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Adult skeletal muscle is a postmitotic tissue with an enormous capacity to regenerate upon injury.This is accomplished by resident
stem cells, named satellite cells, which were identified more than 50 years ago. Since their discovery, many researchers have been
concentrating efforts to answer questions about their origin and role in muscle development, the way they contribute to muscle
regeneration, and their potential to cell-based therapies. Satellite cells are maintained in a quiescent state and upon requirement
are activated, proliferating, and fusing with other cells to form or repair myofibers. In addition, they are able to self-renew and
replenish the stem pool. Every phase of satellite cell activity is highly regulated and orchestrated by many molecules and signaling
pathways; the elucidation of players and mechanisms involved in satellite cell biology is of extreme importance, being the first step
to expose the crucial points that could bemodulated to extract the optimal response from these cells in therapeutic strategies. Here,
we review the basic aspects about satellite cells biology and briefly discuss recent findings about therapeutic attempts, trying to raise
questions about how basic biology could provide a solid scaffold to more successful use of these cells in clinics.

1. Introduction

Skeletal muscle is a postmitotic tissue that has a high
regenerative potential. This feature is mainly due to satellite
cells (SCs), which form a reservoir of precursor cells that are
responsible for its after-birth growth and also for the response
to injuries, either by exercise or by disease [1]. Their amounts
in the adult muscle could vary between 3 and 11% of the
myonuclei, depending upon which species are being ana-
lyzed. Inmice, the amount of SCs drops from 32% in neonates
to 5% in adults [2, 3]. These cells are strictly associated with
the sarcolemma, residing between the membrane and the
basal lamina [4], becoming associated with the muscle fiber
before the formation of its surrounding lamina [3].

These cells are easily identified by their location and
morphology. However, efficient ways to obtain these cells
involve the use of several markers that characterize this cell
type, the transcription factor Pax7 being themost remarkable
one [5]. Even though they arewell studied and recognized, the
SC population is highly heterogeneous [6].

Although quiescent in normal adult muscles, these cells
can be activated by specific signals when a muscle injury
occurs. Upon activation these cells undergo asymmetric
division, bywhich they could formcells that either are capable
of self-renewing or can enter the myogenic pathway and
differentiate to restore the muscle [7–9]. Nonetheless, in dis-
eases characterized by relentless degeneration, like muscular
dystrophies, the satellite cells are constantly activated, which
eventually leads to depletion of the SC pool and consequent
failure of the regeneration process [10]. Currently, there is
no effective treatment for muscle degenerative diseases; thus,
many researchers are focusing on stem cell-based therapies.
However, to date, most attempts are limited to animal models
and former clinical trials have failed.

In this review, we summarize recent findings about the
basic biology of muscle-specific stem cells and discuss pos-
sible new avenues to more effective and feasible therapeutic
approaches to muscle wasting disorders, mainly muscular
dystrophies.
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2. Origin of Satellite Cells in
the Muscle Development

In the embryo, mesoderm structures called somites are
formed and skeletal muscles are derived from a specific
region, the dermomyotome [11]. In this step the first muscle
fibers are formed and additional fibers are added afterwards
using the former as a template [12, 13]. In the final period of
embryogenesis, muscle progenitors start to proliferate vastly
until they arrive in a state in which the number of nuclei is
maintained and the synthesis of myofibrillar protein hits its
peak [14]. The muscle then reaches a mature state with its
residing progenitor cells, the SCs, acquiring a quiescent state
in this tissue [11].

In somites, the high concentrations of FGF and Wnt in
the caudal area lead to formation of mesenchymal cells in
an undifferentiated state and this pathway also involves the
control by Notch [15]. Then, the most dorsal part forms the
dermomyotome, which will give rise to the majority of skele-
tal muscles. Cells of this compartment have high expression
of the factors Pax3 and Pax7 and a low expression of the
myogenic regulatorMyf5 [16–18]. Afterwards, thematuration
of a dermomyotome piece will form the myotome, which is
characterized by the expression of MyoD and Myf5 [18–20].
Muscle progenitors subsequently intercalate into the primary
myotome, and these will originate a fraction of the SCs that
resides within the postnatal skeletal muscle [21–24].

SCs are known to participate in adult muscle regener-
ation, and many similarities have been described between
this process and the embryonic myogenesis, as relating SCs
to progenitors of somatic origin [21–23, 25] (Figure 1(a)).
It is also important to notice that the cells involved in
the adult regeneration process are under the same genetic
hierarchy involved in embryonic myogenesis, with the same
genes participating in their regulation [26] (Figure 1(b)). The
major distinction between myogenesis in the embryo and
regeneration is that the latter requires a scaffolding that will
work as a template [27].

A number of data also indicate that there are specific
SCs that undergo asymmetric division, generating committed
cells dedicated to the regeneration process, but also produc-
ing new SCs that are able to replenish the muscle stem cells
pool [11].

Adult myogenic cells are derived mainly from SCs during
late fetal development. However, there has been evidence of
other adult stem cell populations that can also be involved
in regeneration [12]. Nonetheless, it is remarkable that even
though these other stem cells exist and have myogenic
potential, experiments that deplete Pax7-satellite cells show
that no other stem cell type is able to replenish the SC pool
nor act in regeneration after injury, highlighting the unique
importance of SCs [28].

3. Satellite Cell Markers

Satellite cells can be identified by the expression of several
markers, with special attention to Pax7, which is considered
the main defining factor for this cell type [5]. This marker

has been correlated with the maintenance of an undiffer-
entiated state, being an important factor for self-renewal
in these cells [29]. In addition to Pax7, another protein
from the paired domain transcription factor family might be
expressed, Pax3, which is also important in the initial steps
of muscle formation and is involved in the transcription of
another marker, the tyrosine receptor kinase c-Met [30–32].
Interestingly, in the knockout mouse for Pax7, some SCs can
be found, indicating that Pax3 alone could play a similar role
[30, 33]. Conversely, other results suggest that Pax3 is not able
to compensate for the Pax7 function [32]. In addition, the
presence of Pax3 SCs is dependent on the muscle type [30].

Besides the Pax protein family, many other markers can
be used to identify SCs such as themyogenic regulatory factor
Myf5 [31, 34]; homeobox transcription factor Barx2, which is
coexpressed with Pax7 and is a regulator of muscle growth,
maintenance, and regeneration [35]; cell adhesion protein
M-cadherin, which is known to be coexpressed with c-Met
[31, 36]; cell surface attachment receptor 7-integrin [37, 38];
cluster of differentiation protein (CD34) that is expressed in
quiescent SCs [34]; transmembrane heparan sulfate proteo-
glycans syndecan-3 and syndecan-4 [39]; chemokine receptor
CXCR4 [40]; caveolae-forming protein caveolin-1 [38, 41];
calcitonin receptor, which was described as related to the
quiescent state [38, 42]; vascular cell adhesion protein 1
VCAM-1 [43]; neural cell adhesion molecule 1 NCAM-1 [44,
45]; and nuclear envelop proteins lamin A/C and emerin
[38]. However, these individual proteins are not exclusively
expressed in SCs, meaning that only their simultaneous
coexpression has been useful in identifying this cell type.
Although other markers have been proposed to identify
SCs, the ones cited above, and indicated in Figure 2, are
the most commonly studied. Table 1 is presenting examples
of antibodies for immunofluorescence referred to in the
literature. Different antibodies can be used according to
the adopted methodology (western blotting, flow cytometry,
etc.).

4. Heterogeneity in the Satellite
Cell Population

Even though the identification of satellite cells is based
on marker expression and morphological analysis, it has
been suggested that these cells comprise a heterogeneous
population of precursor cells [33]. It has also been reported
that these cells can be prone to be committed either to
the muscle lineage or to the self-renewal pathway, which
is also an evidence of its heterogeneity [44, 46, 47]. The
expression of the markers cited in the previous section,
although well established in the literature, can be variable in
this cell population, being another indication that this cell
population can be heterogeneous, even though cells maintain
their myogenic potential.

For instance, the expression of the marker Myf5 has been
reported to be absent in ∼10% of the SC population, and the
cells identified as Pax7+/Myf5− contributed to their reservoir
in contrast with Pax7+/Myf5+ cells that were committed to
differentiation [48]. Studies also showed that activated cells
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Figure 1: Cell hierarchy during development and adult myogenesis. (a) During development, an embryonic progenitor directly originates
satellite stem cells, committed satellite cells, and myoblasts, which afterwards form a mature fiber. Some of them remain as satellite cells
forming a heterogeneous population of stem and committed cells. In adult myogenesis, satellite cells can formmyoblasts that will go through
a similar process observed in development. (b) Genetic hierarchy of transcription factors involved in myogenesis. Six 1/4, Pax3, and Pax7
are the most important factors to muscle lineage specification, while Myf5 and MyoD prime cells to the myogenic program. Myog and Mrf4
control the myocytes fusion and the formation of myotubes. Dystrophin expression was recently also described in satellite cells. Adapted
from Bentzinger et al., 2012 [11].

expressing low levels of Pax7 were more committed to dif-
ferentiation, whereas high levels of Pax7 were related to cells
less prone to differentiate and that had more undifferentiated
characteristics [49]. Experiments with histone 2B labeling
also demonstrated that there are SCs that retain or lose this
mark and that the former is able to self-renew and the cells
that lose the mark are restricted to differentiation [50].

Differences were also observed in the proliferation rate
of SCs, as slow and fast dividing cells coexist [51]. The
slow ones are capable of long-term self-renewal, whereas
fast dividing cells compromise themselves with the myogenic
lineage without producing self-renewing progeny [52]. In
this sense, subpopulations that are considered committed to
the myogenic lineage could participate in the regeneration
of an injured muscle before the ones that are still in the
more progenitor state and so would take a longer time to be
involved in this process [53]. This scenario is consistent with
a stem cell to progenitor cell hierarchy.

As it is known that muscles within the body are distinct
between themselves, it has been seen that SCs also present
heterogeneity based on the muscle they are located within,
which may correlate to their distinct embryonic origin [6,
54]. This is consistent with the previous results observed
by Buckingham et al. and Relaix et al. that shows that the
expression of Pax3 by SCs is muscle-dependent [30, 32].
As knowledge increased, studies were done to determine
whether the heterogeneity of SCs in muscle was due to
the muscle environment or internal programming, and the
outcomes of distinct researches showed that there is evidence
for both [55, 56].

Differences in SCs were also found when considering the
extrafusal fibers and their categorization into fast and slow
fibers regarding proliferation rate and differentiation poten-
tial. Remarkably, the SCs could differentiate into exclusive fast
fibers when they came from a fast muscle and into fast or
slow fibers when they are derived from a slowmuscle [57–59].
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Table 1: Examples of antibodies used to identify satellite cells by immunofluorescence. Hu = human; Mo = mouse.

Protein Company/catalogue number Reacts with Reference
Pax7 Hybridoma Bank (DSHB) Hu/Mo Dumont et al., 2015 [147]
MyoD
CXCR4

Santa Cruz Biotechnology/C-20
Abcam/not mentioned

Hu/Mo
Hu/Mo Cerletti et al., 2008 [167]

Barx2 Santa Cruz Biotechnology/sc-9128 Hu/Mo Meech et al., 2012 [35]
Syndecans 3 and 4 Non-commercial antibody Mo Cornelison et al., 2001 [39]
M-cadherin BD Biosciences/611101 Mo Marti et al., 2013 [168]
Caveolin-1 Santa Cruz Biotechnology/sc-894 Hu/Mo Gnocchi et al., 2009 [38]
CD56/NCAM BD Biosciences/347740 Hu Lindström et al., 2015 [169]
Pax3 Hybridoma Bank (DSHB) Mo Kirkpatrick et al., 2010 [170]
c-Met Novocastra Laboratories/CMET-S Hu Lindström et al., 2010 [171]
CD34 PharMingen/clone RAM34 Mo Beauchamp et al., 2000 [34]
Myf5 Santa Cruz Biotechnology Hu/Mo Günther et al., 2013 [172]
Calcitonin receptor AbD Serotec/AHP635 Hu/Mo Yamaguchi et al., 2015 [173]
Desmin
Lamin A/C

DAKO/clone D33
Cell Signaling/2032

Hu/Mo
Hu/Mo Frock et al., 2006 [174]
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VCAM-1

Emerin
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Figure 2: Principal satellite cell markers currently used for their
identification.

As observed previously, the phenotype after differentiation
can either be dependent on the intrinsic programming that is
related to the fiber type or can be under influence of the envi-
ronment, that is, themuscle fiber withwhom the cell interacts
[6, 60]. As for intrafusal fibers, SCs in this compartment are
known to bemore plastic and directed to a specific phenotype
by foreign innervation stimulation [61, 62].

Morphological differences translated as round and thick
cells were also observed in the SC population and they were
associated with distinct myogenic potential [63], the thick
ones being more prone to differentiation. Functionally, there
are observations that suggest two subpopulations of SCs,
one that is committed to muscle growth, whose cell number
declines with age and is present in a larger amount in males,
and another subpopulation related to muscle regeneration
after an injury, whose cell amount is relatively maintained
during aging and is not gender related [64].

The heterogeneity may also result from the distinct niche
in which these cells are located, as has been observed in the

aging process, where cells may escape quiescence and lose
their capacity of self-renewal [65–67]. An important compo-
nent of the muscle niche that acts directly in proliferation
and differentiation of satellite cells is the fibro/adipogenic
precursors, and it is known that they act positively in young
Dmdmdx mice, the model for DuchenneMuscular Dystrophy,
but repress the formation of myotubes in old ones, indicating
that the process of aging has direct implications in satellite
cells [68]. Other factors such as Notch and Wnt are also
involved in this nonautonomous process of SCs aging [67,
69]. In addition, intrinsic changes in cells are also observed
in the aging process, such as in geriatric SCs that lose the
reversible quiescence and enter in a presenescence that can-
not be reversed and that in an injured muscle fail to start the
regenerative process and enter in a full senescence state [70].
It was also shown that intrinsic cell factors also lead to the loss
of self-renewal with the involvement of the MAPK pathway
[71, 72]. It is important to distinguish between autonomous
and cell nonautonomous factors that interfere with SCs in
aging, since the nonautonomous ones, such as the niche, can
be correctedwith a youthful environment [73], a fact that can-
not be corrected when the factor is intrinsic to the cell [70].

This heterogeneity in the stem cell population in muscle
has been complicating the identification, function, and nam-
ing of these cells.There has been in the literature a description
of other types of cells with high myogenic capacity and
directly related to muscle regeneration, called muscle derived
stem cells that express distinct markers [74]. Nonetheless, it
is important to notice that there have been subsequent results
indicating that, without SCs, no other cell types have the
capacity to regeneratemuscle [28].Thismay be either because
the other cell types studied did not include the specific
population described by Qu-Petersen and colleagues [74], or
that the activity of other cell types has a requirement for use in
conjunction with SCs or with the major SC factor Pax7 [75].

Additionally, diverse muscle derived stem cell (MDSC)
populations had been identified. These populations include
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myogenic progenitor cells characterized as CD56+, CD34−,
CD144−, CD45−, and CD146−; CD56+, CD34+, CD144+,
CD45−, and CD146−mio-endothelial cells; CD56−, CD34−,
CD144−, CD45−, and CD146+ perivascular progenitor cells;
and a muscle derived side population which has similar
features to bone marrow stem cells [76]. Based on adhesion
and proliferative properties, Qu-Petersen and colleagues
[74] isolated three cell populations derived from muscle.
Two of these populations, EP (early preplate) and LP (late
preplate), represent the satellite cells; the third one, which also
adheres lately, is named MDSC and presents characteristics
usually associated with noncommitted progenitor cells. The
EP population represents the majority of the cells obtained
from muscle digestion and differentiates into myotubes.
However, EP cells have a limited regenerative potential. The
LP population accounts for about 1% of satellite cells, but it
has low rates of proliferation and differentiation. Conversely,
MDSC showed a better self-renewal ability and sustained
proliferation and are multipotent. Thus, the MDSC would
be less committed cells and more promising for therapies in
comparison to satellite cells [74].

Other cell types, such as bonemarrowmesenchymal stem
cells [77–81], adipose derived mesenchymal stem cells [82–
84], CD133+ cells [85–87], pericytes/mesoangioblasts [88,
89], and side population cells [90, 91], were described as being
able to participate in myotube formation as well as replenish-
ing the satellite pool. These cells are not initially committed
to muscle and may not express the classical satellite cell
marker, Pax7. However, they are capable of contributing to
muscle regeneration when fusing with myogenic cells and,
additionally, they may be able to turn into Pax7 expressing
cells originating new SCs, which is a fact that may strongly
contribute to the heterogeneity observed in this population.
It is also important to notice that evidence has been found
that myogenic cells are formed by fusion [78, 92–94] or
transdifferentiation, in which cells develop into intrinsically
myogenic ones [95–97], and the heterogeneity would rise by
the contribution of both cells that participate in the fusion
process or by one cell initially not committed to muscle
becoming myogenic. Furthermore, other cell types may be
involved in assisting muscle regeneration sending signals
that direct differentiation of SCs, such as fibro/adipogenic
precursors [98–100]. It is clear then that whether one cell type
turns into muscle by fusion or transdifferentiation or that the
precursor itself receives signals that direct their proliferation
and differentiation, the final outcome is that all these factors
contribute to the myogenic population being heterogeneous.

5. Satellite Cells Can Undergo
Multilineage Differentiation

Besides their myogenic potential, it has been described in
the literature that these cells can undergo osteogenic and
adipogenic differentiation, for example. This highlights their
properties as a stem cell that is able to differentiate within the
mesenchymal lineage [101–104].

Studies in rat showed that the heterogeneity in the
proliferation rate correlates with the differentiation potential,

with high proliferative clones being able to differentiate
into adipocytes [105]. Morphological heterogeneity was also
related to distinct potential, with thick cells also being able
to undergo osteogenic differentiation [63]. Heterogeneity
also in the CD34 expression was correlated with distinct
potential to go through the adipogenic pathway, and only cells
that expressed this marker were able to undergo adipogenic
differentiation [106].

Additionally, in aged mice, it was observed that SCs tend
to go to the fibrogenic lineage instead of maintaining their
myogenic potential, which may contribute to the greater
fibrosis observed in old mice [69].

6. The Balance between
Quiescence and Activation

Skeletal muscle regeneration follows a series of steps that
recapitulates the phases of development. First, muscle pro-
genitor cells must exit the state of quiescence and become
active and proliferate. Asymmetric divisions are important to
provide daughter cells committed to the myogenic program
(myoblasts) and also daughter cells that return to quiescent
state in order to replenish the stem cell pool. After prolif-
eration, myoblasts differentiate and fuse to form myotubes,
which fuse with each other or to a previous fiber to repair it.
Finally, the myofibers grow and maturate.

6.1. Quiescence Mechanisms. As other types of adult stem
cells, SCs are quiescent until they are activated when there
is a muscle injury. Maintenance of quiescence is crucial
to preserve the SC pool and it is controlled by different
molecular mechanisms, with participation of many genes
and regulatory pathways. Microarray studies showed that
more than 500 genes are overexpressed in quiescent SCs
in comparison with proliferating myoblasts [42]. Negative
regulators of cell cycle are among these genes. Despite the fact
that all the players and mechanisms of SCs’ homeostasis are
not being fully understood, many efforts have been employed
in order to depict them (Figure 3).

The Notch signaling was implicated in SC quiescence
maintenance, as well as proliferation and differentiation reg-
ulation, in various studies [107–111]. Indeed, Notch signaling
was established as the first quiescence regulator in adult
stem cells because an interruption in Notch activity favors
spontaneous cell differentiation, without the entry in the S
phase [110]. The highest activity of Notch signaling is seen
in quiescent SCs and it is progressively reduced as the cell
progresses through myogenic differentiation. Interestingly,
Notch signaling prolonged blockage does not prevent cells
from proliferating but leads to depletion of SC, demonstrat-
ing that it is necessary for self-renewal [110]. A similar study
showed related results about the loss of Notch signaling by
RBP-J deletion. The absence of Notch signaling has at least
three main effects: failure of quiescence maintenance; loss
of the ability to self-renew; and spontaneous differentiation,
without a phase of proliferation [108].

The FOXO family of transcription factors regulates stem
cell pools in adult tissues. The levels of Foxo3 transcript
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Figure 3: Quiescence and activation control. Notch signaling is one of the main pathways controlling quiescence. Foxo transcription factors
regulate Notch receptors expression facilitating this pathway’s activity. MicroRNAs target cell cycle genes and myogenic regulators. Upon
injury, signaling molecules are released and pathways related to cell cycle progression are turned on. After some rounds of division, some
cells return to quiescence whereas the others exit cell cycle and proceed into the myogenic program, differentiate, and repair the damage.

and protein are higher in quiescent SCs than in activated
ones. The ablation of Foxo3 gene specifically in SCs showed
that this transcription factor is important for SC return to
quiescence and self-renew. FOXO3 negative cells are more
proliferative and differentiatemore rapidly, while Foxo3 over-
expression suppresses cell cycle entry and represses terminal
differentiation [112]. This work also links FOXO3 to Notch
signaling: FOXO3 regulatesNOTCH1 andNOTCH3 receptor
expression, activating Notch signaling, and thus promotes
quiescence in SCs [112].

MicroRNAs are significant players in gene expression
regulation, including genes related to stem cell functions; and
their activity in SCs regulation has been recently explored.
It was demonstrated that miR-489 is highly expressed in
quiescent SCs and is downregulated as they become activated.
A target of miR-489 is Dek, an oncogene, whose both mRNA
and protein levels are higher in activated SCs than in quies-
cent SCs. In SCs, Dek promotes proliferation after activation;
Dek-positive cells are committed to myogenic differentia-
tion and Dek-negative cells are self-renewing [113]. Another
miRNA involved in SCs quiescence is miR-31. Although
the majority of SCs in adult tissue have the Myf5 gene
activated [48], they do not necessarily differentiate, which
implies that a mechanism must exist to preventMyf5mRNA
translation before the appropriated moment. This repression
is accomplished by miR-31 that has a higher expression in
quiescent SCs; it targets Myf5 mRNA and then sequesters it
in mRNP granules. Upon activation, miR-31 levels decrease
andMyf5mRNA is released to translation [114].

SCs quiescence is also established by mRNA decay.
Hausburg and colleagues showed that Myod transcript is
driven to mRNA decay, preventing the SC to proceed in
the myogenic program. This is achieved by the action of the
protein tristetraprolin (TTP) that binds tomRNA, preventing
it to be translated and, in addition, regulating its decay [115].

All these posttranscriptional regulation mechanisms
seem to be somewhat redundant and they seem to act in a
subpopulation-specific manner; however, more studies are
necessary to clarify all the mechanisms involved in quies-
cence maintenance and to define whether they are common
to all SCs.

6.2. Activation and Proliferation Mechanisms. When the
muscle suffers an injury, the SCs must be activated, starting
to proliferate and differentiate to repair and/or form new
muscle fibers. SC activation is a transient process regulated
at different levels. As Notch inhibits p38𝛼/𝛽MAPK signaling
pathway in quiescent stage [116], this is the first pathway to
be activated [117], resulting in the expression of Myod and
consequent cell cycle entry.The damaged fibers release many
growth factors that induce the activation of signaling path-
ways related to cell cycle, like TNF-𝛼, HGF, and FGF [118–
120]. The transition from G1 to S phase is achieved by activa-
tion of ERK1/2 pathway by Fgf2 [121]. AnotherMAPK signal-
ing pathway involved in SC cell cycle progression is JNK [122].

The intense cell proliferation is important to muscle
repair, but it has to be limited and the fate of each daughter
cellmust be determined—terminally differentiate or return to
quiescence. Wnt/𝛽-catenin signaling is temporally activated
during regeneration but later downregulated to limit the
regenerative response [123]. Wnt/𝛽-catenin signaling is also
involved in the promotion of myogenic differentiation. The
treatment of SCs with Wnt3a promotes cell cycle arrest,
myogenin activation, and follistatin expression, promoting
myoblast fusion and terminal differentiation [124].

The JAK-STAT signaling is another player in the regula-
tion of SC function, especially in the aged muscle, whereby
Stat3 activation interferes in MyoD to promote myoblast
differentiation [125]. JAK-STAT signaling increases progres-
sively with age or disease. Jak2 and Stat3 transient inhibition
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in aged and dystrophic muscle enhances SC expansion and
better muscle regeneration [126, 127].

6.3. Cell Cycle Exit. To exit the cell cycle, upregulation of
inhibitors of cyclin-dependent kinases is required.The return
to quiescence requires p27kip1, whereas the progression
through myogenesis requires the upregulation of p21Cip1,
p19Arf , and p57 [50, 128, 129]. Sprouty1 (Spry1) is a receptor
tyrosine kinase signaling inhibitor expressed in Pax7+ qui-
escent cells, but downregulated in proliferating myoblasts.
WhenPax7+ cells return to quiescence Spry1 is induced again,
promoting cell cycle exit by inhibiting ERK pathway [130].

6.4. Asymmetric Divisions and Self-Renewal. The daughter
cells asymmetry, that is, segregation of different determinant
factors, will determine whether they differentiate or self-
renew. The myogenic determinant factors Myf5, MyoD, and
Myog have asymmetric expression in the daughter cells [48,
131, 132]. MyoD is distributed to committed Pax7− cells and
the Pax+/MyoD− cells are self-renewing [133]. For Myog, the
same is observed: the myogenic lineage is Pax7−/Myog+ and
reservoir cells are Pax7+/Myog− [134]. The distribution of
DNA template is also asymmetric: the old template goes to
the daughter cell expressing Pax7, the reservoir cell, and the
new DNA template to the one expressing Myog [134].

In Myf5-negative SCs, those compromised with renova-
tion of the stem cell pool, the Notch3 receptor is enriched,
whereas Myf5-positive cells receive the Notch ligand Delta1
[48]; in Myog-positive cells there is also the presence of
Numb, a Notch antagonist [107]. All these findings are related
to the role of Notch signaling in maintenance of quiescence,
as discussed above.

7. Satellite Cells in the Context of
the Muscular Dystrophies

Different hypothesis andmechanisms are proposed to explain
the muscular degeneration that occurs in patients bearing
mutations in a wide number of genes important to muscle
structure and function [135, 136]. As the dystrophic muscle is
persistently injured, the regenerative process is consistently
activated, recruiting satellite cells at higher rates than in
normal tissue. Nevertheless, in dystrophic muscle, the regen-
eration is not complete and there is a progressive replacement
of muscle by fibrofatty tissue. Thus, the ability of stem cells
to repair the muscle is not sufficient to compensate for
degeneration. Three scenarios are proposed to explain this
limited regenerative capacity [135].

First, the repetitive cycles of replication would lead SCs
to senescence, due to telomere shortening. The presence
of shortened telomeres was observed in DMD (Duchenne
Muscular Dystrophy) and LGMD2C (limb-girdle muscular
dystrophy type 2C) patients [137, 138] and in Dmdmdx mice
[139]. Dmdmdx mice lacking telomerase activity develop a
phenotype more faithful to muscular dystrophy in humans,
including a worsening with aging [140]. However this is
controversial, as another study could not detect a significant
telomere shortening [141].

Second, the differentiation could not be adequate. Early
studies showed that myoblasts from DMD patients delay
to fuse and present an abnormal differentiation [142, 143].
In some types of muscular dystrophy, the mutated gene is
not expressed in SCs and thus does not influence directly
on their function [144]. However, there is also evidence
that the primary mutation itself can impair the SC func-
tion by reducing its number and causing premature senes-
cence, implicating SC as directly involved in the disease
mechanism [145]. Alterations in signaling pathways are also
underlying the regenerative potential of SCs. In a knock-
in conditional mouse in which Notch signaling is blocked
in SCs, the muscle develops a typical dystrophic phenotype
with impaired regeneration [146]. The SCs of this mouse
showed reduced activation and proliferation, but enhanced
differentiation, corroborating the previous studies about the
role of Notch signaling in quiescence maintenance [146]. In
Dmdmdx mouse, the Notch signaling is attenuated, which
diminishes SCs self-renewal; and the constitutive activation
of Notch recovered the self-renewal capacity, but this is not
sufficient to improve regeneration, probably because ofMyoD
and myogenin inhibition [111].

Dystrophin is expressed in differentiated myofibers, but
not in proliferating myoblasts; thus it was believed that it
was not expressed in satellite cells either. However, a recently
published paper elegantly showed that dystrophin is indeed
expressed by satellite cells and that it plays an essential role
in the regulation of their polarity and asymmetric division.
In the absence of dystrophin, there is a reduction in the
number of asymmetric divisions and more abnormal divi-
sions, which lead to a decrease in the quantity of myogenic
progenitors and thus a failure in muscle regeneration [147].
This work adds a major role for satellite cells dysfunction in
the pathophysiology of DMD, which has direct implications
for therapies. Third, the dystrophic niche is not favorable
for regeneration. In the dystroglycanopathy mouse model
Largemyd, an increased number of SCs were found in freshly
isolated single fibers, related to control mouse [148]. As long
as SCs remained attached to the fibers, their proliferative
capacity was seen to be reduced, but after total isolation
they proliferated and differentiated at levels comparable to
normal control, indicating an important role of the niche
to stem cell function [148]. In this mouse model, the basal
lamina composed by an excess of fibronectin and collagen
acts as an obstacle to proper SC proliferation. This work
contradicts a former one which suggested that as SC also
expresses dystroglycan, the glycosylation defect would also
affect its function, impairing regeneration [149]. Even though
a recent publication reinforces that the regenerative capacity
is not affected in muscles with glycosylation deficiency, the
inability to overcome the degeneration is more related to
the depletion of regenerative capacity due to excessive and
progressive degeneration that occurs inmuscular dystrophies
than to an inherent defect in SC function itself [150].

By testing the effects of irradiation and myotoxins in the
engraftment of donor SCs in nude Dmdmdxmouse it was
found that when the host SC pool is still preserved, the
engraftment is poor; in contrast, when the host SC pool
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is incapacitated by irradiation, but the stem cell niche is
preserved, the donor cell is able to repopulate and regenerate
the muscle [151]. Boldrin et al. investigated the regenerative
potential of SCs isolated from young and old Dmdmdx mice.
They found that both young and aged SCs are able to
regenerate the muscle of preirradiated young nude Dmdmdx,
reinforcing the notion that the SC function is preserved
and that the dystrophic environment, instead of an inherent
defect, influences it negatively [152]. The main message
of these works is that for future cell therapies it will be
interesting to capacitate the host stem cell pool, as well as
the preservation/amelioration of a functional niche, to obtain
successful results.

An important study performed in several animal models
also gave an insight into how the satellite cells are regulated in
a context of muscular dystrophies [153]. In the SJL/L mouse
model for the limb-girdle muscular dystrophy type 2B the
levels of MyoD and Myf5 were found to be downregulated,
which indicates that in this animal the satellite cells remain
quiescent, which is expected since the histopathology of
this animal shows no evidence of the degeneration and
regeneration process. This same downregulation was found
in the animal Largemyd, which is consistent with previous
results that shows that the mutation in this animal could
interfere with the satellite cell functioning and self-renewal
[149]. On the other hand, the animal models Dmdmdx and
Lama2dy-2J/J, the models for congenital muscular dystrophy
type 1A, showed enhanced expression levels of MyoD and
Myf5, indicating that in these models the satellite cells are
activated, which is consistent with the presence of regener-
ation areas in their histology.

8. Therapies

Since the identification of stem cells, the most promising
therapy for muscle wasting diseases has been the cell therapy.
The first myoblast transplantation was done in the late 1970s
when it was shown that donor myoblasts were able to fuse
within host myofibers [154]. One decade later, the demon-
stration that donor myoblasts restored dystrophin expression
in Dmdmdx myofibers [155] opened the precedent for many
human clinical trials [156–163]; nevertheless, the results
were not satisfactory, mainly by the reduced regenerative
potential of myoblasts, once they are more committed and
differentiated in comparison to SCs.

Entire myofibers can be grafted into host muscle where
SCs attached to donor myofibers contribute to muscle regen-
eration [46]. The advantages of myofiber transplant are
as follows: a maximal engraftment is required, a minimal
number of cells are required, and the cells are transplanted
together with their niche, although these are not easy to apply
in clinics [164].

SCs isolated by flow cytometry were transplanted in
Dmdmdx mice and it was seen that they engrafted into
their muscles and also contributed to the SC compartment,
but if the cells were cultured before transplantation, their
regenerative potential was reduced [165].The transplantation
of a single luciferase-expressing SC helped to verify the fact

that it can self-renew and differentiate, demonstrating the
relevance of a careful selection of which cell to use given
the high population heterogeneity [166]. Taken together, the
studies about direct isolation and transplantation of SCs show
the advantages of the requirement of a low number of cells,
efficient engraftment, and the repopulation of the host niche
with new SCs; in contrast, the migration of transplanted cells
is limited, only a small number of cells are isolated, and they
cannot be maintained for a long time in vitro [164].

Therefore, the use of progenitor cells like SCs is more
promising with the advantage of also replenishing the stem
cell pool with the possibility of a sustained response. How-
ever, the use of these cells in therapy is still not a reality
and many challenges remain to be overcome. These include
selection of the most suitable subpopulation, optimal culture
conditions, and modulation of signaling pathways that con-
trol quiescence and self-renewal and delivery of the cells.The
choice between systemic and local injections must consider
specific features of each disease, like disease severity and the
number and size of affectedmuscles. Still, both strategies have
their limitations and issues including homing, engraftment,
and long-term survival. Thus, given all the aspects to be dealt
and the divergence between in vitro and in vivo results, the
combination of different strategies would bemore promising.

9. Conclusion

Satellite cells are the first in line for muscle regeneration,
and so they are the most promising target in a cell-based
therapy for muscle wasting disorders. As shown throughout
this review, they have numerous advantages such as easy
identification, self-renewal, and myogenic differentiation,
which iswell understood, and they have been already tested in
a therapeutic context. Nevertheless, many questions remain
to be answered and this review aimed to explore some
possible aspects that could be considered in order to achieve
an efficient cell therapy.

At first, the heterogeneity of this population should be
considered, such as choosing the ones with better capacity
of self-renewal to replenish the pool in an injured muscle
or the ones that could be more prone to differentiation.
Additionally, since SCs fromdifferentmuscles or fibers can be
distinct, it is important to consider these aspects in order to
treat a specificmuscle group, for example.The quiescence and
activation process is also an aspect that should be considered,
since it can be regulated and used, for instance, to direct
activation of resident cells. Finally, with previous studies
regardingmuscular dystrophies and therapies, it is possible to
learn about ideal culture conditions and better ways to deliver
cells, for example.

It is important to notice that an issue regarding nomen-
clature of different types of satellite cells may complicate
the data interpretation and comparison across studies, since
different terms are sometimes used by authors for the same
type of cells, or different cells are referred to them with
the same general nomenclature. It is possible, therefore,
that authors are dealing with the same entities but naming
them differently. Hence, it would be valuable if the scientific
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community found a consensus concerning the diversity of the
various cell populations studied.

Major hurdles still have to be dealt with, such as the
wide distribution of skeletal muscles within the body and the
effect of genetic defects in resident cells; however, this review
proposes that the knowledge of the satellite cells basic biology
may help in the development of further cell-based therapies.
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