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Cryptococcal meningitis (CM) is the leading cause of mortality among patients infected
with human immunodeficiency virus (HIV). Although treatment strategies for CM are
continually being developed, the mortality rate is still high. Therefore, we need to explore
more therapeutic strategies that are aimed at hindering its pathogenic mechanism. In the
field of CM, several studies have observed rapid iron accumulation and lipid peroxidation
within the brain, all of which are hallmarks of ferroptosis, which is a type of programmed
cell death that is characterized by iron dependence and lipid peroxidation. In recent years,
many studies have confirmed the involvement of ferroptosis in many diseases, including
infectious diseases such as Mycobacterium tuberculosis infection and coronavirus
disease-2019 (COVID-19). Furthermore, ferroptosis is considered as immunogenic and
pro-inflammatory as the ferroptotic cells release damage-associated molecular pattern
molecules (DAMPs) and alarmin, both of which regulate immunity and pro-inflammatory
activity. Hence, we hypothesize that there might be a relationship between this unique cell
death modality and CM. Herein, we review the evidence of ferroptosis in CM and consider
the hypothesis that ferroptotic cell death may be involved in the cell death of CM.

Keywords: cryptococcal meningitis, ferroptosis, iron accumulation, lipid peroxidation, immunomodulatory activity,
inflammation, infection
INTRODUCTION

Cryptococcal meningitis (CM) is the most common lethal fungal infection in patients with acquired
immune deficiency syndrome (AIDS). In 2009, Park et al. first estimated the global burden of HIV-
associated cryptococcal infection, and identified approximately 957,900 new cases of CM per year
worldwide, resulting in 624,700 deaths within three months after infection (1). Additional studies
have also suggested an increasing number of annual global deaths, with CM being responsible for
15% of AIDS-related deaths (2, 3). A recent systematic review reported a total of 8,769 cases of
cryptococcosis in mainland China from 1985 to 2010 through the use of CBMdisk (China Biology
and Medicine data disc) database (4). However, the incidence of cryptococcosis in China is likely
much higher than the reported number due to missed and misdiagnosed cases. According to the
United Nations AIDS Program (UNAIDS), approximately 37.9 million people are currently living
with HIV, and as HIV-infected patients have hypoimmunity, they are more prone to acquiring
opportunistic infections, including CM.
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CM is a type of subacute meningoencephalitis that is mainly
caused by Cryptococcus neoformans, which largely attacks
patients with immunodeficiency, and leads to the development
of fungal meningitis (1, 5, 6). The main transmission route of
cryptococcal infection is inhalation of yeast or basidiospores
through the respiratory tract, though human-to-human or
mother-to-child transmissions have been reported (7, 8). The
main virulence factors of C. neoformans include production of
melanin and polysaccharide capsule (9). Melanin is synthesized
in C. neoformans by being primarily converted from
catecholamines, such as dopa, dopamine, and epinephrine. As
these catecholamines are neurotransmitters within the central
nervous system (CNS) (10–12), C. neoformans have
characteristics of neurotropism (13). Furthermore, several
studies have demonstrated that C. neoformans is able to escape
from attacks that are caused by the immune system by protecting
melanin (10, 14). With regards to the polysaccharide capsule, it is
able to exacerbate the toxicity of CM infection under some
conditions, which include anti-phagocytosis, complement
depletion, and inhibition of leukocyte migration (11, 12). As
these are characteristics of C. neoformans, the most common
presentation of invasive cryptococcal infection in patients living
with HIV is lethal meningitis and meningoencephalitis.

Currently, the predominant therapies for HIV-associated CM
include a combination of antifungal drugs, control of intracranial
pressure, and appropriately timed initiation of highly active
antiretroviral therapy (HAART) (15, 16). The treatment course
involves an induction period, a consolidation period, and a
maintenance period (16). Although novel treatment strategies
for CM are continually being identified and developed, the
mortality rate remains high due to a number of reasons,
including infection of CNS, drug resistance, high cost, and
availability of essential drugs. Therefore, there is a need to
explore more treatment strategies and potential therapeutic
targets. For instance, recent studies have shown that sertraline,
a selective serotonin reuptake inhibitor antidepressant, exhibits
excellent in vitro-in vivo antifungal activity (17–19). Some
clinical trials have also identified that adjuvant sertraline can
partially improve clearance of the cerebrospinal fluid (CSF)
fungus (20–22). Unfortunately, a randomized, placebo-
controlled, double-blind phase 3 trial confirmed that sertraline
did not reduce the mortality of HIV-associated CM, which may
be related to insufficient duration of therapeutic sertraline
concentration (21). Moreover, it is important to keep exploring
therapeutic strategies that are aimed at determining the
pathogenesis of CM. Some recent studies have indicated
increased iron accumulation and lipid peroxidation in CM,
thus revealing a connection between CM and ferroptosis
(23–27).

Recently, the role of ferroptosis in cell death has become a
research hotspot and is associated with many diseases (28–30),
such as tumors and ischemic organ injuries. Ferroptosis is known
to play a role in various brain diseases (31–34), including stroke,
Parkinson’s disease (PD), and Alzheimer’s disease (AD). There
are also several studies that have shown the involvement of
ferroptosis in infections caused by different pathogens, such as
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Pseudomonas aeruginosa (35, 36), Mycobacterium tuberculosis
(37–39), severe acute respiratory syndrome coronavirus 2 (SARS
CoV-2) (40–42), and hepatitis B virus (HBV) (43, 44). Beyond
that, ferroptosis is associated with immunogenic and pro-
inflammatory activities. Ferroptotic cells are known to release
DAMPs and immune-stimulating cellular components, which
can be recognized by immune receptors, thus inducing cell death
and inflammation. Furthermore, ferroptosis of immune cells
during an infection can have an effect on immune function
and create a beneficial environment for infectious agents. Taken
together, ferroptosis plays a part in brain disease and infectious
diseases, and likely regulates immunity and inflammation.
Importantly, ferroptosis’s key hallmarks, which include iron
accumulation and lipid peroxidation, are known in CM.
Therefore, we hypothesize that ferroptosis is involved in
pathological process of CM, and regulating ferroptosis
represents a novel therapeutic target and strategy. Herein,
determining what the function of ferroptosis is in CM and how
ferroptosis affects the immune system in infectious diseases
remains to be resolved.
BRIEF HISTORY AND MECHANISMS OF
FERROPTOSIS

In 2003, Dolma et al. performed a synthetic lethal high-
throughput screening to investigate the ability of 23,550
compounds to kill engineered tumorigenic cells, results of
which showed that a compound named erastin was able to
induce a non-apoptotic cell death process (45). Subsequently,
in 2008, two small molecule compounds, Ras synthetic lethal 3
(RSL3) and Ras synthetic lethal 5 (RSL5), were observed to
stimulate an iron-dependent non-apoptotic cell death, and
shared similar properties to erastin (46). In 2012, Dixon et al.
identified that erastin-induced oxidative iron-dependent cell
death was morphologically different from the characteristics of
apoptosis, necrosis, and autophagy. Furthermore, this particular
form of cell death was named ferroptosis (28). In the following
years, three different types of metabolism, iron metabolism, lipid
metabolism, and amino acid metabolism, were described as the
main mechanisms of ferroptosis (Figure 1) (28).

Iron Metabolism
Preliminary studies have identified that ferroptosis can be
suppre s s ed by co - t r e a tmen t w i th i ron che l a to r s
(deferoxamine), and potentiated by incubating with three
different exogenous iron sources (28). These results support
that iron metabolism is involved in pathogenesis of ferroptosis.
Additionally, more in-depth research has validated the role of
iron in ferroptosis (Figure 1). Extracellular Fe3+ bound to
transferrin (Tf) are recognized by transferrin receptors (TFRs)
on the cellular membrane, and imported into the cytoplasm (47).
Next, Fe3+ is converted to Fe2+ in endosomes using a six-
transmembrane epithelial antigen of prostate 3 (STEAP3), a
ferrireductase. Then, Fe2+ is released from the endosomes and
into the cytoplasm through divalent metal transporter 1
March 2021 | Volume 12 | Article 598601
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(DMT1), thereby increasing the concentration of the labile iron
pool (LIP). Ferritinophagy refers to selective autophagy of
ferritin and can modulate sensitivity to ferroptosis by adjusting
LIP content (48–50). All the free iron of LIP facilitates ferroptosis
by triggering formation of highly damaging hydroxyl radicals
using the Fenton reaction, and catalyzing lipid peroxidation in
the cellular membrane through lipoxygenase (LOXs) (51, 52).
Under physiological conditions, the human body is able to
maintain the homeostasis of intracellular iron. For example,
intracellular iron can be effectively expelled to the outside of
the cell using transferrin. Furthermore, prominin 2 can inhibit
ferroptosis by promoting the formation of multivesicular bodies
and exosomes (53).

Lipid Metabolism
Ferroptosis, a process that is heavily dependent on reactive
oxygen species (ROS) and iron, is characterized by lipid
peroxidation (54–56). Lipid peroxidation refers to the process
in which oxidants (i.e., free radicals) abstract a labile hydrogen
atom from the methylene group at the bisallyl position of
polyunsaturated fatty acids (PUFAs), and PUFAs are substrates
of pro-ferroptotic lipid peroxidation products including ACSL4
and LPCAT3 (54). Among the different classes of lipids in cells
(i.e., fatty acids, phospholipids, cholesterols, cardiolipins, and
sphingolipids), PUFAs containing bis-allylic protons vulnerable
to hydrogen atom abstraction are the lipids that are most
susceptible to oxidative damage in ferroptosis (57). After it was
first noticed that ferroptosis is induced by RSL3 and erastin,
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further studies confirmed that this specially programmed cell
death is driven by a loss of activity of the lipid repair enzyme
glutathione (GSH)-glutathione peroxidase 4 (Gpx4) (Figure 1).
Gpx4 is the sole selenoenzyme that is able to catalyze the
conversion of toxic lipid hydroperoxides (L-OOH) into non-
toxic lipid alcohols (L-OH) in a complex cellular membrane
environment (58, 59). The deletion and inhibition of Gpx4 is able
to facilitate lethal accumulation of lipid peroxides into the
cellular membrane and initiate execution of ferroptosis.
Therefore, Gpx4 is considered to be a central link in regulating
ferroptosis (60). Furthermore, there are novel emerging
ferroptosis-inducing compounds (i.e., ML162 and DPI
compounds) that are able to induce lipid peroxidation by
inhibiting Gpx4 function (28, 60). Moreover, lipophilic
antioxidants, which include vitamin E, ferrostatin-1 (Fer-1),
and liproxstatin-1 (Lip-1), are able to alleviate ferroptosis by
inhibiting lipid autoxidation (61–63).

Amino Acid and GSH Metabolism
The core part of the amino acid-related mechanism of ferroptosis
is the GSH-Gpx4 axis (Figure 1) (60). System x−c , a Na+-
independent cystine/glutamate antiporter, is a disulfide-linked
heterodimer that consists of SLC3A2 and SLC7A11. System x−c
imports extracellular cystine into the cytoplasm and
simultaneously exports intracellular glutamate into the
extracellular compartment (64, 65). The intracellular cystine
will be then converted to cysteine, which is further used to
synthesize GSH (66). GSH, a tripeptide antioxidant, is then used
FIGURE 1 | Overview of the underlying mechanisms of ferroptosis. Ferroptosis is a type of programmed cell death that is characterized by accumulation of free iron
and toxic lipid peroxides. Dysregulation of intracellular iron metabolism or glutathione peroxidation pathways leads to accumulation of lipid reactive oxygen species
(ROS), and eventually cell death. Various inducers and inhibitors of ferroptosis are shown. TFR1, transferrin receptors 1; DFO, deferoxamine; NCOA4, nuclear
receptor coactivator 4; ALOXs: arachidonate lipoxygenases; NADPH, nicotinamide adenine dinucleotide phosphate; NADP+, nicotinamide adenine dinucleotide
phosphate; NOXs: Reduced form of NADPH oxidase; BH4, tetrahydrobiopterin; FSP1, ferroptosis suppressor protein 1; Se, selenocysteine; GSSG, oxidized GSH.
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as a cofactor for Gpx4, which reduces oxidative stress and
maintains the intracellular redox balance. In addition to the
canonical amino acid metabolism pathway that is mentioned
above, coenzyme Q10 (CoQ10) works in parallel with Gpx4 in
order to suppress phospholipid peroxidation and ferroptosis.
Many molecules that induce ferroptosis by regulating amino acid
metabolism have now been discovered. Erastin (28), sulfasalazine
(SAS) (67), and sorafenib (68) are able to inhibit system x−c ,
which causes GSH depletion, thereby inducing ferroptotic cell
death. b-mercaptoethanol is able to promote cystine uptake in
order to inhibit erastin-stimulated ferroptosis in HT1080 cells
(67). Acetaminophen-induced cell death is characterized by a
depletion of GSH, and ferroptosis has been shown to be involved
in this process (69). Importantly, the accumulation of
extracellular glutamate is a natural trigger for inducing
ferroptosis (60). Previous studies have indicated that excessive
stimulation of glutamate is able to induce death of nerve cells (70,
71). Glutamate-induced toxicity is an oxidative and iron-
dependent process that is caused by calcium influx and
competitive inhibition of system x−c , which ultimately induces
ferroptosis by inhibiting Gpx4 (60, 70, 71).
EVIDENCE OF FERROPTOSIS IN CM

Of note, previous studies summarized below have indicated that
increased iron accumulation, lipid peroxidation in CM, and
abnormal activity of amino acid, which suggests a relationship
between CM and ferroptosis.

Increased Iron Accumulation in the Brain
With CM
Iron is the most abundant trace metal present in organisms and
is essential for both humans and pathogenic microbes (72, 73).
Several central metabolic pathways, including oxygen transport,
the tricarboxylic acid (TCA) cycle, and electron transport chains,
cannot be done in the absence of iron (74). However, under
pathological conditions, iron accumulation damages the body.
Ferrous iron (Fe2+) can be converted into ferric (Fe3+) using
Fenton reaction, and promotes ROS production and activates
LOXs, simultaneously, which leads to oxidative damage (75, 76).

For CM, studies have indicated that there are elevated levels
of ferritin in the CSF (23). Additional studies have suggested that
ferritin is locally synthesized by brain cells, which reveals the
involvement of ferritin is induced within the pathogenesis of CM
in the brain. However, the specific mechanisms remain unclear
(23). Furthermore, the increase of ferritin within the CSF is
considered a measure to screen for meningitis (24). Compared to
non-infectious neurologic disorders (i.e. seizure disorders and
multiple sclerosis) and non-CM meningitis (i.e. viral and
bacterial meningitis), the most significant increase of ferritin
has been observed in CM (24). In this regard, compared to other
types of meningitis, determining levels of CSF ferritin may be a
diagnostic indicator, and CM may have a unique pathogenic
mechanism involving iron metabolism. According to prior
studies, the abundance of ferritin is a crucial factor that
Frontiers in Immunology | www.frontiersin.org 4
regulates sensitivity to ferroptosis (48, 50, 55). Ferritin is able
to release iron into LIP through ferritinophagy, which causes
increased sensitivity to ferroptosis. Therefore, this peculiar iron-
dependent cell death is likely triggered by high levels of ferritin.

Iron accumulation is able to aggravate the progression of CM.
A study has suggested that iron overload exacerbates
experimental CM (77). Within the CM model constructed by
two strains of C. neoformans, Sb26 (a-Dserotype) and Sb26Rev
(a-D serotype), FeDx treatment distinctly increased brain colony
forming units (CFU). Additionally, median survival times
(MSTs) were markedly decreased (77).

Jarvis and colleagues analyzed the local and systemic immune
responses in patients with HIV-associated CM and found that
increased levels of proinflammatory cytokines and chemokines
(i.e. IL-6, IFN-g, and tumor necrosis factor (TNF)) are correlated
with CSF macrophage activation, reduced fungal burden, rapid
clearance of infection, and prognosis (78). However, these
inflammatory cytokines are able to promote extracellular iron
uptake by brain astrocytes and microglia by increasing the
expression of the iron transporters divalent metal transporter 1
(DMT1) and Ferroportin 1 (FPN1) (79, 80). Moreover, current
studies have validated that microglia have a vital function in
controlling the growth of C. neoformans within the CNS (81).
Consistent with prior work, IFN-g plus lipopolysaccharide (LPS)
enhanced anticryptococcal activity by the murine microglial cell
line BV-2 (82). Nevertheless, through in vitro treatment using
ferric nitrilotriacetate (FeNTA), the effect of iron-loaded brain
microglial cells on stimulation of IFN-g and LPS becomes
significantly weakened (83). Therefore, excessive iron
accumulation in the complex immune microenvironment of
CM will affect effective cells’ function, but the specific pathway
is still unknown.

Therefore, based on these results, we can preliminarily
conclude that iron metabolism within the brain can be
disturbed in CM, which mainly manifests by increasing ferritin
levels within CSF and accumulating iron in the brain. These
disorders may further cause physiological immune dysfunction
of the microglia. However, whether iron-dependent ferroptotic
cel l death is involved in the above process needs
further elaboration.

Lipid Peroxidation Is a Common
Manifestation of CM and Ferroptosis
Lipid peroxidation, a common hallmark of ferroptosis, is dependent
on ROS (54, 56). ROS, which includes neutral molecules (i.e.,
hydrogen peroxide), ions (i.e., superoxide anion), or radicals (i.e.,
hydroxyl radicals), are mainly produced during cellular respiration
and metabolic processes (84–86). ROS remain at homeostatic
concentrations within mammalian cells and participates in
specific normal physiological processes (86). In order to maintain
the appropriate state of ROS, humans have various antioxidant
defenses, whichmainly include antioxidant enzymes (i.e. superoxide
dismutase, catalase, and Gpx) and oxidation scavengers (i.e. vitamin
E, ascorbic acid, carotenoids, and polyphenols) (86). However, ROS
becomes excessively produced in certain diseases, and the
antioxidants within the human body cannot keep them at their
March 2021 | Volume 12 | Article 598601
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original homeostatic concentrations (54). ROS reacts readily with
nucleic acids, proteins, and lipids at high concentrations, which
eventually leads to DNA damage, protein denaturation, and lipid
peroxidation (86). As oxidative stress is related to the processes of
aging and cell death, ROS is involved in several age-related diseases
(including AD, PD, and cardiovascular diseases), and these diseases
are more or less confirmed to be related to ferroptosis (87–89).With
regards to CM, there is also evidence of lipid peroxidation taking
place with in brain cells.

Several studies have identified that C. neoformans is able to
cause lipid peroxidation in the vasculature and the brain (25). In
2010, a study showed that cellular lipid peroxidation levels of
rabbits inoculated with C. neoformans increased significantly,
and histopathological examination indicated that the oxidative
stress of multinuclear phagocytes mainly manifests as large
amounts of granular brown pigment within cells (25). The
study also found that C. neoformans increases lipid
peroxidation in the rabbit model, largely due to macrophage-
related oxidative stress and release of ROS (25). Not only that,
but another animal experiment identified that thiobarbituric acid
reactive substances (TBARS) in the brain are one of the most
commonly utilized methods for measuring lipid peroxidation
(26). The study discovered that, compared to the healthy group,
lipid peroxidation levels in CM-infected rat brains were
significantly increased (26). Analogously, when C. neoformans
infects macrophages, significant levels of cellular lipid
peroxidation occurs, and a higher volume density of dense
lipid droplets within macrophages can be observed using an
electron microscope (27). Studies that are related to HIV
infection also provide evidence of lipid peroxidation and claim
that lipid peroxidation may be linked to HIV-1-associated
neurodegeneration (90, 91).

These results confirm the occurrence of lipid peroxidation in
CM. However, overproduction of ROS and increased lipid
peroxidation have severe impacts on cellular physiological
functions, particularly within the CNS (92). Current studies
have shown that high levels of ROS are able to react with
PUFAs in various cellular membranes, which increases lipid
peroxidation products, including 4-hydroxynonenal and
malondialdehyde (93). These products have a long intracellular
half-life and have been shown to have an effect on cellular
activities that are related to neurite plasticity, which includes
signal transduction pathways and ubiquitination (93).
Additionally, an increasing number of neurological diseases
have been shown to be related to increasing levels of lipid
peroxidation and accumulation of lipid peroxidation products,
such as neurodegenerative diseases (i.e., AD, PD, and
amyotrophic lateral sclerosis) and CNS traumas (i.e. stroke,
traumatic brain injury, and spinal cord injury) (92, 94, 95).
Therefore, lipid peroxidation in CM can have an adverse effect
on the CNS through the mechanisms mentioned prior.

In combination with the preceding descriptions of iron
metabolism in CM, the mechanism of lipid peroxidation
caused by cryptococcal infection of the brain is likely to, at least
partly, include an iron-dependent process. However, this iron-
dependent lipid peroxidation is a classic feature of ferroptosis.
Frontiers in Immunology | www.frontiersin.org 5
Hence, ferroptosis is likely involved in the potential link between
lipid peroxidation and iron accumulation in CM. However, more
systematic studies that analyze the function of ferroptosis in the
pathogenesis of CM are needed in order to extend and validate
these initial observations.

CM Affects the Amino Acid Metabolism of
the Brain
The effect of CM and C. neoformans on the host’s amino acid
metabolism has not yet been fully elucidated. Only a few studies
have discovered that CM has an effect on glutamate and cysteine
metabolism, which is closely related to ferroptosis. Metabolomics
research has identified several potential metabolic biomarkers of
CSF that can help distinguish different types of meningitis.
According to different studies, glutamate and cysteine may be
potential metabolic markers of CSF that can help distinguish CM
from tuberculous meningitis (96). Similarly, another study
evaluated the metabolic status of lung epithelial cells that were
infected with C. neoformans. Analysis of these results indicates
that several pathways, including glutamate metabolism and GSH
metabolism, were impaired at the low multiplicity of infections
(MOI) samples, and that incubation at higher MOI resulted in the
perturbance of the cysteine metabolism (97). Importantly,
extensive research has proven that these dysregulated amino
acids have a significant role in ferroptosis induction. Glutamate
is an important sensitizer of ferroptosis (60). As described above, a
high extracellular concentration of glutamate inhibits system x−c
and induces ferroptosis, which likely explains the toxic effects of
glutamate when it accumulates to higher concentrations within
the CNS (70, 71, 98). Indeed, animal experiments validated that
glutamate, the neuroexcitatory amino acid, is involved in brain
damage caused by cryptococcal infection (99). Researchers
concluded that, as has been discovered with additional brain
infectious diseases or toxic disorders, a depletion of glutamate in
the brain of experimental murine cerebral cryptococcosis can be
caused by excessive release of glutamate (99). However,
accumulation of extracellular glutamate is thought to be a
natural trigger for induction of ferroptosis (60).

Overall, although current research in amino acid metabolism
of CM remains insufficient, combined with existing research and
experimental results of iron metabolism and lipid metabolism,
attention needs to be paid to the relationship between iron
accumulation, lipid peroxidation, and dysregulated amino acid
metabolism, all of which are hallmarks of ferroptosis. Hence,
ferroptotic cell death is likely involved in the cellular damage of
CM. Nevertheless, the current research remains inconclusive,
and more in-depth research is needed.
IMMUNOMODULATORY AND PRO-
INFLAMMATORY ROLE OF FERROPTOSIS

Since ferroptotic cells secrete DAMPs and alarmin, which are
recognized by immune receptors and ultimately aggravate cell
death and inflammation, ferroptosis is considered as both
immunogenic and pro-inflammatory (100). In the model of
March 2021 | Volume 12 | Article 598601
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folic acid-induced AKI, our study results concluded that
ferroptosis can cause renal tubule damage by triggering
inflammation, as upregulation of pro-inflammatory cytokines
(interleukin-33, TNFa, MCP-1) and necroptotic proteins are
quenched through Fer-1, a specific inhibitor of ferroptosis
(101). Furthermore, inflammatory cells infiltrate into the
ferroptotic tissue, which was noticeable, as determined by
staining against F4/80, a 160 kD glycoprotein expressed by
murine macrophages (61). Furthermore, ferroptosis regulates
synchronized tubular cell death and contributes to immune-
cell extravasation into the damaged tissue, while leukocyte
transmigration and levels of pro-inflammatory cytokines are
significantly decreased in the presence of Fer-1 (102). In an in
vivo model of closed-chest myocardial ischemia-reperfusion
injury (IRI), Fer-1 significantly reduced the initial infarct area
and neutrophil infiltration into the heart, which suggests that
immunogenicity and pro-inflammatory properties of ferroptosis
are involved in early cardiomyocyte cell death and neutrophil
recruitment in vivo (103). Results from this study also validated
that ferroptotic cell death initiates neutrophil recruitment after
heart transplantation through a TLR4/Trif-dependent pathway
(103). These results reflect that ferroptosis can induce innate
immunity and promote production of pro-inflammatory
molecules in various diseases. However, the specific pathways
through which ferroptosis carried out its immunogenic and pro-
inflammatory effects have not yet been fully elucidated.

Arachidonic acid (AA) oxidation products, which are released
from ferroptotic cells, are considered to be immunomodulatory
signals and, therefore, regulate immunity. Eicosanoids are
biologically active signaling lipids that are derived from AA
and related PUFAs (104). Over the decades, inhibiting the
formation or receptor-mediated actions of classical eicosanoids,
such as through aspirin or other non-steroidal anti-
inflammatory drugs, remains the prevailing strategy to alleviate
inflammation. Friedmann Angeli et al. demonstrated that
inducible Gpx4 disruption triggers Nec1-sensitive ferroptotic
cell death, and determined that AA metabolites are released
into the cell culture medium (61). Levels of eicosanoids, such as
5-hydroxyeicosatetraenoic acid (HETE), 11-HETE, and 15-
HETE, were increased upon triggering of ferroptosis (61).
Concurrently, ferroptosis-inducing agents (FINs) also induced
a similar HETE signature (61). Analogously, in heart ferroptotic
cells, the abundance of several HETE, epoxyeicosatrienoic acid
(EET) species, and prostaglandin D2 were significantly
increased, and Fer-1 treatment resulted in a decrease of these
lipid mediators (103). Additional studies have also validated that
inhibition of ferroptosis led to a reduction in production of pro-
inflammatory lipid mediators, and inhibited TNF- or IL-1-
mediated activation of the NF-kB pathway (105). These
findings suggest that ferroptotic cells secrete specific lipid
mediators that are involved in downstream signal
transduction mechanisms.

Several studies have suggested that eicosanoids have an
essential role in infection and inflammation and play a role in
immunomodulation (106). For example, PGE2 leads to
inhibition of necrotic cell death of macrophages, thus
Frontiers in Immunology | www.frontiersin.org 6
promoting pathogen resistance and host protection during M.
tuberculosis infection (107). However, PGE2 impairs immunity
to the influenza A virus by inhibiting macrophage antigen
presentation and T-cell mediated immunity (108). Another
example, despite the fact that definitive biological functions for
HETE products have not yet been clarified, is that some may be
ligands for peroxisome proliferator-activated receptor-a
(PPARa) and PPARg, which induce anti-inflammatory effects
(109, 110). Therefore, pro-inflammatory lipid mediators secreted
by ferroptotic cells can further regulate immunity or drive
s e conda r y i nfl amma to r y damage in f e r r op to s i s -
related pathologies.

In addition to lipid mediators, studies have also discovered
that ferroptotic cells release high mobility group box 1
(HMGB1), which also mediates inflammation (111). HMGB1
is a nuclear protein that can be released by dead, dying, or injured
cells (112). Once HMGB1 is released, it can bind to several
receptors, including the toll-like receptor 4 (TLR4) and advanced
glycosylation end-product specific receptor (AGER), in order to
mediate immune responses (112). Thus, in order to measure the
degree of HMGB1 release from ferroptotic cells, multiple cell
lines, including HL-60 cells (a human leukemia cell line),
HT1080 (a human fibrosarcoma cell line), PANC1 (a human
pancreatic cancer cell line), and an immortalized MEF line, were
treated with ferroptosis activators (erastin, sorafenib, RSL3, and
FIN56) (111). Through ELISA analysis, it was discovered that
HMGB1 released from these ferroptotic cells were significantly
increased, and that this effect was hindered by ACSL4
knockdown and ferroptosis inhibitors, which include Fer-1,
Lip-1, or baicalein (111). More importantly, this study
demonstrated that ferroptotic cells are triggered by the pro-
inflammatory cytokine TNF production in the bone marrow-
derived macrophages, while anti-HMGB1 neutralizing
antibodies are able to attenuate TNF production, which
suggests that HMGB1 mediates inflammation response in
ferroptosis (111). Therefore, inhibiting release of HMGB1 from
ferroptotic cells is a potential anti-inflammatory strategy that is
utilized for ferroptosis-associated diseases.

HMGB1 is a critical element that is required for
immunogenicity of cancer cells. The absence of HMGB1
expression in dying tumor cells compromises DC-dependent
T-cell priming by tumor-associated antigens (113). Moreover,
Wang et al. confirmed a direct link between ferroptosis and anti-
tumor immunity (114). As mentioned above, the system xc- is a
disulfide-linked heterodimer that consists of SLC3A2 and
SLC7A11 and plays a key role in ferroptosis. IFN-g released
from immunotherapy-activated CD8+ T cells downregulates
SLC3A2 and SLC7A11 expression, and increases tumor cell
lipid peroxidation and ferroptosis, which ultimately improves
anti-tumor efficacy of immunotherapy (114). Therefore,
regulating ferroptosis-associated metabolism in tumors is a
potential strategy to improve the efficacy of cancer
immunotherapy in the future.

For CM, confocal microscopy results indicated that C.
neoformans induces translocation of HMGB1 in brain
endothelial cells, which, in turn, results in endothelial cell
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damage and ultimately promotes breakdown of the blood-brain
barrier (BBB) (115). Given the role of HMGB1 in inflammation
and immune regulation, regulating ferroptosis may be an
important method to suppress the outbreak of inflammation in
particular infectious diseases, including CM.
FERROPTOSIS AND INFECTIOUS
DISEASES

As mentioned prior, ferroptosis is a type of programmed cell
death that is characterized by free iron accumulation and toxic
lipid peroxides. In infectious diseases, cell death is the most
common phenomenon. Furthermore, it has been validated that
ferroptotic cell death may be the main form of host cell death
caused by specific pathogens. Additionally, ferroptosis of
immune cells during infection is advantageous for infectious
agents. Amaral et al. identified that M. tuberculosis-induced
macrophage death in vitro is a type of necrosis, as opposed to
apoptosis or pyroptosis, and that this form of cell death is
accompanied by increased levels of intracellular labile iron and
membrane lipid peroxides, as well as a decrease in GSH and
Gpx4 expression levels (39). Interestingly, all of the significant
parameters that were covered above are key hallmarks of
ferroptotic cell death. Therefore, studies have investigated
whether M. tuberculosis-induced death of macrophages is
related to ferroptosis. In fact, results from these studies have
confirmed that ferroptosis inhibitors, including pyridoxal
isonicotinoyl hydrazone (PIH) and Fer-1, suppress lipid
peroxidation and cell death, suggesting that ferroptosis may be
involved in this form of necrosis (39). Importantly, these results
were further confirmed by employing a mice model of M.
tuberculosis infection (39). P. aeruginosa, a common gram-
negative rod-shaped bacterium, is able to synthesize LOXs,
which converts arachidonic acid in the membrane of the host
cell to 15-hydroxyeicosatetraenoic acid, leading to the induction
of lipid peroxidation and acting as an executor in ferroptosis
(35, 36).

Similarly, another study discovered that macrophages
infected with Histoplasma capsulatum, an environmentally-
acquired fungal pathogen, can also lead to increased
intracellular oxidation products, and eventually cell death
(116). Despite the fact that the ferroptosis inhibitor Fer-1 can
reduce the cell death caused by H. capsulatum infection, further
experiments have validated that the mechanism decreases fungal
ergosterol synthesis, instead of inhibiting ferroptosis (116).
Consequently, upon exploring the relationship between
ferroptotic cell death and pathogenic mechanism of pathogens,
attention needs to be paid to ferroptosis inhibitors, especially
Fer-1, which may have a direct inhibitory effect on pathogens.
Furthermore, fungal infection can also be caused by plant
ferroptotic cell death (117–119). Ceratocystis Fimbriata
BMPZ13 infection of sweet potato leads to iron-associated
ferroptotic cell death in leaves and veins (119). Incompatible
rice (Oryza sativa)-Magnaporthe oryzae interactions induces
ferroptotic cell death in rice cells (118).
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At the end of 2019, coronavirus disease-2019 (COVID-19),
caused by SARS CoV-2, started to spread worldwide. Several
studies have further elaborated that cellular redox imbalance and
iron incoordination can play an essential role in the pathogenesis
of COVID-19 (41, 42). As an example, COVID-19 infection
induces secretion of IL-6, which can stimulate ferritin and
synthesis of hepcidin, eventually leading to iron dysregulation
(40). Excess intracellular iron interacts with molecular oxygen in
order to generate ROS through the Fenton reaction, which
results in mitochondrial function disorder and ferroptotic cell
death (40). A recent study also suggested that the mechanism of
SARS CoV-2, leading to ferroptotic cell death, may be related to
cysteine-associated cellular metabolism (42). Although the
relative research appears sparse, these results suggest new
potential links between ferroptosis and COVID-19, which may
represent a novel strategy for treatment of COVID-19.

Moreover, with regards to HBV infection, liver fibrosis and
hepatocellular carcinoma (HCC) are the most severe stages of
disease progression (120). Hepatitis B virus X protein (HBx)
plays a significant role in HBV replication and the development
of HCC (43). Furthermore, HBx can further activate hepatic
stellate cells (HSCs) by inhibiting ER stress, ferroptosis, and
ultimately promoting liver fibrosis. In contrast, chrysophanol,
which is derived from a Chinese herb, reverses this inhibition
and may be a possible therapeutic strategy for treatment of anti-
hepatic fibrosis (121). However, the relationship between HBx-
induced ferroptosis and l iver fibrosis needs to be
further investigated.

In conclusion, these studies have indicated signs of ferroptosis
across many infectious diseases; however, specific links need to
be further researched. Existing evidence has validated that
ferroptosis of immune cells during infection is beneficial to
disease progression, and that ferroptotic cell death can induce
release of DAMPs, which can both aggravate cell death and
inflammation. Therefore, in order to control inflammation and
cell death during infection, an effective regulation of ferroptosis
may be a novel and possible strategy for treatment of
infectious diseases.
DISCUSSION AND FUTURE
PERSPECTIVES

Since the majority of infectious diseases involve well-characterized
cellular necrosis and pro-inflammatory mechanisms, these
represent possible new targets for therapeutic intervention. In this
review, we elaborate on possible potential links between CM and
ferroptosis. As iron overload and lipid peroxidation are
fundamental characteristics of ferroptosis, these hallmarks are
further reflected in CM. Hence, we reason that there might be a
relationship between this cell death modality and CM.

Ferroptosis, a non-apoptotic form of cell death, is
characterized by iron-dependent lipid peroxidation. For CM,
an increase of ferritin within the CSF and accumulation of iron in
the brain cells may indicate induction of ferroptosis. Ferritin’s
abundance is a crucial factor that governs ferroptosis sensitivity
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as ferritin can release iron into the LIP through ferritinophagy,
thereby causing increased sensitivity to ferroptosis (48–50).
Importantly, intracellular iron accumulation and lipid
peroxidation are able to coexist, and ferroptosis can exactly
connect them together (Figure 2). Therefore, according to all
current research results, we hypothesize that ferroptosis is likely
involved in the pathogenic mechanism of CM, similar to other
infectious diseases. However, we still need more in-depth
research in order to validate this hypothesis. Through
regulation of ferroptosis, we are able to better understand the
relationship between iron accumulation and lipid peroxidation
and ferroptosis. However, we need to pay more attention to the
direct inhibitory effect of the regulator on pathogens. One study
pointed out that Fer-1, a commonly used ferroptosis-inhibiting
agent, reduced growth of C. neoformans in the YNB media by
>95% (116). Hence, when designing an experiment, we should be
able to regulate ferroptosis through multiple pathways.

In addition to ferroptosis, regulated necrosis is also related to
pyroptosis and necroptosis. Recently, studies have identified that
ferroptosis and pyroptosis may intersect (122). Therefore, in
Frontiers in Immunology | www.frontiersin.org 8
cellular necrosis in C. neoformans infection, it is necessary to
exclude intersections with additional cell death pathways.
Furthermore, ferroptosis is immunogenic and pro-
inflammatory as ferroptotic cells release DAMPs and alarmin,
which may be recognized by immune receptors and ultimately
aggravate cell death and inflammation (100). Despite the fact
that no studies have explored the expression of ferroptosis-
associated DAMPs in CM, due to the extensive role of
ferroptosis in the pro-inflammatory and immune regulation,
this will also become a direction for future designed
experiments. Overall, more systematic studies that analyze the
function of ferroptosis in the pathogenesis of CM are needed in
order to extend and validate these initial observations.

Moreover, iron accumulation may be an indicator of
differential diagnosis of CM and helps estimate the severity of
disease. Compared to non-infectious neurologic disorders and
meningitis, other than CM, the increase in ferritin is most
significant in CM, and iron overload can help exacerbate
experimental CM and significantly weaken the function of
microglia. Beyond that, overproduction of ROS and increased
FIGURE 2 | Ferroptosis aggravates cryptococcal meningitis (CM) by regulating immunity and pro-inflammatory activity. In CM, increased ferritin levels within the CSF
and accumulation of iron in brain cells release iron into LIP through ferritinophagy, and increased glutamate may inhibit System xc-, which leads to a depletion of
Gpx4 in cells. Accumulation of iron in LIP and depletion of Gpx4 induces lipid peroxidation and further triggers ferroptosis. Ferroptotic cells release DAMPs and
alarmin, which participate in immune regulation and pro-inflammatory activities, ultimately aggravating cell death and inflammation. Regulating ferroptosis by
inhibitors, such as iron chelators and antioxidants, may be a potential novel strategy to suppress the pathway and delay CM progression. CSF, cerebrospinal fluid;
LIP, labile iron pool; GSH, glutathione; Gpx4, glutathione peroxidase 4; DAMPs, damage-associated molecular pattern molecules; HMGB1, high mobility group box
1; IL-33, interleukin-33; TNF, tumor necrosis factor.
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lipid peroxidation also severely impacts cellular physiological
functions, particularly within the CNS cells. Therefore, the
mechanism of iron metabolism and lipid metabolism in CM
may be a potential new direction for future research.

Ferroptosis has been considered a novel target for therapeutic
intervention. An increasing number of studies have established
that ferroptotic cell death is closely related to numerous diseases,
particularly in tumors. In recent years, the role of ferroptosis in
infectious diseases has gradually emerged. As mentioned prior,
M. tuberculosis induced iron accumulation and lipid
peroxidation of macrophages and confirmed ferroptotic cell
death, which can be suppressed by the ferroptosis regulator
Fer-1 and iron chelation (39). P. aeruginosa utilizes host
polyunsaturated phosphatidylethanolamines in order to induce
theft-ferroptosis within the bronchial epithelium and may
represent a possible therapeutic target against P. aeruginosa–
related diseases (35). SARS CoV-2 may also trigger ferroptosis by
promoting release of IL-6 and affecting cysteine metabolism,
which suggests a novel strategy for COVID-19 treatment (40–
42). This evidence indicates that ferroptosis is involved in
pathogenesis of various pathogens, and inhibition of this
unique form of cell death may be a novel treatment strategy.
Unfortunately, there is no direct or indirect link between
ferroptosis regulators and C. neoformans and CM. However,
additional studies have been required to validate ferroptosis as a
viable strategy for CM treatment. Nevertheless, prior to this,
more research is needed to elucidate the status of ferroptosis in
Frontiers in Immunology | www.frontiersin.org 9
the pathological mechanisms of CM. In this review, we provide a
promising research direction, and the potential to decrease tissue
damage while reducing pathogenic burden is an attractive aspect
of this research direction.
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