
1Scientific REPORts | 7: 1060 | DOI:10.1038/s41598-017-01152-1

www.nature.com/scientificreports

Effects of porosity on dynamic 
indentation resistance of silica 
nanofoam
Cang Zhao  1,2, Ying Zhong3 & Yu Qiao1,3

The dynamic indentation behaviors of monolithic silica nanofoams of various porosities are 
investigated. When the pore size is on the nm scale, as the porosity increases, despite the decrease in 
mass density, the resistance offered by silica nanofoam to dynamic indentation is maintained at a high 
level, higher than the resistance of solid silica or regular porous silica. This phenomenon is related to 
the fast collapse of nanocells, which produces a locally hardened region and significantly increases the 
volume of material involved in impact energy dissipation.

Energy absorption devices (EAD), e.g. armors and protective plates, are usually made of polymers, metals/alloys, 
or composite materials1–7. They provide protection to personnel and important equipment from collision and 
impact. When the external loading is slow, EAD should be relatively flexible and soft, to conform to the surfaces 
to be protected; under intense dynamic loadings, EAD must be sufficiently hard8–10. For ordinary EAD materials, 
these two requirements contradict to each other: A soft EAD offers comfort yet its energy absorption capacity 
tends to be low, and vice versa.

In the past, people studied a variety of concepts of advanced EAD6, 7, 11–13. An important EAD material is 
foam14–16. Foam materials, e.g. expanded polymers and porous ceramics and metals, are often processed with 
foaming agents17, 18 or by using templating methods 19–25. For protection applications, upon a sufficiently high 
external loading, the cells collapse. On the one hand, it damages the initial cellular structure; on the other hand, 
cell buckling leads to a large displacement and dissipates a significant amount of energy. A key parameter of foam 
is the porosity, c. It determines not only the compressibility and the mass density26, but also the cell buckling 
stress, S0, which on average can be estimated as (1 − c)δY, with Y being the yield strength of ligament material and 
δ being a material constant27–30. The energy absorption capacity may be, as a first-order approximation, assessed 
as u0 = S0c = Yc(1 − c)δ. With a given yield strength (Y) and if we assume that δ = 1, u0 is maximized when c = 50%. 
Usually, in engineering practice, the porosity of foams in EAD is in the range from 30% to 70%31.

In general, it is believed that the pore size (d) of a foam does not have any pronounced influence on its 
energy absorption capacity, u0

27–30. Recently, we carried out a research on nanofoams32. When the pore size 
is on the nanometer (nm) level, the foam behavior under dynamic loading becomes much improved. Firstly, 
smaller cells collapse faster and thus, the energy absorption process takes effects more rapidly, which is critical 
to high-strain-rate stress waves. Secondly, and probably more importantly, in a nanofoam, shear localization is 
suppressed. In a regular foam, as a stress wave propagates, its front can be unstable and the wave energy is con-
centrated in a few narrow shear bands33–35. As a result, the foam fails when the majority part is still undamaged, 
unable to absorb much energy32. Shear banding is associated with local “softening”, as a buckled cell is “weaker” 
than an unbuckled one. In a nanofoam, because the pore size is relatively small (e.g. smaller than the wave font), 
cell collapse would cause local compaction, which helps prevent shear bands from further development. Thus, 
bulk energy absorption is achieved and the protection efficiency is considerably enhanced.

In our previous experiment on silica nanofoams32, with a similar porosity and a similar incident stress 
wave, the transmitted stress wave pressure and energy were much reduced if the nanocell size was smaller than 
~200 nm. This finding opens a door to the development of advanced EAD materials. The study was conducted on 
nanofoam samples with similar porosity ~60%36, 37, so as to focus on the pore size effect.
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Results and Discussion
In the current study, we examined the porosity effect on impact indentation resistance of silica nanofoam samples, 
with the average pore size being kept at ~80 nm. Silica nanofoam monoliths were prepared by a sol-gel approach17, 
and the porous configurations were further adjusted by the subcritical calcination (SCC) technique36. When the 
calcination temperature and duration are in appropriate ranges, compared to the pore size, the porosity is much 
more sensitive to the temperature. Thus, regardless of the large difference in porosity, the variation in pore size 
of silica samples with the same initial component mass ratio is much less; for small pores, the variation in pore 
size can be negligible. In this investigation, the average pore size was measured to be ~80 nm through mercury 
porosimetry36, while the porosity ranged from ~50% to ~70%. Solid silica, employed as the reference material, 
was fabricated via a similar procedure, whereas the firing was fully conducted to achieve a porosity less than 1%. 
After polished with sandpapers (silicon carbide, from 320-grit to 2500-grit) to remove the surface layers38, 39, the 
disk-shaped testing samples (Fig. 1a) had the thickness and the diameter of 4.5 mm and ~23 mm, respectively. 
Figure 1b shows a typical SEM image of silica nanofoam. The cellular channels were random and interconnected. 
Data of X-ray diffraction (XRD, Fig. 1c) confirmed that all the samples, both nanofoams and solid silica, were in 
amorphous phase.

Dynamic indentation experiments were performed on a custom-made testing system32, 40, as illustrated in 
Fig. 2. A titanium tube was used as the striker, with the total mass being 63 g. It was projected to impact a stain-
less steel incident bar, by a gas chamber having the initial pressure of 15 psi. The impact speed of the striker was 
measured to be ~8.5 m/s by a set of EE-SPW421 photo-micro sensors (Omron, Kyoto, Japan). Then, the incident 
bar impacted a tungsten carbide (TC) indenter (Bal-tec, Los Angeles, CA) into the silica sample. The indenter 
was hemispherical-shaped, with the diameter of 4.75 mm. Its hardness was more than 91 HRA and its maximum 
surface roughness was 0.7 micro-inch Ra. For the silica sample, two rings were used to confine its lateral surface 
(Fig. 1(a)): The inner ring was made of relatively flexible polyurethane (PU), with the initial inner radius of 
9.5 mm and the outer radius of 11 mm; the outer ring was made of polyvinyl chloride (PVC), with the initial inner 
radius of 12.5 mm and the shrinkage ratio of 2:1. The silica sample was placed on a substrate and a transmission 
bar; both of them were made of the same stainless steel as the incident bar. The impact striker, the incident bar, 
and the transmission bar had the same 12.7 mm diameter. In the middle of the incident and the transmission bars, 

Figure 1. Silica nanofoam. (a) A silica nanofoam with a one-cent coin being the reference. The silica disk 
sample is inserted in a flexible polyurethane (PU) inner ring and a stiff polyvinyl chloride (PVC) outer ring. (b) 
Typical SEM image of silica nanofoam. (c) Typical XRD results of silica nanofoam and solid silica; the legend 
indicates the porosity. The average pore size of silica nanofoam is ~80 nm.

Figure 2. Schematic of dynamic indentation system. The inset shows a photo of mounted silica sample. The 
numbers indicate: (1) the incident bar; (2) the hemispherical indenter; (3) the silica sample; (4) the steel 
substrate; (5) the transmission bar; and (6) the front section of the sample holder. In the photo, the indenter 
cannot be seen.
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a pair of strain gauges (WK-13-250BF-10C, Vishay Measurements Group) were attached, and a data acquisition 
system (2310B, Vishay Measurements Group) was employed to record the stress wave signals. In order to preserve 
the sample for further examination, only the first stress wave pulse was allowed to impact the silica sample, which 
was realized by a momentum trapper32, 41, 42. As shown by the inset in Fig. 2, the symmetrical configuration of the 
rear and the front parts of the dynamic indentation system could effectively reduce sample bending32.

Figure 3 shows typical stress wave signals of the silica samples. Upon similar incident stress waves (Fig. 3(a)), 
for the samples with different porosities, the transmitted stress waves (Fig. 3(b)) vary significantly, owning to the 
difference in acoustic impedance and possibly also energy absorption32, 43. The relationship between the peak 
transmitted wave pressure, |Pt|, and the porosity, c, is displayed in Fig. 3(c). Compared with solid silica wherein 
c < 1%, |Pt| of silica nanofoam is much lower; with the increase in porosity from ~50% to ~70%, |Pt| decreases 
from ~8 MPa to ~4 MPa.

After the impact tests, the samples were examined by a VHX-1000 microscope. Through the 3D Image Stitching 
function, the indentation profiles were scanned, as displayed in Fig. 4. On the sample surface (Fig. 4(a) and (b)), the 
indentation radius was measured (Fig. 4(d)). Under the dynamic loading, with the porosity increasing from ~50% 
to ~70%, the maximum indentation depth (D) and radius (R) are maintained around 60 µm and 1050 μm, respec-
tively; both are smaller than those of solid silica. The data suggest that silica nanofoam is effectively “harder” than 
solid silica, and the effective dynamic hardness is relatively unrelated to the porosity; that is, the empty nanocells 
do not weaken the dynamic indentation resistance, in the range of porosity under investigation. Compared to the 
maximum indentation depth, the difference in indentation radius between solid silica and silica nanofoam is smaller, 
implying that after indentation, along the depth direction the cellular structure has partially recovered.

Based on the classical theory28–30, the hardness, H, of a foam material should be highly dependent on its 
porosity, c:

∝ − δH c(1 ) (1)

With the increase in porosity or decrease in mass density, the foam material should become softer and exhibit less 
resistance to indentation. In general, the hardness of a material can be evaluated as44, 45

ζ
π

=H F
R (2)2

where F is the indentation force, R is the indentation radius, and ζ is a geometric factor. Therefore, for a foam 
material, under a given loading,

∝ − δR c1/ (1 ) , (3)
2

where =R R R/ solid is the normalized indentation radius, and Rsolid is the indentation size of solid silica under the 
same loading. Clearly, for a regular foam, the indentation radius should increase with the porosity. However, as 
shown in Fig. 4(d), this classical R-c relationship breaks down for silica nanofoams. The unique phenomenon may 
be employed to reduce the weight of an EAD without losing indentation resistance under dynamic loadings.

For self-comparison, we define an index to describe the nominal indentation resistance (NIR):

Θ = R1/ (4)2

NIR index under dynamic loading will be denoted as Θd in the following discussion. The reduction in normal-
ized indentation size leads to the increase in the NIR index. In Fig. 5, with the increase in porosity, Θd fluctuates 
around 1.13. It should be related to the fast collapse of nanocells32, 46, as illustrated by the inset in Fig. 5. The crush-
ing of nanocellular structure results in a locally hardened region at the front of indenter, which renders a much 
larger volume of material being involved in resisting the indenter motion.

Figure 3. Typical stress wave signals: (a) Incident waves and (b) transmitted waves. (c) Peak pressure of 
transmitted wave as a function of porosity; the purple band with dashed boundaries indicates the range of peak 
pressures of transmitted waves of solid silica (c < 1%). For all the silica nanofoam samples, the average pore size 
is ~80 nm and the striker speed is ~8.5 m/s.
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Figure 4. Indented surfaces of silica nanofoams with the porosities of (a) 54% and (b) 65%, respectively. The 
blue dashed circles indicate the indentation boundaries. The scale bars are 500 μm. (c) Typical indentation depth 
profiles. (d) Indentation radius, R, as a function of porosity, c. The purple band with dashed boundaries shows 
the indentation radius range of solid silica (c < 1%). For all the silica nanofoam samples, the average pore size is 
~80 nm and the striker speed is ~8.5 m/s.

Figure 5. The index of nominal indentation resistance (NIR) under dynamic loading. The dashed horizontal 
line indicates Θd of solid silica (c < 1%). The inset shows typical crushed cells. For all the silica nanofoam 
samples, the average pore size is ~80 nm and the striker speed is ~8.5 m/s.
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Conclusions
To conclude, for silica nanofoam with the average pore size around 80 nm, under dynamic loading, when its 
porosity increases from ~50% to ~70% and its mass density reduces by ~40%, the indentation resistance is main-
tained at a similar level, higher than that of its solid counterpart and much higher than that of regular porous silica.  
The maximum transmitted wave pressure decreases rapidly as the porosity increases. The underlying physical 
mechanism is credited to the fast collapse of nanocells at the front of indenter, which forms a locally hardened 
layer and therefore, a large volume of material contributes to indentation resistance.

Methods
Materials. Silica nanofoam samples were obtained through sol-gel processing17, and the subcritical calcina-
tion (SCC) technique was adopted to adjust their porous configurations37. First, with the mass ratio of 72:28 and 
the total weight of 800 g, Kasil-1 potassium silicate (PQ Corporation, Valley Forge, PA) and Ludox HS-40 silica 
sol (Sigma-Aldrich) were mixed for 30 min. Then, under vigorously stirring, 200 g formamide solution (40 wt%) 
was added. After stirring for another 30 min, it was poured into polypropylene (PP) plastic vials. The diameter 
and the height of the vials were 36 mm and 16 mm, respectively. At room temperature (RM), the mixture was aged 
for 24 hours. After phase separation, the gels were washed by a series of solutions at 90 °C: 1M ammonium nitrate, 
1M nitric acid, and deionized water; they were then rinsed by methanol at RM for more than five times. Next, the 
gels were dried in a vacuum chamber for 72 hours at 80 °C. Finally, the samples were calcinated in a tube furnace 
(GSL-1700X, MTI Corporation, USA) for one hour at different temperatures slightly above the glass transition 
temperature of amorphous silica, ~1200 °C. As the reference material, solid silica samples were prepared through 
a similar procedure, except that in the last calcination step they were fired at 1250 °C for 12 hours, to achieve a 
porosity less than 1%.

Pore size. The pore size of nanofoam was assessed through mercury porosimetry47: d = 4σ·cosθ/PHg, where 
σ is the surface tension of mercury (0.484 N/m at RM), θ is the contact angle (140°), and PHg is the infiltration 
pressure of mercury.

Porosity. The porosity of nanofoam sample was estimated from the measured mass density (ρ): c = 1 − ρ/ρsolid, 
where ρsolid is the mass density of amorphous silica (2.2 g/cm3).

SEM analysis. Before and after the tests, scanning electron microscope (SEM) analysis was performed with a 
FEI-XL30 SEM at 20 kV. Prior to the examination, the samples had been coated with iridium under argon atmos-
phere for 6 seconds at 85 mA using a K575X sputter coater (Emitech, Houston, TX).

X-ray diffraction. The foam and solid silica samples were inspected on a Bruker D8 Advance X-ray 
Diffractometer with Cu Kα radiation (wavelength 1.5418 Å). The 2θ range was set to be 10–80°; the speed was 
0.1 sec step;−1 the step size was 0.02°.

Impact system. Both the incident and the transmission bars were made of 17-4 PH H900 stainless steel32, 
which has the mass density of 7.75 g·cm−3 and the elastic modulus of 196.5 GPa. The diameters of the two bars 
were 12.7 mm, and the lengths were 1.8 m and 1.5 m, respectively. The impact striker was a Grade 9 Titanium (Ti) 
tube, having the inner diameter, the outer diameter, and the length of 11.4 mm, 12.7 mm, and 462 mm, respec-
tively. Its two ends were sealed using two 17-4 PH H900 stainless steel end-caps (thickness = 5 mm), respectively, 
under the assistance of two stainless steel pins with the diameter and the length of 3.2 mm and 12.7 mm, respec-
tively. The total weight of the striker, end-caps, and pins is 63 g.

Indentation profile scanning. A Keyence VHX-1000 digital microscope (Osaka, Japan) was used to char-
acterize the indented samples. Through the function of 3D Image Stitching, the indentation profiles were scanned, 
with the scanning range spanning across the lowest and the highest focusing points. The scan step size was set to 
be less than 2 μm.

References
 1. Hull, D. A unified approach to progressive crushing of fibre-reinforced composite tubes. Composites science and technology 40, 

377–421 (1991).
 2. Simone, A. E. & Gibson, L. J. Aluminum foams produced by liquid-state processes. Acta Materialia 46, 3109–3123, doi:10.1016/

S1359-6454(98)00017-2 (1998).
 3. Saafi, M., Toutanji, H. & Li, Z. Behavior of concrete columns confined with fiber reinforced polymer tubes. ACI materials journal 96, 

500–509 (1999).
 4. Gibson, L. J. Mechanical Behavior of Metallic Foams. Annual Review of Materials Science 30, 191–227, doi:10.1146/annurev.

matsci.30.1.191 (2000).
 5. Gaitanaros, S. & Kyriakides, S. On the effect of relative density on the crushing and energy absorption of open-cell foams under 

impact. International Journal of Impact Engineering 82, 3–13 (2015).
 6. Tancogne-Dejean, T., Spierings, A. B. & Mohr, D. Additively-manufactured metallic micro-lattice materials for high specific energy 

absorption under static and dynamic loading. Acta Materialia 116, 14–28, doi:10.1016/j.actamat.2016.05.054 (2016).
 7. Hawreliak, J. A. et al. Dynamic behavior of engineered lattice materials. Scientific Reports 6, 28094, doi:10.1038/srep28094 (2016).
 8. Abramowicz, W. & Jones, N. Dynamic progressive buckling of circular and square tubes. International Journal of Impact Engineering 

4, 243–270 (1986).
 9. Frommeyer, G., Brux, U. & Neumann, P. Supra-ductile and high-strength manganese-TRIP/TWIP steels for high energy absorption 

purposes. ISIJ international 43, 438–446, doi:10.2355/isijinternational.43.438 (2003).
 10. Ebrahimi, H., Ghosh, R., Mahdi, E., Nayeb-Hashemi, H. & Vaziri, A. Honeycomb sandwich panels subjected to combined shock and 

projectile impact. International Journal of Impact Engineering 95, 1–11, doi:10.1016/j.ijimpeng.2016.04.009 (2016).
 11. Liu, L., Chen, X., Lu, W., Han, A. & Qiao, Y. Infiltration of electrolytes in molecular-sized nanopores. Physical Review Letters 102, 

184501 (2009).

http://dx.doi.org/10.1016/S1359-6454(98)00017-2
http://dx.doi.org/10.1016/S1359-6454(98)00017-2
http://dx.doi.org/10.1146/annurev.matsci.30.1.191
http://dx.doi.org/10.1146/annurev.matsci.30.1.191
http://dx.doi.org/10.1016/j.actamat.2016.05.054
http://dx.doi.org/10.1038/srep28094
http://dx.doi.org/10.2355/isijinternational.43.438
http://dx.doi.org/10.1016/j.ijimpeng.2016.04.009


www.nature.com/scientificreports/

6Scientific REPORts | 7: 1060 | DOI:10.1038/s41598-017-01152-1

 12. Xu, B., Chen, X., Lu, W., Zhao, C. & Qiao, Y. Non-dissipative energy capture of confined liquid in nanopores. Applied Physics Letters 
104, 203107 (2014).

 13. Yang, W. et al. Large-deformation and high-strength amorphous porous carbon nanospheres. Scientific Reports 6, 24187, 
doi:10.1038/srep24187 (2016).

 14. Nyce, G. W., Hayes, J. R., Hamza, A. V. & Satcher, J. H. Synthesis and characterization of hierarchical porous gold materials. 
Chemistry of materials 19, 344–346 (2007).

 15. Tappan, B. C., Steiner, S. A. & Luther, E. P. Nanoporous metal foams. Angewandte Chemie International Edition 49, 4544–4565, 
doi:10.1002/anie.200902994 (2010).

 16. Vukovic, I., ten Brinke, G. & Loos, K. Block copolymer template-directed synthesis of well-ordered metallic nanostructures. Polymer 
54, 2591–2605 (2013).

 17. Shoup, R. D. In Colloid and Interface Science Vol. 3 (ed. Milton Kerker) 63–69 (Academic Press, 1976).
 18. Nakanishi, K. Pore structure control of silica gels based on phase separation. Journal of Porous Materials 4, 67–112 (1997).
 19. Kuang, D., Brezesinski, T. & Smarsly, B. Hierarchical porous silica materials with a trimodal pore system using surfactant templates. 

Journal of the American Chemical Society 126, 10534–10535, doi:10.1021/ja0470618 (2004).
 20. Sha, J., Gao, C., Lee, S.-K., Li, Y. & Zhao, N. Preparation of three-dimensional graphene foams using powder metallurgy templates. 

ACS nano 10, 1411–1416, doi:10.1021/acsnano.5b06857 (2016).
 21. Ashley, C. E. et al. The targeted delivery of multicomponent cargos to cancer cells by nanoporous particle-supported lipid bilayers. 

Nat Mater 10, 389–397, http://www.nature.com/nmat/journal/v10/n5/abs/nmat2992.html#supplementary-information (2011).
 22. Wu, K. C.-W. & Yamauchi, Y. Controlling physical features of mesoporous silica nanoparticles (MSNs) for emerging applications. 

Journal of Materials Chemistry 22, 1251–1256 (2012).
 23. Lee, Y. C., Chen, C. T., Chiu, Y. T. & Wu, K. C. W. An effective Cellulose‐to‐Glucose‐to‐Fructose conversion sequence by using 

Enzyme immobilized Fe3O4‐loaded mesoporous silica nanoparticles as recyclable biocatalysts. ChemCatChem 5, 2153–2157 
(2013).

 24. Titze, T. et al. Microimaging of transient concentration profiles of reactant and product molecules during catalytic conversion in 
nanoporous materials. Angewandte Chemie International Edition 54, 5060–5064 (2015).

 25. Yamamoto, E. & Kuroda, K. Colloidal mesoporous silica nanoparticles. Bulletin of the Chemical Society of Japan 89, 501–539 (2016).
 26. MacMinn, C. W., Dufresne, E. R. & Wettlaufer, J. S. Large deformations of a soft porous material. Physical Review Applied 5, 044020 

(2016).
 27. Maiti, S. K., Gibson, L. J. & Ashby, M. F. Deformation and energy absorption diagrams for cellular solids. Acta Metallurgica 32, 

1963–1975, doi:10.1016/0001-6160(84)90177-9 (1984).
 28. Gibson, L. J. & Ashby, M. F. Cellular solids: structure and properties. (Cambridge university press, 1997).
 29. Scheffler, M. & Colombo, P. Cellular ceramics: structure, manufacturing, properties and applications. (John Wiley & Sons, 2006).
 30. Hodge, A. M. et al. Scaling equation for yield strength of nanoporous open-cell foams. Acta Materialia 55, 1343–1349, doi:10.1016/j.

actamat.2006.09.038 (2007).
 31. Dunand, D. C. Processing of titanium foams. Advanced engineering materials 6, 369–376 (2004).
 32. Zhao, C. & Qiao, Y. Fast-condensing nanofoams: Suppressing localization of intense stress waves. Materials Science and Engineering: 

A 676, 450–462, doi:10.1016/j.msea.2016.09.021 (2016).
 33. Balch, D. K. et al. Plasticity and damage in aluminum syntactic foams deformed under dynamic and quasi-static conditions. 

Materials Science and Engineering: A 391, 408–417 (2005).
 34. Dannemann, K. A. & Lankford, J. High strain rate compression of closed-cell aluminium foams. Materials Science and Engineering: 

A 293, 157–164 (2000).
 35. Tan, P., Reid, S., Harrigan, J., Zou, Z. & Li, S. Dynamic compressive strength properties of aluminium foams. Part I—experimental 

data and observations. Journal of the Mechanics and Physics of Solids 53, 2174–2205 (2005).
 36. Zhao, C., Wang, M., Shi, Y., Cao, J. & Qiao, Y. High-temperature post-processing treatment of silica nanofoams of controlled pore 

sizes and porosities. Materials & Design 90, 815–819, doi:10.1016/j.matdes.2015.10.164 (2016).
 37. Zhao, C. & Qiao, Y. Characterization of nanoporous structures: from three dimensions to two dimensions. Nanoscale 8, 

17658–17664, doi:10.1039/C6NR05862K (2016).
 38. Diao, Y., Harada, T., Myerson, A. S., Alan Hatton, T. & Trout, B. L. The role of nanopore shape in surface-induced crystallization. Nat 

Mater 10, 867–871, http://www.nature.com/nmat/journal/v10/n11/abs/nmat3117.html#supplementary-information (2011).
 39. Kawaguchi, T., Iura, J., Taneda, N., Hishikura, H. & Kokubu, Y. Structural changes of monolithic silica gel during the gel-to-glass 

transition. Journal of Non-Crystalline Solids 82, 50–56 (1986).
 40. Kolsky, H. Stress waves in solids. Vol. 1098 (Courier Corporation, 1963).
 41. Nemat-Nasser, S., Isaacs, J. B. & Starrett, J. E. Hopkinson techniques for dynamic recovery experiments. Proceedings of the Royal 

Society of London. Series A: Mathematical and Physical Sciences 435, 371–391 (1991).
 42. Song, B. & Chen, W. Loading and unloading split Hopkinson pressure bar pulse-shaping techniques for dynamic hysteretic loops. 

Experimental Mechanics 44, 622–627 (2004).
 43. Surani, F. B., Kong, X., Panchal, D. B. & Qiao, Y. Energy absorption of a nanoporous system subjected to dynamic loadings. Applied 

Physics Letters 87, 163111, doi:10.1063/1.2106002 (2005).
 44. Luo, J. & Stevens, R. Porosity-dependence of elastic moduli and hardness of 3Y-TZP ceramics. Ceramics International 25, 281–286 

(1999).
 45. Oliver, W. C. & Pharr, G. M. Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding 

and refinements to methodology. Journal of materials research 19, 3–20 (2004).
 46. Leonard, A. & Daraio, C. Stress wave anisotropy in centered square highly nonlinear granular systems. Physical review letters 108, 

214301 (2012).
 47. Washburn, E. W. The dynamics of capillary flow. Physical Review 17, 273–283 (1921).

Acknowledgements
This research was supported by The Army Research Office under Grant No. W911NF-12-1-0011, for which the 
authors are grateful to Dr. David M. Stepp.

Author Contributions
Y.Q. led the project. C.Z. and Y.Q. designed and conducted the experiments and wrote the manuscript. Y.Z. 
participated in the data analysis.

Additional Information
Competing Interests: The authors declare that they have no competing interests.
Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

http://dx.doi.org/10.1038/srep24187
http://dx.doi.org/10.1002/anie.200902994
http://dx.doi.org/10.1021/ja0470618
http://dx.doi.org/10.1021/acsnano.5b06857
http://www.nature.com/nmat/journal/v10/n5/abs/nmat2992.html#supplementary-information
http://dx.doi.org/10.1016/0001-6160(84)90177-9
http://dx.doi.org/10.1016/j.actamat.2006.09.038
http://dx.doi.org/10.1016/j.actamat.2006.09.038
http://dx.doi.org/10.1016/j.msea.2016.09.021
http://dx.doi.org/10.1016/j.matdes.2015.10.164
http://dx.doi.org/10.1039/C6NR05862K
http://dx.doi.org/10.1063/1.2106002


www.nature.com/scientificreports/

7Scientific REPORts | 7: 1060 | DOI:10.1038/s41598-017-01152-1

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
 
© The Author(s) 2017

http://creativecommons.org/licenses/by/4.0/

	Effects of porosity on dynamic indentation resistance of silica nanofoam
	Results and Discussion
	Conclusions
	Methods
	Materials. 
	Pore size. 
	Porosity. 
	SEM analysis. 
	X-ray diffraction. 
	Impact system. 
	Indentation profile scanning. 

	Acknowledgements
	Figure 1 Silica nanofoam.
	Figure 2 Schematic of dynamic indentation system.
	Figure 3 Typical stress wave signals: (a) Incident waves and (b) transmitted waves.
	Figure 4 Indented surfaces of silica nanofoams with the porosities of (a) 54% and (b) 65%, respectively.
	Figure 5 The index of nominal indentation resistance (NIR) under dynamic loading.




