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High-fidelity single-shot readout of single electron
spin in diamond with spin-to-charge conversion

Qi Zhang 1234 Yuhang Guo 1234 Wentao Ji® 1234, Mengaqi Wang1'2'3, Jun Yin23, Fei Kong 123
Yiheng Lin"23, Chunming Yin® 23, Fazhan Shi® 23, Ya Wang® 23 & Jiangfeng Du® 23

High fidelity single-shot readout of qubits is a crucial component for fault-tolerant quantum
computing and scalable quantum networks. In recent years, the nitrogen-vacancy (NV)
center in diamond has risen as a leading platform for the above applications. The current
single-shot readout of the NV electron spin relies on resonance fluorescence method at
cryogenic temperature. However, the spin-flip process interrupts the optical cycling transi-
tion, therefore, limits the readout fidelity. Here, we introduce a spin-to-charge conversion
method assisted by near-infrared (NIR) light to suppress the spin-flip error. This method
leverages high spin-selectivity of cryogenic resonance excitation and flexibility of photo-
ionization. We achieve an overall fidelity > 95% for the single-shot readout of an NV center
electron spin in the presence of high strain and fast spin-flip process. With further
improvements, this technique has the potential to achieve spin readout fidelity exceeding the
fault-tolerant threshold, and may also find applications on integrated optoelectronic devices.
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esonance fluorescence method has become a commonly

used method to achieve the single-shot readout of various

solid-state spins such as quantum dot!2, rare-earth ions in
crystals>#, silicon-vacancy center>®, and nitrogen-vacancy (NV)
center’ in diamond. Under spin-selective excitation of optical
cycling transition, the spin state is inferred according to collected
spin-dependent fluorescence photon counts. However, the
accompanying spin non-conservation processes usually limit the
optical readout window for photon collection and induce the spin
state flip error. This effect has become a significant obstacle for
achieving high-fidelity single-shot readout, in particular, to
exceed the fault-tolerant threshold-12.

A powerful method to suppress this effect is to explore optical
structures for the emitters. The microstructure, such as a solid-
state immersion lens, is widely used to enhance the fluorescence
collection efficiency”-13-16, High-quality nano-cavities strongly
coupled to these quantum emitters could even enhance the
photon emission rate by orders of magnitude3-°. Despite these
significant achievements, the practical application of such a high-
quality cavity remains technically challenging. Extensive engi-
neering works are required to obtain the high-quality cavity, place
the emitter into the optimal cavity position, and tune the fre-
quency on-demand. Besides, the fabrication process introduces
unwanted strain and surface defects!”, which may degrade the
spin and optical properties”.

Here, we demonstrate a new method to achieve a single-shot
readout of NV center electron spin by combing a spin-selective
photoionization process. The spin state is on-demand converted
into charge state before the spin-flip relaxation becomes sig-
nificant (Fig. la, b). Then the charge state is measured with near
unity fidelity thanks to their stability under optical illumination.
The essence of this approach is to enhance the ratio of ionization
rate (I'yp,) to the spin-flip rate (T'g;p).

a Spin

spin to charge conversion b

NIR (1064 nm)

ionization
rion

l-‘ion

Results
The experiments are performed on a bulk NV center inside a solid
immersion lens at a cryogenic temperature of 8 K. The measure-
ment scheme utilizes the cycling transition E, that connects
excited and ground states with spin projection mg=0 (Fig. 1a),
and the E;, transition connecting states with spin projection
mg=+1. The corresponding optical transitions is shown in
Fig. 1c. The fabrication of the solid immersion lens introduced
non-axial strain § = 5.9 GHz to the NV center used. Therefore, a
spin-flip rate I'g;, of 0.75+0.02 MHz is observed (Fig. 1d), much
faster than previously reported 0.2 MHz with low strains’. Under
selective excitation of Ey, spin state |0) could be pumped to the
excited state, and be further ionized to charge state NV? under
another NIR laser excitation (1064 nm, Fig. 1a). In contrast, |+1)
will not be excited and stay at charge state NV~. Such a deter-
ministic SCC differs from previous work using non-resonant
excitation to enhance the readout efficiency of NV center!8-23,
To verify the photoionization process, we first characterize the
charge state readout. Under simultaneous excitation of E, and E; ,
transitions, NV~ emits photons regardless of the spin state, while
leaving NV? in the unexcited dark state. The charge state can thus
be determined from the detected photon number during the
integration window. We evaluate the charge readout fidelity by
measuring the correlation between two consecutive readouts
(Fig. 2a). The correlation results with an integration window of
500 ps is shown in Fig. 2b and the statistical distribution of the
photon number is shown in Fig. 2c. As expected, the NV~ state is
distinguishable from the NV? state according to the photon
counts (Fig. 2c). More importantly, a strong positive correlation is
observed, except for six anti-correlation cases. And all these anti-
correlation cases (circles in Fig. 2b) come from initial NV~
transforming to NVO. This indicates a unity readout fidelity for
NVO state and 99.92 +0.03% readout fidelity for NV~ state. To
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Fig. 1 Single-shot readout scheme based on SCC. a Energy levels used to achieve SCC. Qubit is encoded in the ground state |0) and |1), and the

|=1) = |AUX) state acts as the auxiliary level. The magnetic field of 585 G aligned to NV axis lifts the degeneracy between |—1) and |+1). Note that the
magnitude and direction of the magnetic field used here is not special. The coherent manipulation between |0) and |+1) can be realized by resonant
microwave, labeled by blue arrows. E/(E;,) corresponds to the optical transition of the ms =0 (ms = £1) state. The counts rate is proportional to the
excited state emission rate and the fluorescence photon collection efficiency. The key part of SCC is to ionize (dark red arrow) the excited states of mg =0
before it substantially relaxes to the ground |+1) states through the spin-flip relaxation process (gray dashed arrow). CB is the conduction band of diamond
and VB the valance band. T, denotes the ionize rate, and I'y;, denotes the spin-flip rate from the E, excited state to the ground |+1) states. A more detailed
model is in Supplementary information (SI). b A schematic diagram of SCC readout. Under the illumination of 637 nm laser, NV~ keeps fluorescing stably
for a long time, while NV is not excited. ¢ The excitation spectrum of the NV center used here at cryogenic temperature of 8 K. Frequency is given relative
to 470.4675 THz (637.2225 nm). The non-axial strain (6) induces a splitting of 26 = 11.8 GHz between E, and E, transitions“®. d Spin-flip process induces
the photoluminescence (PL) decay under E, excitation (5.7 nW, saturation power ~13 nW) with NV initially prepared in |0). At the final equilibrium of PL
decay curve, the NV spin is pumped into |+1). The solid line is the simulation according to the model described in SI, with the best-fitted spin-flip rate I'y;, =
0.75+0.02 MHz. Inset: PL decay for NV initialized to |+1) under E;, excitation (4.2 nW, saturation power ~ 34 nW). From the PL decay curves, the spin
initialization fidelity is estimated to be 99.7 £ 0.1% for |+1) subspace and 99.8 £ 0.1% for |0) (SI).
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Fig. 2 Non-demolition readout of charge state and ionization rate of NIR light. a Pulse sequence for the charge readout fidelity evaluation. A 3 ps pulse of
532 nm laser reset the population of NV~ to be 78%, according the results in (b) and (c). Both of the two charge readings use an integration window
of 500 ps. b The correlation between the two consecutive charge readouts. A total of 10,000 tests are performed. Among them there are 7771 cases of
(NV—, NV™), 6 cases of (NV—, NVO0), 2223 cases of (NVO, NVO), and O cases of (NVO, NV ). The orange circles mark the cases with anti-correlation. The
charge state is judged to be NVO when the collected photon number <11. The dashed gray lines mark the threshold (the same for €). ¢ The photon number
distribution of NVO and NV~. The charge readout fidelity Feharge = 99.96%. d The lifetime of the charge state of NV~ under £, + £, (6 +5nW)

illumination, 400.7 £ 9.7 ms. e Pulse sequence for measuring the ionization rate under simultaneous illumination of £, and NIR light. f The ionization curves
of NV~ at different powers of 1064 nm. The solid lines are simulations based on different ionization rates. g The dependence of the NIR ionization rate on
its power. The solid line is a linear fit to the data points, with a coefficient of 67.0 £ 6.7 kHz/mW. The three arrows correspond to the three ionization

curves shown in (f).

understand the tiny readout imperfection for NV~ state, we
measure its lifetime under the continuous optical readout
sequence. As shown in Fig. 2d, one observes a lifetime of 400.7 +
9.7 ms for NV~ state, which causes a charge conversion error of
0.12% during the charge state readout, comparable to the
observed imperfection. The average non-demolition charge
readout fidelity is 99.96 + 0.02%.

With the non-demolition charge readout, we investigate the
ionization by various NIR illumination. We first initialize the
charge state to NV~ by a 532 nm laser pulse and measurement-
based charge state post-selection. Then a 20ps pulse of E,,
initializes the spin to state |0). After the charge and spin initi-
alization, the SCC process is applied, followed by a charge state
readout (Fig. 2e). In contrast to the long charge lifetime of 400.7
ms observed in the absence of NIR laser (Fig. 2d), the NV~
population decays fast on the timescale of microseconds after
simultaneous illumination of E, and NIR light (Fig. 2f). However,
the NV~ population saturation level does not reach at 0, indi-
cating that in some cases |0) goes through the spin-flip process
and gets trapped in |+1), which does not ionize. As the NIR
power increases, the NV~ population decay faster and saturates at
lower levels. To estimate the ionization rate T},,, we develop an
extensive model including a more complicated energy structure as
described in Supplementary information. The model uses

independently measured quantities and one free parameter I';,,, to
fit the data shown in Fig. 2f. The extracted ionization rate is
proportional to the NIR laser power (Fig. 2g). This indicates that
the NV center is most likely to be ionized from the excited state
by absorbing a single 1064 nm photon. The obtained coefficient
of 67.0+6.7kHz/mW is much lower than the 1.2 +0.33 MHz/
mW previously estimated at room temperature?4, which requires
further study in the future.

The highest Ty, obtained is 2.79 £+ 0.08 MHz, only 3.7 times of
Tgip = 0.75+0.02 MHz. One limitation is the output power of
current CW NIR laser. The other is the high loss of laser power
density on NV center due to transmission reduction and chro-
matic aberration of the objective. The resulting single-shot fidelity
is 89.1+£0.2% (blue line in Fig. 3c). To improve the conversion
efficiency (|0) — NV9) under current conditions, we consider a
correction scheme by utilizing the auxiliary level mg= —1. As
shown in Fig. 3a, the leakage population from |0) to the AUX
state, is transferred back to |0) state through an MW yux7 pulse.
With this correction, the |0) is converted into NV© with higher
efficiency, while conversion of state |1) is not affected (Fig. 3b).
The resulting single-shot fidelity is shown in Fig. 3c. With about
10 ps SCC duration, the average fidelity reaches its maximum of
Fog=1/2 (Fg) + Fj;) = 954+0.2 %. The corresponding his-
togram is given in Fig. 3d. We also compare the SCC method with
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dependence on E, illumination time for different readout methods. In SCC methods E, illumination time equals the SCC duration, and in resonance
fluorescence method it equals the read window. Blue and orange solid lines are the average of the corresponding lines in (b). The yellow line is an
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the resonance fluorescence method for the single-shot readout.
Due to the sizeable spin-flip rate, the optimal average fidelity with
resonance fluorescence method is 79.6 £ 0.8% (Fig. 3¢, d), much
lower than previous reports with low-strain NV centers”1415:25,

Discussion

The main limiting factor for our single-shot readout fidelity is the
SCC efficiency. It depends on both the ionization rate and the
spin-flip rate. Figure 4a shows the simulation results using our
model (Supplementary information). The larger ratio I'ion/Tqyp is,
the higher efficiency could be achieved. In practice, I'g;, has a

4

lower bound solely determined by the intrinsic property of NV
center. In contrast, I, is convenient to increase by using high
power NIR laser and good transmission objective. For a lower
Fgip ~ 0.2 MHz’, a modest NIR power >1W on the diamond
could achieve an average single-shot readout fidelity exceeding
99.9% (Fig. 4b), meeting the requirement for fault-tolerant
quantum computing and networks®26-29,

SCC readout is a demolition method for electron spins. Pro-
jective readout is still feasible for nuclear spins weakly coupled to
the NV center, as their polarization is more robust to the per-
turbation from optical pumping and ionization30-32. The SCC
scheme also has the potential for applications on integrated
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quantum devices33-37, At present, the photoelectric detection of
single NV centers relies on measuring photocurrent from mul-
tiple ionizations’. The deterministic SCC opens the possibility
for achieving optoelectronic single-shot readout of solid spins,
potentially utilizing the single-electron transistor as charge
reading head3®3%. Another promising application of single-shot
SCC is high-efficiency quantum sensing as discussed in a recent
work?0. Because most of the bio-molecules are rarely affected by
the NIR light, the NIR-assisted SCC demonstrated here is helpful
to avoid photo-damage on the bio-samples*!-44,

In summary, we demonstrate a NIR-assisted SCC method for
the singe-shot readout of electron spin with fidelity of 95.4%.
Different from previous methods which requires careful engi-
neering to improve the emission rate and photon collection
efficiency, our method only need an additional NIR beam. By
directly controlling the NIR power, the above calculations suggest
that the NIR-assisted SCC is an experimentally feasible approach
toward spin readout exceeding the fault-tolerant threshold.

We would like to note®0, which makes use of a similar scheme
to achieve single-shot readout with poor optics, using visible,
rather than infrared light.

Data availability

All data needed to evaluate the conclusions in the paper are present in the paper and/or
the Supplementary information. Additional data related to this paper may be requested
from the authors.
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