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Diabetes type 2 and insulin resistance are the risk factors for cardiovascular disease. It is already known that atherosclerosis is an
inflammatory disease, and a lot of different factors are involved in its onset. C-peptide is a cleavage product of proinsulin, an active
substance with a number of effects within different complications of diabetes. In this paper we discuss the role of C-peptide and
its effects in the development of atherosclerosis in type 2 diabetic patients.

1. Introduction

C-peptide is a small 31-amino acid peptide, and it is cleaved
from proinsulin in the synthesis of insulin [1]. Proinsulin
consists of A and B chain and connecting peptide in the
middle, called C-peptide. Cleavage of proinsulin takes place
in endoplasmatic reticulum of beta pancreatic cells. In ad-
dition, C-peptide is stored in Golgi secretory granules and
is cosecreted in equimolar amounts into the blood stream
together with insulin in response to the glucose stimu-
lation [1, 2]. Amino acid sequences of C-peptide are in
different species relatively variable. Nevertheless, C-peptide
has several conserved sequences, for example, N terminal
acidic region, glycine-rich central segment, and C-terminal
pentapeptide [3]. Despite the first reports describing C-pep-
tide as a peptide with little or no biological activity, recent
data reports binding of radioactive labelled C-peptide on
the cell membranes [4]. Other studies show binding effects
stimulating Na-K-ATPase. C-terminal pentapeptide gives
full replacement of the entire molecule, which is similar
to other peptides with hormone function like gastrin and
cholecystokinin [5, 6]. The receptor stays unknown but there
is a lot of data demonstrating C-peptide biological effects by
activating different signalling pathways, for example binding
to pertussis-toxin-sensitive G;-coupled receptor on Swiss 3T3
fibroblasts [7, 8] or activating p38 protein kinase pathway
in mouse lung capillary endothelial cells [9]. The approach
of Luppi et al. detected C-peptide in early endosomes which

can be signalling station in the cell, though C-peptide might
achieve its cellular effects [10].

There is a certain controversy regarding reported effects
of the C-peptide. Its beneficial effects have been demonstrat-
ed in long-term complication in type 1 diabetes. Substitution
of C-peptide in type 1 diabetes improves glomerular hyper-
filtration, hypertrophy, and proteinuria [11-14]. In contrast
to this, C-peptide in type 2 diabetes shows proinflammatory
and proatherogenic effects [15, 16]. The aim of this paper
focuses on the proinflammatory effects of C-peptide and its
potential importance in atherosclerosis in diabetic subjects.

2. Atherosclerosis Is an Inflammatory Disease

Atherosclerotic lesions are molecular and cellular responses
in the vessel wall that have been described as inflammatory
disease [17]. Endothelial dysfunction is an early event in
atherosclerosis and an important feature of glucose intoler-
ance, diabetes, obesity, and dyslipidemia, as well as a major
component of cardiovascular disorders, including hyperten-
sion and atherosclerosic diseases [18]. The atherosclerotic
plaque consists of necrotic core, calcified regions, foam
cells with accumulated lipids, inflamed smooth muscle cells,
endothelial cells, lymphocytes, and leukocytes [17]. Mini-
mally oxidised LDL in blood can release bioactive phospho-
lipids that can activate vascular endothelial cells to express
leukocyte adhesion molecules, such as vascular cell adhesion
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molecule-1 (VCAM-1) or intercellular adhesion molecule-1
(ICAM-1) [19]. Highly oxidised LDL can be recognised by
monocytes scavenger receptor to be transformed into foam
cells (Figure 1). Minimally oxidised LDL-induced expression
of adhesion molecules induces initial step in atherosclerosis,
leukocyte recruitment, and rolling on the endothelium.
Moreover, activated endothelium expresses selectins, mono-
cyte chemoattractant protein-1 (MCP-1), RANTES, and
fractalkine, which allow leukocyte adherence to the endothe-
lium [20]. Chemokines are small proteins, and their primary
function is activation of specific pertusis-toxin sensitive G-
protein-coupled receptors, which results in migration of
inflammatory cells [21]. Monocytes and T lymphocytes are
migrating into the intima of the vessel wall. Monocytes
are expressing scavenger receptor and toll-like receptor,
which mediate differentiation into foam cells. These cells in
addition play central role in atherosclerotic plaque formation
[22, 23]. In atheroma activated macrophages release IL-
6, TNFa, MIF, and other proinflammatory cytokines and
chemokines as well as nitric oxide. This proinflammatory
response promotes replication of smooth muscle cells from
the media and formation of extracellular matrix [17].

T lymphocytes are entering the subendothelial space as
naive TO cells. Family of T cell chemoattractants such as IP-
10 can in the same way regulate lymphocyte recruitment
into the atheroma [24]. Smooth muscle cells are producing
extracellular matrix within the vessel wall and in response
to atherogenic stimuli they can modify the type of matrix
produced. Further, the type of matrix affects the lipid content
of the plaque and the proliferative index of the cells attached
to the plaque [25]. T lymphocytes release interferon-y (IFN-
y) into the plaque, which might block the collagen synthesis
in SMC and decrease their ability to renew the collagen. Deg-
radation of extracellular matrix allows penetration of SMCs
through elastic laminae and enables plaque to grow [26]. Ac-
tivated macrophages secrete proteolytic enzymes and matrix
metalloproteinases, and that can lead to degradation of the
matrix complex of the plaque and destabilisation of the
atheroma with increased risk for plaque rupture and can lead
to acute clinical events such as myocardial infarction and
stroke [27].

2.1. Proinflammatory In Vitro Effects of C-Peptide. Individu-
als with diabetes have increased risk of coronary heart disease
compared with nondiabetic individuals, and the risk of
cardiovascular deaths is as high as in nondiabetic individuals
with previous myocardial infarction [28].

Marx et al. reported deposition of C-peptide in the
subendothelial space in carotid artery in diabetic subjects
[15]. In some of the subjects, deposition of C-peptide was
found in the media of the artery. In contrast to this, in nondi-
abetic patients deposition of C-peptide has not been found.
All the 21 subjects involved in the study had deposition of
C-peptide, with 77% of them also having infiltration of
monocytes and just 57% infiltration of T lymphocytes [15].
Marx and colleagues used these results to propose the hy-
pothesis that C-peptide may have chemotactic effects on the
inflammatory cells and might have a role in atherosclerosis
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(Figure 1). In vitro migration assays performed in modified
Boyden chambers reported that C-peptide induces migra-
tion of T lymphocytes and monocytes/macrophages in a
concentration-dependent manner. These effects were similar
to those induced with monocyte chemokine MCP-1 or
T-lymphocyte chemokine RANTES [15, 29]. In addition,
checkerboard analysis in the same study showed that C-
peptide induces chemotaxis rather than chemokinesis [29].
Also there are no migratory effects of C-peptide on B cells or
neutrophils [30]. C-peptide stimulates specific intracellular
signalling pathways in different cell types [8, 9, 31], for
example, Na+/K+ATP-ase [5, 32] ERK kinase, PI-3 Kinase
[8, 29, 32, 33], and AKT [8, 32, 33]. In T lymphocyte or
in monocytes, C-peptide mediates its chemotactic activity
through an as-of-yet- unidentified pertussis toxin sensitive
G-protein-coupled receptor with subsequent downstream
activation of PI3-kinase y. Our experiments demonstrated
that a specific inhibitor of Src-kinase, PP2, in addition to
transfection of Src siRNA, abolished C-peptide-induced T
lymphocyte migration, suggesting that C-peptide also signals
through this pathway. Besides, experiments showed that PI-
3 kinase activation leads to the involvement of small Rho-
GTPases, like RhoA, Rac-1, and Cdc42 in these cells. Further-
more in CD4-positive lymphocytes, C-peptide stimulates
phosphorylation of PAK (p21-activated kinase), LIMK (LIM
domain-containing protein kinase), and cofilin downstream
of Rac-1 and Cdc42, leading to cofilin inactivation and
actin filament stabilization. Alternatively, C-peptide activates
ROCK (Rho kinase) and MLC (myosin light chain) phospho-
rylation downstream of RhoA, thereby stimulating myosin-
mediated cell contraction [30]. These data supported an
active role of C-peptide in chemotaxis of inflammatory cells.

C-peptide has an effect on increased microvascular blood
flow in patients with type 1 diabetes [34]. Some studies sug-
gest direct role of endogenous insulin and C-peptide in amel-
ioration of endothelial dysfunction [35]. Additionally, C-
peptide increases nitric oxide (NO) production through
ERK-dependent upregulation of endothelial nitric oxide syn-
thase (eNOS) gene transcription [36].

In addition, C-peptide positively influences the expres-
sion of CD34 scavenger receptor in human THP-1 mono-
cytes. These data suggest that C-peptide may also promote
the differentiation of monocyte/macrophages towards foam
cells, thus representing another potential proatherogenic
effect of C-peptide [37].

Further effects of C-peptide have been investigated on the
smooth muscle cells, which are important for the develop-
ment of atherosclerosis. Stimulation with C-peptide induced
proliferation of smooth muscle cells in concentration-de-
pendent manner. Walcher and colleagues showed signifi-
cantly higher production of KI-67 nuclear protein and 3[H]-
thymidine incorporation in vascular cells stimulated with
C-peptide. This proliferation was similar to those induced
by platelet-derived growth factor (PDGF) [33]. Additionally,
C-peptide stimulation induces phosphorylation of protein
tyrosine kinase Src and PI-3 kinase, which leads to down-
stream stimulation of MAP ERK1/2 [33]. It is already
demonstrated that activation of ERK1/2 is a crucial step in
cell proliferation and differentiation [38]. The downstream
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FIGURrE 1: In insulin resistance and early type 2 diabetes insulin levels are increased in circulation. C-peptide levels in blood are increased in
equimolar concentration with insulin. C-peptide deposits in subendothelial place in the vessel wall. Deposition is followed by chemotactic
effect of C-peptide on the inflammatory cells. It induces migration of monocyte/macrophages and T lymphocytes into the vessel wall.
C-peptide has also an effect on the proliferation of smooth muscle cells from the media.

control of VSMC proliferation by extracellular stimuli takes
place in mid- to late G; phase of the cell cycle, where D-type
cyclins promote G;- to S-phase transition by leading to Rb
phosphorylation [39, 40]. Our data showed an increase in
cyclin D1 expression, whereas Rb phosphorylation suggested
that C-peptide acts via similar signalling pathways [33].
C-peptide mitogenic effects have been detected in other
cell types, like endothelial cells, HEK293 cells, and chon-
drocytes. When endothelial cells were exposed to C-peptide,
a significant increase in cell number of 40% was observed
[41] (Figure 1). Another group has found that C-peptide
stimulates rRNA synthesis, suggesting that the peptide can
have proliferative effects and induces expression of 47S in
HCS-2/8 chondrocytes derived from a human chondrosar-
coma. After 72 hours of exposure to C-peptide, cell counting
under a phase contrast microscope and measurement with
a cell proliferation kit and BrdUrd staining established that
C-peptide exerts proliferative effects on chondrocytes [42].

3. Proinflammatory In Vivo
Effects of C-Peptide

Observational data from previous studies showed deposi-
tion of C-peptide in intima of the carotid artery in diabetic

individuals [15]. Further, these data showed that C-peptide
induces chemotaxis of inflammatory cells in vitro and
activation of intracellular signalling pathways [29, 30]. These
observations needed in vivo experimental model to explore
effects of C-peptide in onset of atherosclerosis. To test this
hypothesis we applied ApoE-deficient mouse model. The
animals were divided into two groups. C-peptide group
numbered 18, and placebo 17 mice per group [16]. After
subcutaneous injections (200 nmol/injection) of dissolved
peptide we identify that C-peptide levels in blood increased
4- to 5-fold compared to basal levels (12.9 = 1.8 nmol/L
compared with 2.7 = 0.8 nmol/L; C-peptide versus placebo;
P < 0.05). Simultaneously mice were put on the western
type diet to trigger atherosclerosis. Immunohistochemical
analysis of the aortic arch showed deposition of C-peptide
in the early atherosclerotic plaques. Computer-assisted image
quantification revealed significantly higher deposition of C-
peptide in treated mice, compared to placebo one (2.1 +
0.4 versus 0.8 = 0.1% positive area; P < 0.01) treated
with water (Figure 2). Similar results were obtained in
the aortic root (data not shown). After 12 weeks of C-
peptide or water sc injections body weight and lipids (total
cholesterol, triglyceride, high density lipoprotein, and low
density lipoprotein) did not differ between the two treated



groups. In addition, glucose and insulin levels showed no
differences between groups.

Deposition of C-peptide was followed with increased
infiltration of inflammatory cells such as monocytes/macro-
phages in the aortic arch. Moreover, higher deposition of
inflammatory cells has been detected in the aortic root (data
not shown). Colocalization of C-peptide with inflammatory
cells was already demonstrated in early atherosclerotic pla-
ques of diabetic patients [15]. In contrast to this it has been
revealed that C-peptide demonstrates antithrombotic effects
in vivo. Administration of C-peptide in high doses caused
delay in arteriolar and venular thrombus growth in normal
and diabetic mice [43].

We already know that diabetes accelerates smooth muscle
cell proliferation in atherosclerotic lesions and that it cor-
relates with insulin levels [44]. In a study by Walcher et al,,
authors revealed that the C-peptide acts as a mitogen on the
human and rat arterial vascular smooth muscle cells in-vitro
[33]. Staining for a-actin (Figure 2) in animal model has
shown significantly higher content of smooth muscle cells in
C-peptide-treated group (C-peptide versus placebo: 4.8 +0.6
versus 2.4 + 0.7% positive area; P < 0.01) as well as a trend
towards more KI-67 proliferated cells in C-peptide-treated
group.

C-peptide had significantly higher deposition of lipids
in aortic arch compared with placebo. Lipid deposition in
en face preparations of the abdominal and thoracic aorta in
C-peptide-treated mice did not reach statistical significance
compared to placebo mice (C-peptide versus placebo: 5.64 +
0.69% versus 3.98 + 0.5%; P = 0.07) [16]. A possible ex-
planation could be that C-peptide proinflammatory effects
obtained in the ApoE-deficient animals were on top of a
high-cholesterol diet. Initial aim of this study was to detect
deposition of C-peptide in the vessel wall in an animal mod-
el without distinguishing metabolic effects. In the future it
would be interesting to use a model of diabetes and ath-
erosclerosisprone mice fed with high-cholesterol diet such
as ob/ob or LDL—/— mice. Furthermore, nothing is known
about C-peptide effects on plaque vulnerability or produc-
tion of metalloproteinases. Future studies should answer
these questions.

4. Discussion

C-peptide is by now identified as a biologically active
substance. Many studies initiate C-peptide as an active
peptide hormone with important physiological effects, which
affects renal, neuronal, and microvascular functions in
patients with diabetes [45-48]. C-peptide increases capil-
lary blood flow in type 1 diabetic patients [49], through
increased influx of Ca2* into endothelial cells, which facilitate
release of NO from the endothelium. Many studies have
demonstrated beneficial effects of C-peptide on the long-
term complications in type 1 diabetic patients. This could
have an important therapeutic implication [11, 12]. For
example, decreased blood flow in the extremities might
be prevented by C-peptide [50]. Moreover, improvements
of endoneurial blood flow and axonal swelling have been
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also demonstrated by introduction of C-peptide [51]. In
numerous studies of type 1 diabetes glomerular hyperfil-
tration, hypertrophy, and proteinuria have been reduced
by C-peptide [13, 14, 52]. C-peptide treatment improves
sensory nerve function in early stage of type 1 diabetic
neuropathy [47]. The effects of C-peptide on type 2 diabetes
as well as on the cell proliferation and apoptosis are very
controversial at present. Levels of inflammation in type 1
and type 2 diabetes are still unknown, but it has been
found that plasma levels of IL-6 correlate with C-peptide
levels and insulin sensitivity [53]. The metabolic syndrome,
prediabetes, and type 2 diabetes mellitus accelerate vascular
disease and increase development of the disease [54]. At
the moment the reasons for the increased predisposition
and progression of atherosclerosis in patients with diabetes
are unknown. In vivo model from Vasic et al.[16] showed
increased deposition of C-peptide in early atherosclerotic
lesions in ApoE-deficient mice. C-peptide deposition was
followed by recruitment of inflammatory cells into the vessel
wall and increased infiltration of monocytes/macrophages
as well as increased proliferation of smooth muscle cells.
These results are also in agreement with in vitro data of
Swiss 3T3 fibroblasts, where C-peptide has been shown to
activate PI-3 kinase [8] as well as increased expression of
PPAR-y regulated CD36 scavenger receptor in human THP-
1 monocytes by C-peptide. These results recommend that
C-peptide in addition to these effects might promote the
differentiation of monocyte/macrophages into foam cells
[37]. Our study showed no differences in E-selectin and
ICAM-1 levels as well as levels of the inflammatory markers
such as TNFa and soluble IL-6. An explanation could
be that C-peptide was used in this model on top of the
hypercholesterinemic diet. But these data are in contrast to
several findings in which C-peptide has anti-inflammatory
effects and reduced upregulation of cell adhesion molecules
under inflammatory conditions [55, 56]. In mice with
endotoxic shock, C-peptide treatment improved survival rate
and reduced plasma levels of tumour necrosis factor-alpha
(TNF«), macrophage inflammatory protein-1 alpha, and
monocyte chemoattractant protein-1 [57].

We already know that the smooth muscle cells and their
secreted products are the main components of advanced
atherosclerotic lesions [58]. C-peptide deposition was also
found in the media in diabetic patients. Moreover, C-
peptide induced proliferation of smooth muscle cells in vitro,
therefore potentially promoting both the development of
atherosclerotic lesions and neointima formation after coro-
nary intervention [33]. After vascular injury, smooth muscle
cells start to proliferate and migrate into the developing
neointima. They develop into the major cellular substrate
of the restenotic tissue [59]. In vivo studies showed that
downregulation of ERK1/2 inhibits early smooth muscle cell
proliferation and neointimal thickening in response to arte-
rial injury [60]. In smooth muscle cells C-peptide induces
ERK1/2 signalling. Data obtained from ApoE-deficient mice
demonstrated significantly higher content of smooth muscle
cells in mouse aortic arch, which was followed with higher
deposition of lipids in early atherosclerotic lesions in mice
treated with high concentrations of C-peptide [16]. In
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FIGURE 2: Increased levels of C-peptide in ApoE-deficient mice were established by subcutaneously injections of C-peptide. C-peptide was
administrated two times daily by subcutaneous injections for 12 weeks. Deposition of C-peptide in aortic arch has been investigated in mice
treated with C-peptide and control mice. Increased deposition of C-peptide in treated mice leads to increased infiltration of inflammatory
cells (monocytes/macrophages), increased proliferation of smooth muscle cells from the media, and increased deposition of lipids in aortic
arch assessed by immunohistochemistry.



contrast to this, in vitro results by Kobayashi revealed
that human C-peptide at high concentrations (100 nmol)
suppresses the growth of rat SMCs [61]. A recent study by
Cifarelli demonstrated that C-peptide significantly decreases
caspase-3 activity and upregulated production of the anti-
apoptotic factor B-cell CLL/lymphoma 2 (BCL-2) [62]. Anti-
inflammatory effects of C-peptide were observed in the study
by Chima et al., where C-peptide has been shown to react as
inhibitor of lung inflammation following hemorrhagic shock
[63].

Conflicting data could be possibly explained with the
existence of different circulating insulin and C-peptide levels
in diabetes type 2 and diabetes type 1. Most of the studies
suggesting anti-inflammatory and antiapoptotic effects of
C-peptide performed their experiments on the diverse cell
types simulating type 1 diabetes with high glucose levels
and low levels of C-peptide where its substitution was
beneficial. In regard to this, C-peptide protects endothelial
cells from apoptosis and inflammation triggered by high
glucose conditions [62]. The situation can be totally different
in patients with insulin resistance and type 2 diabetes where
high levels of C-peptide could have opposite effects.

A recent study suggests that basal C-peptide levels in type
2 diabetes related to metabolic syndrome correlate to intima-
media thickness and C-peptide could be used as surrogate
marker of subclinical atherosclerosis [64]. Moreover, Lindahl
and colleagues showed that C-peptide stimulates the prolif-
eration of chondrocytes and HEK-293 cells. This regulation
of ribosomal RNA means that C-peptide has growth factor
activity [42].

In the last few decades C-peptide is presented as an active
peptide with diverse effects. Different effects in type 1 and
type 2 diabetes seem to be tissue and cell specific. Further
work is needed to identify C-peptide receptor and elucidate
mechanisms by which C-peptide modulates cell signalling in
different cell types.
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