · · · < b̃|U |;S← ∅; i = 1;
2: b1 ← OPENS−1(b̃1);
3: while bi ≤ B/∑j∈S f j do

4: fi ← 1;
5: if jobs are heterogeneous then

6: fi ← min{OPENS−1(l̃i), τi}, where τi = b(B− bi ∑j∈S f j)/bic;
7: end if
8: S← S ∪ i;
9: i← i + 1;

10: bi ← OPENS−1(b̃i);
11: end while

// Phase 2: Payment determination
12: for each user i ∈ S do

13: li+1 ← OPENS−1(l̃i+1);
14: if j ≤ i− 1 then

15: Pay pj f j to user j;
16: end if
17: if j = i then

18: pj ← min{B/ ∑j∈S f j, bi+1/li+1}; Pay pj f j to user j;
19: end if
20: end for
21: return S

(a) Winners Selection: In this stage, the winners’ selection’s goal is to find the biggest integer k
so that bk ≤ B/∑k

i=1 fi holds, thereby obtaining the set of winners. Firstly, the platform first recovers
the bids b̃i on the bulletin board and then sorts encrypted bids from all users and resorts to the AI to
fetch the original value b1 of b̃1: b1 = OPENS−1(b̃1). If bi ≤ B/∑j≤i f j holds, then users with the rank
1, 2, · · · , i are winners, thus, for the platform, privacy leakage does not exist. Otherwise, the largest
integer k = i− 1. When user i is added to the winners’ set, the platform calculates his assignments
f̃i ← min{OPENS−1(l̃i), τ̃i}. The process is repeated until the above goal is achieved. The set of
winners {1, 2, · · · , k} is found. Notable, when we determine the largest k, if bi ≤ B/∑j≤i f j does not



Sensors 2017, 17, 2024 12 of 25

hold, the k + 1-th user’s bids and assignments, i.e., its sensing profile, may be disclosed (see Figure 2,
step 4©). Since in our crowdsensing applications, we assume that the number of users is much larger
than the number k. As such, our scheme satisfies k-anonymity. So, neither the AI, nor the platform, can
identify any user’s sensing profile with the probability higher than 1/k. The detailed description is
illustrated in Algorithm 4.

(b) Payment Decision: In the payment determination phase, the platform pays pj f j to user j for
j ≤ i. Similarly, for each winner i ∈ S, the payment of per sensing job, i.e., pi, is given in Algorithm 4.
In particular, our payment scheme is applicable to homogeneous and heterogeneous sensing job
models (see Figure 2, step 5©).

5.2.4. Verification

Since the above incentive mechanism guarantees the truthfulness for users, we only need to verify
the payment correctness of the platform, that is, any of the users can verify the outcome of the auction
on his own. The detailed descriptions are given as follows. Firstly, user i requests AI to verify the
payment outcome with the probability α. After the AI receives the request, he asks for the random
value ri of each user’s ei. Then he derives each user ei’s b̃i, l̃i by decrypting ei on the bulletin board
with ri, thereby obtaining the payment according to the above auction details and the information
from the bulletin board. He sends the encrypted payment fi pi and his assignments f

′
i to the user i

to verify the correctness of the outcomes from the platform,thereby obtaining the user’s feedback to
determine whether to fine the platform (see Figure 3). Analysis in the following section shows that the
platform operates correctly and does not try to cheat.

AIUsers

Commitment Round

Decommitment Round

Initialization Parameters

Verification Request

signAI([TID|pi])

Verification OutcomeVerify
Fine

Figure 3. Our verifiable phase for homogeneous and heterogeneous jobs.

5.3. Design Privacy-Preserving Details for Submodular Sensing Jobs

Different from the above mechanism, for the submodular sensing job model, we need to overcome
the challenge of protecting platform’s privacy, i.e., the privacy of the current winners’ set, by using the
above-mentioned MPEP method and homomorphic encryption scheme. The detailed descriptions are
described below.

5.3.1. Initialization

The platform sends the following information to the AI: the deadline T, and its task identifier
TID, the timed-lapse encryption key TPK applied by all users in commitments, and the description
of the mechanism. If the AI accepts them, he will set the probability of the auditions from the users
as α so that α ≥ pmax/(F + pmax), where pmax and F are the maximal payment and fine paid from
the platform respectively, and sends signed α and signed auction details to the platform. If it is
accepted by the platform, it will be posted them to the bulletin board. A set of possible marginal
utilities per bid is defined as β = {β1, β2, · · · , βz}, where β1 < β2 < · · · < βz holds, and requires
that each user i’s marginal utility per bid ωi ∈ β. The AI maps each βi to γi, while the rank is kept,
i.e., γ1 < γ2 < · · · < γn holds. Similarly, each user’s marginal utility per bid is transformed by
applying the order preserving encryption scheme (OPES) [18] for preserving their ranks. Assume that
the above-mentioned AI can bootstrap the crowdsensing application and and all of the previous data
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signatured by the platform signp can be posted on the bulletin board. Then it constructs three dynamic
lists for the verification of payments’ correctness initiated by each user. The first list lw

i for user i is
used to put his marginal utility per bid ωi(S) for the winner determination phase. The second list lp

i is
used to put his marginal utility per bid ωi(T ) for the payment determination phase. The last dynamic
list lS

i is constructed for each winner.

5.3.2. Commitment Round for Winner and Payment Determination

User i initially selects a subset Γi of assignments and a bid bi according to his valuation he
preferences. Each user i initially computes his marginal utility Ui(∅), thereby obtaining his marginal
utility per bid ωi(∅). Then he interacts with the AI by using the OT technology in [17], thereby
receiving ω̃i,0(∅), where the subscript 0 denotes the cardinality of the current winners’ set is equal to 0,
and ω̃i,0(∅) is the rank-preserving-encrypted value of βx. Then each user i encrypts it as ei = E(ω̃i,0|ri)

by applying the platform’s Paillier encryption key Kpub and a randomly value ri. Then user i commits
ci = ETPK([ei|si|TID]), where si is a bit string randomly generated for the proof of correctness. Finally,
the user i signs the commitment ci and the encrypted value ei. Then he adds signi(ci) to the list lw

i on
the bulletin board and sends signi(ei) to platform. Receiving all users’ values signi(ei), the platform
decrypts and sorts them, thereby obtaining the user i with the maximal encrypted marginal utility
per bid. Moreover, the platform enters the following winner determination phase. The more detailed
illustration is given in Figure 4.

AI

1

Users

Commitment

Function GenBR()

ei = E(ωi,0|ri);

ci = ETPK([ei|si|TID]);

BR =signi(ei);

Post signi(ci);
BR

2

Ri = signp([ei|TID|T ]);

Post Ri,…,Rn;   

If ( ωi,0 ≥ ωP,0 )

Notice user i is a winner;

Request the AI to verify it 

with the  probability α;

If ( ωI,k+1 ≥ ωp,k+1 )

Return the winners’ set S;

Verify the payment correctness 

according to the infomation on 

the bulletin board; 

Initialization

Compute ωp,i  by using the 

MPEP  and OT methods;  

Auction details

Platform

Decommitment for verfication

Notice i

…

4
5 6 Run payment  algorithm; 

$$

ωp,i

ωp,i3

7
8

Figure 4. Our privacy-preserving verifiable framework for submodular jobs.

(a) Winner Determination: Firstly, the platform applies the homomorphic encryption scheme to
compute the utility U(S ∪ {i}) according to Algorithm 3, thereby obtaining ωp,0 = U(S ∪ {i})/B. By
using the OT technology in [17], the platform interacts with the AI, and receives the encrypted ω̃p,0.
The platform makes a commit cp,0 = ETPK([ω̃p,0|sp|TID]), where sp is a bit string randomly generated
for the proof of correctness. Signing it, signp(cp,0), the platform adds it to the list lw

p on the bulletin
board. If ω̃i,0(∅) ≥ ω̃p,0, the platform will give user i a notice that he is a winner. Then the user returns
an acknowledgement and his encrypted Γi and bi by using the platform’s public key. Receiving the
acknowledgement, the platform adds user i to winners’ set S (see the line 5 of Algorithm 5.) and
notifies each user j ∈ U \ S to compute his encrypted marginal utility per bid, i.e., ω̃j,1, by using the
same method as the computation of ω̃i,0. These users also add their signed commitments to their
corresponding lists lw

j on the above-defined bulletin board. When the platform receives all these
ω̃j,1, it sorts them, thereby knowing which user has the maximal encrypted marginal utility per bid.
The process is repeated until the (k + 1)-th user’s ω̃i,k+1(∅) < ω̃p,k+1. Finally, we obtain the winners’
set that consists of k users.
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Algorithm 5 Winner Determination for Sensing Submodular Jobs

Input: User set U , the budget constraint B.
Output: The winners’ set S.

1: S← ∅; For every j ∈ U , the platform recovers ω̃j,0(S) by using the decryption algorithm, and sorts

all these values in a decreasing order, thereby obtaining the user i with the maximal encrypted

marginal utility per bid, i.e., i← arg maxj∈U ω̃j,0(S);
2: The platform obtains ω̃p,0(S) by using the OT technology in [17] and Algorithm 3, and adds a

signed commitment to the list lw
p on the bulletin board;

3: while ω̃i,0(∅) ≥ ω̃p,0 do

4: The platform notices that user i is a winner;
5: Receiving an acknowledgement, the platform adds user i to the winner set S, i.e., S← S ∪ {i};
6: Notify each user j ∈ U \ S to compute his encrypted marginal utility per bid, i.e., ω̃j,|S|, by using

the same method as the computation of ω̃i,0; Obtaining all these encrypted marginal utilities per

bid, the platform finds the user i so that i← arg maxj∈U\S(ω̃j,|S|(S));
7: The platform obtains ω̃p,|S|(S) by using the OT technology in [17] and Algorithm 3, and adds a

signed commitment to the list lw
p on the bulletin board;

8: end while
9: return S

(b) Payment Determination: At this stage, the encrypted values from the above OT algorithm
cannot support the preserving rank under the multiplication operation. To address this challenge, we
introduce the homomorphic encryption schemes, which enable multiplication operation of encrypted
values without disclosing privacy about the values and the computation’s result. Firstly, at time
T, for each winner i ∈ S, its payment computation from the platform is given in the following
description. The platform initializes the user set U ′ and set T by using U ′ ← U\{i} and T ← ∅.
Differentiating from the above winner set, we refer to T as a referenced winner set. Each user j ∈ U ′\T
initially computes his marginal utility Uj(∅), thereby obtaining his encrypted marginal utility per
bid ej,0 = EAI(ωj,0(∅)) by using the AI’s homomorphic encryption public key. He makes a commit
cj,0 by using the above method. Finally, user j signs this commitment cj,0 and the encrypted value
ej,0. Then he adds signj(cj,0) to the list lp

j,i on these bulletin board (meaning that the list is used to
put user j’s commitment for the computation of user i’s payment) and sends the signj(ej,0) to the
platform. Receiving the values of all users in U ′ , the platform sorts them, thereby obtaining the user ij
with the maximal encrypted marginal utility per bid (i.e., eij ,0). Then the platform notices that user
ij is a referenced winner and requests user i for obtaining the EAI(Ui(j)). After user ij receives the
request, he computes the value EAI(Ui(j)) by applying the above MPEP and AI’s encryption public key.
Signing it, he sends the signed EAI(Ui(j)) to the platform. According to the homomorphic encryption,

we have EAI(bi(j)) = EAI(Ui(j) · bij /Uij) = EAI(Ui(j) · 1/ωij) = EAI(Ui(j))
1/eij . Similarly, we can obtain

EAI(ηi(j)) = EAI(Ui(j) · B/U(Tj−1 ∪ {i})) = EAI(Ui(j) · 1/ωp,j) = EAI(Ui(j))
1/ep,j , where ep,j means

the encrypted marginal utility per bid when there are j referenced winners. Since user i is a true winner,
the platform knows his bid and sensing preference Γi. Thus, the platform can compute the value
ep,j. Receiving the value EAI(Ui(j)), the platform can obtain EAI(bi(j)) and EAI(ηi(j)). Furthermore,
the interim payment can be obtained by using the homomorphic encryption comparison operation.
Subsequently, the platform adds user ij to the referenced winners’ set. The process is repeated until the
(k
′
+ 1)-th user’s eij ,k

′+1(Tk′ ) < ep,k′+1(T ). Finally, we obtain the payment of winner i. Other winners’

payments are computed by adopting the same method as the winner i’s payment. The details are
given in Algorithm 6.
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Algorithm 6 Payment Determination for Sensing Submodular Jobs

Input: User set U , the budget constraint B, the set of winners S.
Output: (U , p).

1: for each user i ∈ U do

2: p̂i ← EAI(0);
3: end for
4: for all user i ∈ S do

5: U ′ ← U\{i}; the referenced winners’ set T ← ∅;
6: repeat

7: Every j ∈ U ′ computes his encrypted marginal utility per bid ej,|T | = EAI(ωj,|T |(T )) by using

AI’s homomorphic encryption public key for sending to the platform, and adds a signed

commitment signj(cj,|T |) to the list lp
j,i on these bulletin board; Receiving these encrypted

values, the platform sorts them in a decreasing order, thereby obtaining the user ij with the

maximal encrypted marginal utility per bid, i.e., ij ← arg maxj∈U ′\T ej,|T |(T );
8: Notice that user ij is a referenced winner and requests user i for obtaining the EAI(Ui(j));
9: According to the description of Section 5.3.2, the platform computes EAI(bij) and EAI(ηi(j))

by applying the Paillier cryptosystem and its homomorphic property in [46]; Obtain p̂i ←

max{ p̂i, min{EAI(bij), EAI(ηi(j))};
10: Tj−1 ← T ; T ← T ∪ {ij};
11: until eij ,k

′+1(Tk′ ) < ep,k′+1(T ) or T = U ′

12: The platform requests the AI for obtaining the payment, i.e., pi = DAI( p̂i), where DAI denotes

the decryption by using the AI’s private key;
13: end for
14: return (U , p)

5.3.3. Decommitment Round for Verification

Since the mechanism itself is truthful, i.e., each user always submits his true cost, we only
demonstrate that any user can check the correctness of the platform’s payment on his own.

Verification: The verification process is similar to the above description (see Figure 3). The only
difference is that three dynamic lists in the bulletin board are used to recover associated values for
the payment computation of each user. Generally speaking, some user initially sends the request
of verification to the AI with the probability α. Receiving the request, the AI runs the algorithm
description on the bulletin board by inputting the values in the three lists until the payment is obtained.
For more details of verification, we refer readers to Section 5.2.4 and Figure 3.

5.3.4. Verifiable Privacy-protection Incentive Mechanism for Sensing Submodular Jobs

In our truthful verifiable privacy-protection incentive mechanism for sensing Submodular jobs,
the platform will output a winner i’s payment. Firstly, some initial parameters are specified by the
platform. Then, the platform performs the winner’s selection and the payment determination in turn.
Once the payment is finished by the platform, user i will request AI to verify the payment correctness
of platform with the probability α. The details are illustrated in Algorithms 5–7.
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Algorithm 7 PVI-S // Privacy-Protection Verifiable Incentive Mechanism for Crowdsensing
Application with Sensing Submodular Jobs

Input: User set U , the budget constraint B.
Output: (U , p).

1: Initialize the auction information and encryption tools;
2: Choose the winners by applying the algorithm;
3: Finish the payment for each winner;
4: The user requests the AI to verify the payments with the probability α;
5: return (U , p)

6. Privacy, Verifiability and Revenue Analysis

6.1. Privacy of Users and Platform

Our mechanisms’ private information include users’ privacy and platform’s privacy, i.e.,
the sensing profile privacy of users and the current winners’ set privacy of the platform. Assume
that there are two kinds of adversaries: adversarial users and adversarial platform or AI. The specific
analysis is given as follows.

Lemma 1. The mechanisms PVI-H and PVI-S are privacy-preserving for users.

Proof. We only need to consider two cases in which the privacy of each user i may be leaked as follows.
The first case is for the adversarial platform or AI. In the two mechanisms, the platform performs the
winners’ selection, and only can know the (k + 1)-th user’s sensing profile Pk+1, but does not know
which user it belongs to. In the stage of verification, similarly, the AI also knows the (k + 1)-th user’s
sensing profile Pk+1, and does not know which user it belongs to. The AI and platform only know
the encrypted sensing profile, but have no way to decrypt any of them. No other party can obtain
even more information than the platform or AI. On the one hand, user i gets his sensing profile Pk+1
through a 1-out-of-z OT from the AI, who is unknown of which sensing profile have been accessed
by the user. User i sends the encrypted sensing profile to the AI, who cannot decrypt the encrypted
sensing profile without knowing the private key for the asymmetric encryption scheme. Even if the AI
may know the (k + 1)-th user’s sensing profile later when the platform consults him, he still cannot
infer his user owing to the random number. Thus, the AI cannot know the user of (k + 1)-th user.
Additionally, although the platform can obtain the (k + 1)-th user’s sensing profile later, he can only
reversely map the encrypted (k + 1)-th user’s sensing profile to the original (k + 1)-th user’s sensing
profile with the help of the AI. However, the platform still cannot derive the user, to which (k + 1)-th
user’s sensing profile belongs out of at least k members according to the Theorem 3.2 in [4] due to a
large number of users much larger than k existing in the crowdsensing applications. Therefore, neither
the AI, nor platform, can know any user’s sensing profile with the probability higher than 1/k, thereby
guaranteeing k-anonymity.

The second case is for an adversarial user. In the two mechanisms, an adversarial user j does not
learn side information during our mechanisms no matter he is a winner or not. All he learns from the
two mechanisms are included in the valid auction’s Output, i.e., for an adversarial user j’s advantage
advPi are all equal to 0 for all i 6= j.

Putting them together, the lemma holds.

Besides, in the following lemma, the privacy preservation performance of the platform will be
analyzed in details.

Lemma 2. For the current winners’ set S and referenced winners’ set T of the platform (the privacy of the
platform), an adversarial user j’s advantage, i.e., advS and advT , are equal to 0. In other words, the mechanisms
PVI-H and PVI-S are privacy-preserving.
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Proof. For the current winners’ set S and referenced winners’ set T , only platform and AI learn the two
sets and each user learns nothing. Since the AI is semi-honest, and only check the platform randomly,
adversarial users gain no useful information on the two sets from the communication strings. Thus, the
priori probability is same as the posterior probability, i.e., AdvS = Pr[S|C, Output]− Pr[S|Output] = 0
and AdvT = Pr[T |C, Output] − Pr[T |Output] = 0. Thus, the mechanisms PVI-H and PVI-S are
privacy-preserving for the platform. Thus, the lemma holds.

Putting these lemmas together, the following theorem will be derived.

Theorem 1. The mechanisms PVI-H and PVI-S are privacy-preserving.

6.2. Verifiable Correctness of Payments

Lemma 3. The users in the mechanisms PVI-H and PVI-S is truthful.

Proof. For the mechanism PVI-H, we can easily extend the outcome of the homogenous jobs presented
by Singer et al. [4] the proof outcome to the heterogeneous jobs. For the mechanism PVI-S according
to [6], since Algorithm PVI-S is designed based on the MSensing mechanism of [6], they have
demonstrated the truthfulness of the mechanism, our mechanism PVI-S is also truthful for users
in crowdsensing applications. Thus, the lemma holds.

Generally speaking, the verifiability issue includes the Verifiability of users’ sensing profile
and platform’s payment. From the above lemma 3, we know that users’ bid is truthful. Besides,
each user’s subset of assignments is fixed in our mechanisms. Thus, each user’s sensing profile is
truthful. Therefore, we only need to guarantee the verifiable correctness of payments from the platform.
Furthermore, we have the following lemma.

Lemma 4. The two proposed mechanisms, i.e., PVI-H and PVI-S, are correct for a rational platform.

Proof. Correctness of both PVI-H and PVI-S, follows the assumption that the platform is rational and
the paid fine is high enough when checked cheating. If his expected utility when complying with
both PVI-H and PVI-S is higher than the one from his deviation he will abide by the algorithm, as
such the proposed algorithms i.e., PVI-H and PVI-S, will be correct. We will show the probability α

that the platform’s incorrect payment will not be checked by the user with the help of the AI, set by
the two algorithms i.e., PVI-H and PVI-S, ensures that the platform’s expected utility is non-positive.
The detailed derivation is given as follows. α ≥ pmax/( f + pmax)⇒ (1− α)pmax− α f ≤ 0. Considering
the platform’s expected utility, i.e., (1− α)V+ + αV−, where V+ denotes the platform’s utility when it
gives incorrect payment but is not checked by the users, and V− denotes the platform’s utility when it
gives incorrect payment but is checked by the users [12]. Again, pmax ≥ V+ and − f = V−, according
to the outcome of the above derivation, further, we have (1− α)V+ + αV− ≤ (1− α)pmax − α f ≤ 0.
Thus, if the platform does not comply with the algorithm PVI-H, its expected utility is non-positive.
As such, for a rational platform, it is willing to abide by the rules of both PVI-H and PVI-S, and gives a
correct payment for every user. Finally, the lemma holds.

Putting these lemmas together, we have the following theorem.

Theorem 2. The mechanisms PVI-H and PVI-S are verifiable correctness of payments.

6.3. Revenue of Platform

Lemma 5. The mechanisms in Section 4 are O(1)-competitive in maximizing the revenue of the platform.

Proof. To quantify the revenue of the platform running the mechanisms in Section 4, we compare
their revenue with the optimal revenue: the obtainable revenue for the offline scenario where the
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platform has full knowledge of users’ sensing profiles. A mechanism is O(1)-competitive if the ratio
of the mechanism’s revenue to the optimal revenue is a constant factor approximation. According to
the Theorem 3.4 in [4] and Theorem 4.5 in [4], we know that the mechanisms in Section 4 are budget
feasible constant-approximation mechanisms, and no budget feasible mechanism could do better
than mechanisms of Section 4 in maximizing the homogeneous, heterogeneous sensing revenue and
submodular sensing revenue of the platform. Thus, the lemma holds.

Furthermore, different from the mechanisms in Section 4, mechanisms PVI-H and PVI-S mainly
apply the order preserving encryptions and the OT operations. However, these encryptions and
operations in mechanisms PVI-H and PVI-S do not change the allocation and payment rules of
the mechanisms in Section 4. Thus, mechanisms PVI-H and PVI-S keep the same revenue as the
mechanisms in Section 4, thereby obtaining the following theorem.

Theorem 3. The mechanisms PVI-H and PVI-S have the same revenue as the generic one without
privacy protection.

7. Performance Evaluation

In this section, the communication and computation overhead are analyzed to show our
mechanisms are both scalable and efficient. Most of the complexities are linear to the users’
number or the assignments’ number, which allows huge number of users or the number of
assignments. Meanwhile, extra data transmission and the run time introduced by our mechanisms are
almost negligible.

7.1. Simulation Setup

The two PVI mechanisms were run on a PC with 1.7 GHz CPU and 8 GB memory. Each
measurement is averaged over 100 instances. We set the order p of the integer group Zp as a
1024-bit prime number, thereby users can get 128 bits of rank-keeping encrypted value according to
the OT technology.

7.2. Performance Evaluation for the PVI-H Mechanism

7.2.1. Bulletin Board Storage Complexity

We require the bulletin board to store the auction details and dynamic lists used to store
the parameters or values accessed by the platform and AI. In each list, there are only few elements.
Thus, the storage’s complexity is θ(n), in which n is the users’ number.

7.2.2. Communication Overhead

The communication overhead based on the data transmission is illustrated in Table 2, in which
lbit is the p’s bit length (i.e., the order of the integer group Zp). A detailed explanation of the order of
the integer group Zp can be found in random numbers in sorting of [10].
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Table 2. Communication overhead of PVI-H.

Winner Selection

Send Receive ωi Computation User Sorting

Users O(lbit) O(nlbit) O(nlbit) 0
Platform O(nmlbit) O(nlbit) 0 O(n2lbit)

AI O(nlbit) O(nlbit) 0 O(n2lbit)

Payment Determination

Each winner 0 O(lbit) O(nlbit) 0
Platform O(nm2lbit) O(mlbit) 0 O(m2lbit)

AI O(mlbit) O(mlbit) 0 O(m2lbit)

Verification

Each winner O(lbit) O(lbit) 0 0
Platform O(nlbit) O(nlbit) 0 O(n2lbit)

AI O(nlbit) O(nlbit) 0 O(n2lbit)

Note that the computation of accumulated assignments in the winner determination phase is
executed until the platform finds the largest k so that bi ≤ B/∑j≤i tj holds. Based on random numbers’
sorting of [10], finding the order of the integer group Zp of bit length lbit needs O(lbit). Thus, the
average communication rounds for the platform should be much less than O(mn) (m is the number of
different assignments), which means that the real communication overhead will be much less than
the worst case O(mnlbit). In this stage, each user only sends the sensing data to the platform and AI,
therefore the sending overhead of each user is O(lbit). However, the receiving overhead of each user is
O(nlbit). It is because each user needs to receive the information from all user.

For the overhead in the payment determination, according to Algorithm 4, the sending overhead
of the platform takes O(nm2lbit) time. However, the receiving overhead of the platform takes O(mlbit)

time. It is because it only need receiving at most m assignments from winners.
For the overhead of verification, both the sending and receiving overheads are O(lbit). It is because

the verification is executed only from some user. According to Section 5.2.4, the verification sending
and receiving overheads of both the platform and AI are O(nlbit). It is because they send and receive
n commitments.

Since the verification from the AI does not need the communication for the computation of
accumulated assignments, it only requires information from the existing bulletin board. Thus their
communication overhead is negligible. Figure 5 indicates that the overall communication overhead
induced by Algorithm PVI-H. Obviously, the communication overhead is mainly from the OT.
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Figure 5. Communication overhead of PVI-H with different budgets.

7.2.3. Computation Overhead

Since for the winner selection, the payment determination and verification, each user only
needs to do the computation operations of constant times. Thus, the computation overhead of users
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is O(1). For the platform, according to Algorithm 4, in the winner selection stage, the while-loop
(lines 3–11) of Algorithm 4 takes O(nm2). In the payment determination stage, the for-loop (lines 12–20)
of Algorithm 4 takes O(nm3). In the verification stage, since the platform need not to make the
computation operation. Hence, we can derive the computation overhead given in Table 3. Finally, the
AI only needs to do small works for the winner selection and payment determination, therefore the
overhead in the two stages is O(1). The overhead’s analysis of the verification stage of the AI is similar
to the one of the payment determination stage of the platform, so its overhead is O(nm3).

Put these together, the detailed overhead of the computation is illustrated in Table 3.

Table 3. Computation overhead of PVI-H.

Winner Selection Payment Determination Verification

Users O(1) O(1) O(1)
Platform O(nm2) O(nm3) 0

AI O(1) O(1) O(nm3)

The PVI-H mechanism consists of the winner selection phase and the payment determination
phase. The winner selection phase mainly includes the OT, the sorting, the blind signature generation
and the computation of accumulated assignments; the payment determination phase mainly includes
the payment calculation of the platform. Compared with the above parts, since verifying the payment
are run on the bulletin board, we can neglect the computation overhead of the verification. Next,
we will in turn estimate their run time.

In the PVI-H mechanism, the signer’s run time is 19 ms, while the runtime of one pair of the
Nyberg-Rueppel blindly signature is 11 µs(microseconds) on average.

The computation overhead of the sorting and OT, and the effects of different budget constraints
for each winner are similar to our previous work in [17]. Thus, under the same conditions with [17],
a single computation requires 0.4µs on average in the same conditions as [17], thereby the computation
overhead is very small. Similarly, the run time of the calculation of accumulated assignments and
payment for various number of assignments and payment is almost negligible.

7.3. Performance Evaluation for the PVI-S Mechanism

7.3.1. Bulletin Board Storage Complexity

We require the bulletin board to store the auction details and three dynamic lists of each user used
to store the values accessed by the AI. In each list, there are only few elements. Thus, the storage’s
complexity is θ(n).

7.3.2. Communication Overhead

The communication overhead in terms of transmitted bits is illustrated in Table 4.
The communication overhead analysis is similar to Section 7.2.2. The only difference is the difference
between Algorithms 4 and 6. Note that the marginal-utility-per-bid computation in the winner selection
and payment determination is executed until the platform and AI finish the winner selection and
the payment determination. Because there are m different assignments, and each winner should at
least contribute one new assignment to be chosen, the winners’ number in the payment determination
phase is at most m. Thus, the average communication rounds for the platform should be much less
than O(m2), which means the practical communication overhead will be much less than the worst
case O(m2). Besides, the MPEP’s introduction for the marginal-utility-per-bid computation, makes the
communication overhead of each user different with the PVI-H mechanism (see Table 4).
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Table 4. Communication overhead of PVI-S.

Winner Selection

Send Receive ωi Computation User Sorting

Users O(lbit ln n) O(lbit ln n) O(lbitn) 0
Platform O(nmlbit) O(nlbit) 0 O(n2lbit)

AI O(nlbit) O(nlbit) 0 O(n2lbit)

Payment Determination

Each winner 0 O(lbit) O(nlbit) 0
Platform O(m2lbit) O(mlbit) 0 O(m2lbit)

AI O(mlbit) O(mlbit) 0 O(m2lbit)

Verification

Each winner O(lbit) O(lbit) 0 0
Platform O(nlbit) O(nlbit) 0 O(n2lbit)

AI O(nlbit) O(nlbit) 0 O(n2lbit)

7.3.3. Computation Overhead

The computation overhead analysis is similar to Section 7.2.3. Hence, the overhead of the
computation is illustrated in Table 5.

Table 5. Computation overhead of PVI-S.

Winner Selection Payment Determination Verification

Users O(1) O(1) O(1)
Platform O(nm2) O(nm3) 0

AI O(1) O(1) O(nm3)

In general, the PVI-S mechanism consists of the winner selection phase, the payment
determination phase, and the verification phase. The winner selection phase includes users’ blind
signature, the sorting of the platform and the computation of marginal utility per bid. The payment
determination phase includes the sorting of the platform and the computation of marginal utility per
bid. In the verification phase, compared with the above parts, since verifying the payment are run on
the bulletin board, we can neglect the computation overhead of the verification. Now, their run times
are analyzed respectively.

(a) Sorting, OT and Blind Signature: The PVI-S mechanism’s run time of a pair of the
Nyberg-Rueppel signature including the AI, platform and users is 28 milliseconds on average. Further,
we also evaluated the run time of the OT and the final sorting based on the encrypted values. We
observed that the computation overhead of the signature is negligible when compared with the one
of the OT and sorting. Users in the PVI-S have much less run time since they only generate the
communication strings (ciphertexts) (see Figure 6).
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(b) Computation of AI, Platform, Winners and Losers: We compared the computation overhead
of the AI, the platform, winners and losers in Figure 7 when the budget value is 2000. We observed
that the computation overhead increases with the budget constraint and at last they were kept in
a stable constant value respectively. It is because that at this moment the PVI-S mechanism reached
saturation point.

(c) Limited Budget Effect on Computation Overhead: To assess the effect of different limited
budget on computation overhead of winner i, we calculated the average computation overhead of each
winner under different budget values respectively. We noted that the overall computation overhead
had an increment with the winners’ number reached a stable value at last (see Figure 8). Computation
overhead is very small, therefore each user’s overhead induced by the PVI-S mechanism also can be
used to mobile devices.
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Figure 7. Run time of AI, the platform, losers and winners of PVI-S with the users’ number when the
budget’s value is 2000.
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Figure 8. Limited budget effect of PVI-S on the computation overhead.

8. Concluding Remarks

In this paper, we design two privacy-preserving verifiable incentive mechanisms for
crowdsensing applications. We not only handle users’ privacy protection and the platform by using
the OPES and OT, but also construct a verification scheme to ensure the payment correctness of the
platform by using the signature technology and the bulletin board. We preserve the rank of the
encrypted values by using the OPES scheme. Furthermore, we prevent bid repudiation by employing
a TLC service. No party, including the platform, receives any information about bids before the
mechanism closes, and no user is able to change or repudiate any sensing profile. Finally, we design
and analyze the two mechanisms. Results from theory analysis and experiments show that our
verifiable privacy-protection incentive mechanisms have the same results as the generic one without
privacy protection and also apply for mobile devices in crowdsensing applications. As such, they can
be extended to other truthful incentive mechanisms for real crowdsensing environments.
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In the future, we will investigate the design of truthful incentive mechanisms when the huge
amount of stream data appear in crowdsensing applications. Based on the results of this paper and
these truthful incentive mechanisms oriented to the huge amount of stream data, we will furthermore
explore the privacy-protection and verification issues of crowdsensing in the scenarios of the huge
amount of stream data.
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