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Abstract
The transverse carpal ligament (TCL) plays a critical role in carpal tunnel biomechanics

through interactions with its surrounding tissues. The purpose of this study was to investi-

gate the in vivo adaptations of the TCL’s mechanical properties in response to repetitive

hand use in pianists using acoustic radiation force impulse (ARFI) imaging. It was hypothe-

sized that pianists, in comparison to non-pianists, would have a stiffer TCL as indicated by

an increased acoustic shear wave velocity (SWV). ARFI imagining was performed for 10

female pianists and 10 female non-pianists. The median SWV values of the TCL were deter-

mined for the entire TCL, as well as for its radial and ulnar portions, rTCL and uTCL, respec-

tively. The TCL SWV was significantly increased in pianists relative to non-pianists (p <

0.05). Additionally, the increased SWV was location dependent for both pianist and non-pia-

nist groups (p < 0.05), with the rTCL having a significantly greater SWV than the uTCL.

Between groups, the rTCL SWV of pianists was 22.2% greater than that of the non-pianists

(p < 0.001). This localized increase of TCL SWV, i.e. stiffening, may be primarily attributable

to focal biomechanical interactions that occur at the radial TCL aspect where the thenar

muscles are anchored. Progressive stiffening of the TCL may become constraining to the

carpal tunnel, leading to median nerve compression in the tunnel. TCL maladaptation helps

explain why populations who repeatedly use their hands are at an increased risk of develop-

ing musculoskeletal pathologies, e.g. carpal tunnel syndrome.

Introduction
The transverse carpal ligament (TCL) is a band of collagenous tissue that constitutes the volar
aspect of the carpal tunnel within the wrist. It inserts radially onto the scaphoid tuberosity and
the ridge of the trapezium, and ulnarly onto the pisiform and the hook of the hamate. The TCL
serves important roles in carpal tunnel mechanics by anchoring the thenar and hypothenar
muscles [1, 2], functioning as a pulley for the flexor tendons [3, 4], and stabilizing the carpal
bones in the transverse direction [5–7].
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The unique anatomical configuration and biomechanical functions of the TCL may predis-
pose the ligament to adaptations in response to repetitive hand use. It is known that soft con-
nective tissues, including ligaments, remodel under mechanical loading conditions resulting in
changes in their compositional and mechanical properties [8]. TCL remodeling may impose
undesirable mechanical constraints on the carpal tunnel structure and its contents leading to
pathological conditions implicating the median nerve, e.g. carpal tunnel syndrome (CTS). CTS
is the most common upper limb entrapment neuropathy and has an increased incidence asso-
ciated with repetitive hand use [9–11]. Adaptations of the TCL have been proposed as one of
the possible etiological factors of CTS [12–15] and previous studies have anecdotally reported
that CTS patients exhibit hypertrophy or stiffening of the TCL [13, 14]. However, the bio-
mechanical changes of the TCL associated with repetitive hand use remain unclear and further
investigation into such changes may elucidate the etiology of CTS, as well as contribute to
understanding its prevention and progression.

Ultrasound imaging has been used as a clinical and research tool to provide noninvasive
assessment of morphological and mechanical properties of soft tissues, including those of the
TCL. For example, the TCL dimensions have been examined by A-mode [16] and B-mode [17]
ultrasound imaging. Mechanical properties of the TCL have been studied using sonoelastogra-
phy, which showed elevated TCL stiffness in patients with CTS [18]. Also, acoustic radiation
force impulse (ARFI) imaging, a type of sonoelastography, has been used to assess the stiffness
characteristics of the TCL in healthy individuals [19].

The purpose of this study was to examine the in vivomechanical properties of the TCL asso-
ciated with repetitive hand use using ARFI imaging. Pianists were selected as a model popula-
tion because of their intensive piano playing involving the hands and the high incidence of
musculoskeletal disorders (e.g. CTS [20, 21]). Playing piano generates biomechanical interac-
tions among the TCL, thenar muscles, and flexor tendons, potentially inducing tissue maladap-
tations. It was hypothesized that pianists would exhibit a stiffer TCL than non-pianists.
Furthermore, it was hypothesized that the increase in tissue stiffness would be location depen-
dent, occurring at the radial aspect of the TCL where the thenar muscles responsible for thumb
motion and strength are attached to the ligament.

Methods

Human Subjects
Twenty healthy, right handed female volunteers participated in this study. Ten of the partici-
pants were pianists (20.4 ± 1.6 years; BMI 22.5 ± 3.6 kg/m2) who practiced piano at least 10
hours per week for a minimum of 8 years (18.6 ± 14.9 hours per week for 12.8 ± 2.9 years). The
remaining ten participants served as a control group (23.8 ± 3.4 years; BMI 20.5 ± 1.8 kg/m2)
and were non-pianists. There were no statistical differences between the two groups in terms of
phone texting (p = 0.423) and computer keyboarding (p = 0.165) based on their report of gen-
eral, daily hand use. Exclusion criteria for the study included any history of upper extremity
disorders or peripheral nervous system pathologies. The experimental protocol was approved
by the Cleveland Clinic’s Institutional Review Board and each subject provided written,
informed consent prior to study participation.

Experimental Protocol
Each participant sat next to a testing table with the hand and wrist stabilized in a supine,
anatomically neutral position within a thermoplastic splint. The fingers, in full extension, and
the thumb, abducted 0° palmarly and 45° radially, were secured with Velcro1 straps. The
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stabilized hand and wrist were then submerged in a tank of room temperature water with the
shoulder abducted 30° and the elbow flexed 90° (Fig 1).

ARFI imaging of the TCL was performed to measure shear wave velocity (SWV) using an
ultrasound system equipped with Virtual TouchTM Tissue IQ software (AcusonS2000, Siemens
Medical Solutions USA, Inc., Mountain View, CA). A 9L4 linear array ultrasound transducer
(Siemens Medical Solutions USA, Inc., Mountain View, CA) was used for image capture. The
depth of the ultrasound image was set to 4.5 cm and the transducer was operated at an imaging
frequency of 8 MHz.

A distance of 1.0 cm between the ultrasound transducer and the volar surface of the wrist
was maintained to provide a water interface for ultrasound imaging that eliminated contact
between the ultrasound transducer and the hand during experimentation. For each subject,
image acquisition included simultaneously capturing a set of B-mode and ARFI ultrasound
images that were displayed in a split screen format. The ultrasound transducer was oriented
perpendicularly to the palm of the subject to capture transverse images at the distal level of the
carpal tunnel. This location allowed for imaging of the TCL at its two distal osseous attachment
points (ridge of the trapezium and hook of the hamate) along with the thenar muscles’ ulnar
point (TUP). The TUP, which is the most ulnar aspect of the thenar muscles attachment to the
TCL, is a unique anatomical feature that can be consistently identified on ultrasound images
[17]. Four sets of images were captured and a single operator performed all imaging (CM). The
transducer’s location and orientation were maintained throughout the experiment using a
positioning arm. This protocol was implemented for the right and left hands of each subject.

Fig 1. Experimental setup for acoustic radiation force impulse (ARFI) imaging of the transverse carpal ligament (TCL).Reprinted under a CC BY
license, with permission from the Hand Research Laboratory at Cleveland Clinic, original copyright 2016.

doi:10.1371/journal.pone.0150174.g001
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Data Analysis
A customMATLAB (The Mathworks, Natick, MA, USA) program was used to complete data
analysis. First, the TCL was manually traced on the B-mode image side. Then, this tracing was
translated by the program to the ARFI image side (Fig 2). The SWV was calculated at each
pixel within the TCL tracing, where the grayscale value (0–255) of each pixel in the ARFI
image corresponded to a SWV value of up to 15.0 m/s. Within the TCL selection, the median
SWV value was determined.

For further analysis, the TCL was divided into radial and ulnar portions at the TUP, i.e.
rTCL and uTCL, respectively. The rTCL was defined as the region from the TUP towards the
ridge of the trapezium, and the uTCL was the region from the TUP towards the hook of the
hamate. The median SWVs for the rTCL and uTCL regions were also determined. Addition-
ally, the ratio of the SWV of the rTCL to that of the uTCL was calculated.

Statistical Analysis
A t-test was performed to compare the median SWV of the left and right hands of each subject.
No differences were found between both hands, so the data was averaged across hands for each
subject. An unpaired t-test was performed for group comparison of the SWV derived from the
entire TCL without regional division. A mixed model, two-way repeated measures ANOVA
was performed to investigate regional differences in SWV values using a between-subject
group factor (pianist and non-pianist) and within-subject side factor (rTCL and uTCL). Post-
hoc Tukey’s tests were used for all pairwise comparisons. All statistical tests were completed
using SigmaStat 3.5 (Systat Software Inc, San Jose, CA, USA) with an alpha level of 0.05.

Results
ARFI imaging revealed differences in the SWV of the TCL between pianists and non-pianists.
Specifically, the SWV of the TCL was 10.2% greater for the pianist group than that for the con-
trol group with values of 5.52 ± 0.46 m/s and 5.01 ± 0.58 m/s, respectively (p< 0.05).

Fig 2. A representative ultrasound image with the TCL outlined on both the B-mode side (left) and ARFI side (right). The hamate (H), trapezium (T),
and thenar muscles’ ulnar point (TUP,*) are identified. The vertical line at the TUP represents the location where the TCL was divided into radial and ulnar
portions. Reprinted under a CC BY license, with permission from the Hand Research Laboratory at Cleveland Clinic, original copyright 2016.

doi:10.1371/journal.pone.0150174.g002
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Further analysis revealed that the SWV was significantly affected by factors of side
(p< 0.001) and group (p< 0.05, Fig 3). There was also a significant interaction between the
side and group factors (p< 0.01). Within the pianist group, the SWV of the rTCL (6.09 ± 0.63
m/s) was 25.8% greater than that of the uTCL (4.84 ± 0.38 m/s, p< 0.001). Similarly, there was
a statistical difference between the SWV of the rTCL (4.99 ± 0.82 m/s) and the uTCL
(4.52 ± 0.59 m/s) for the non-pianist group (p< 0.05).

Group comparisons showed that the SWV of the rTCL for the pianists was 22.2% greater
than that for the non-pianists (p< 0.001), but the SWV of the uTCL was not significantly dif-
ferent between the two groups (p = 0.269). The SWV ratio of the rTCL to the uTCL for the pia-
nist group (1.26 ± 0.14 m/s) was significantly greater than that for the non-pianist group
(1.10 ± 0.10 m/s; p< 0.01).

Discussion
ARFI imaging permitted in vivo quantification of the mechanical properties of the TCL by
measuring the ligament’s SWV because a tissue’s SWV is positively correlated with the stiffness

Fig 3. The shear wave velocities (SWVs) for the ulnar TCL (uTCL) and radial TCL (rTCL) in pianists and non-pianists. * p < 0.05, *** p < 0.001

doi:10.1371/journal.pone.0150174.g003
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of the tissue [22]. The results confirmed the hypothesis that pianists have a stiffer TCL than
non-pianists as indicated by a higher SWV. The stiffness changes in the TCL may be associated
with the biomechanical interactions between the ligament and its surrounding tissues that
occur during hand use. Further analyses also confirmed the hypothesis that the change in tissue
property was location dependent, occurring only in the radial portion of the TCL but not in the
ulnar portion.

Among many populations that partake in occupational and recreational activities involving
repetitive hand use, pianists were chosen as a model for the study of tissue adaption due to the
demanding biomechanical actions and tendon-TCL-muscle interactions associated with piano
playing. The finding from this study that pianists have a stiffer TCL than non-pianists may
help to explain the prevalence of CTS in pianists. Pianists are known to be at increased risk of
developing CTS [20, 21], and the symptoms may be further exacerbated by playing-related
technical faults, over practicing of parallel octaves, and exerting excessive pressure on the keys
[23]. In the current study, it was found that even young, healthy pianists exhibited TCL adapta-
tions, and it is possible that continued repetitive hand use may potentially result in tissue mal-
adaptations and pathomechanical changes of the ligament leading to CTS.

Repetitive interactions between the TCL and its surrounding tissues may contribute to the
changes in the ligament’s stiffness as found in the current study. During hand use, the TCL
interacts with the flexor tendons located at its dorsal aspect and with the thenar and hypothe-
nar muscles at its volar aspect. Although both groups showed that the stiffness of the rTCL was
greater than that of the uTCL, the regional difference between the rTCL and uTCL was more
noticeable for the pianists. The elevated stiffness on the rTCL for pianists may be attributed to
increased biomechanical interactions of the thumb’s thenar muscles with the TCL associated
with repetitive piano playing. It has been shown that 68% of the thenar muscles originate from
the TCL [1], with the origin site on the radial aspect of the ligament. Therefore, thumb use with
its associated thenar muscles contractions result in muscle-TCL interactions. Indeed, one of
our previous studies revealed the biomechanical interaction among the TCL and thenar mus-
cles during an isometric tip pinch and demonstrated that the TCL was pulled volarly with
increasing magnitude as pinch force increased [24]. The action of piano playing involves repet-
itive abduction of the thumb for forceful depression of piano keys, which requires contraction
of the thenar muscles. This increased focal biomechanical interaction between the muscles and
TCL helps explain the location specific increase in SWV occurring at the radial portion of the
TCL in pianists in comparison to non-pianists.

The results of this study should be interpreted with the consideration that only female sub-
jects participated. Future studies may investigate if the findings in the current study are appli-
cable to the male population. We expect that the biomechanical interactions among the
anatomical structures and corresponding tissue adaptation take place regardless of gender.
Another limitation is that the pianists who participated in this study had relatively large vari-
ability in weekly playing time as semiprofessional pianists, although their years of playing expe-
rience were similar. Even with the variation in playing hours, we were able to detect the tissue
adaptation resulting from the repetitive hand activities. Future studies can be designed by
including more homogenous pianist groups to investigate tissue adaptation in a dosage depen-
dent manner.

In summary, ARFI imaging was used as a non-invasive tool to investigate the adaptations of
the TCL associated with the repetitive hand use of piano playing. It was found that, in compari-
son to non-pianists, piano players have an increased SWV of the TCL, i.e. increased ligament
stiffness. The stiffness of rTCL was greater than that of uTCL for both groups. However, the
amount of difference between the rTCL and uTCL regions was greater for the pianists. This
stiffening of the TCL may be primarily attributable to the biomechanical interactions that
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occur between the TCL and thenar muscles. Progressive stiffening of the TCL may become
pathological, which provides an explanation for why populations who repeatedly use their
hands have an increased incidence of CTS.

Supporting Information
S1 File. Subject-specific information and shear wave velocity (SWV) of the TCL are pro-
vided for non-pianists (Table A) and pianists (Table B) that underlie the main findings in
this study.
(XLSX)
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