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Introduction: Deep Learning (DL) is a machine learning technique that uses deep

neural networks to create a model. The application areas of deep learning in

radiation oncology include image segmentation and detection, image phenotyping, and

radiomic signature discovery, clinical outcome prediction, image dose quantification,

dose-response modeling, radiation adaptation, and image generation. In this review,

we explain the methods used in DL and perform a literature review using the Medline

database to identify studies using deep learning in radiation oncology. The search was

conducted in April 2018, and identified studies published between 1997 and 2018,

strongly skewed toward 2015 and later.

Methods: A literature review was performed using PubMed/Medline in order to identify

important recent publications to be synthesized into a review of the current status of Deep

Learning in radiation oncology, directed at a clinically-oriented reader. The search strategy

included the search terms “radiotherapy” and “deep learning.” In addition, reference

lists of selected articles were hand searched for further potential hits of relevance to

this review. The search was conducted in April 2018, and identified studies published

between 1997 and 2018, strongly skewed toward 2015 and later.

Results: Studies using DL for image segmentation were identified in Brain (n= 2), Head

and Neck (n = 3), Lung (n = 6), Abdominal (n = 2), and Pelvic (n = 6) cancers. Use of

Deep Learning has also been reported for outcome prediction, such as toxicity modeling

(n = 3), treatment response and survival (n = 2), or treatment planning (n = 5).

Conclusion: Over the past few years, there has been a significant number of studies

assessing the performance of DL techniques in radiation oncology. They demonstrate

how DL-based systems can aid clinicians in their daily work, be it by reducing the time

required for or the variability in segmentation, or by helping to predict treatment outcomes

and toxicities. It still remains to be seen when these techniques will be employed in

routine clinical practice.
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INTRODUCTION

Machine learning (ML) is a vast field that recently gained a lot
of interest in medicine (1). Artificial Neural Networks (ANN) are
a subfield of ML that mimic the organization of the brain and
use several layers of so-called neurons, where each neuron has
a weight and a bias that determines its importance. Each layer
receives variables, calculates a score and passes the output to the
next layer. In radiation oncology, ANNs have been used to predict
different outcomes: survival in advanced carcinoma of the head
and neck treated with radio(chemo)therapy, PSA-level response
and toxicity after radiotherapy for prostate cancer, pneumonitis
in radiotherapy for lung cancer, or even survival in uterine
cervical cancer treated with irradiation (2–8). The performances
of the models created in these studies were satisfying, but the
training cohorts were limited, and these models often lacked
external validation. In the end, they were never used in clinical
routine. Deep Learning (DL) is a new term for ANN arising
from advances in the ANN architectures and algorithms since
2006, referring especially to ANN with many hidden layers,
although there is no consensus as to how many layers count as
deep, therefore there is no clear distinction between the terms
ANN and DL [37]. While the interest of DL is being extensively
explored in medical imaging for the purposes of classification
or segmentation, its use in radiation oncology is still limited
(9, 10).

The application of DL techniques to autosegmentation
for radiotherapy planning could represent a significant
innovation in daily practice workflow, decreasing the
time required for segmentation and the variability of the
contours and also increasing the adherence to delineation
guidelines (11).

Furthermore, real-time adaptive radiotherapy techniques
could become a reality with reliable autosegmentation tools based
on DL (12).

Level I evidence-based medicine relies on randomized
controlled trials designed for specific, pre-defined, populations.
However, the high number of parameters that need to be
explored to deliver truly individualized cancer care, makes it
almost impossible to design trials for every situations (13).
New approaches, such as DL used on real-life data, are needed.
Data quality is exceptionally high in radiation oncology, as all
departments use record-and-verify systems that prospectively
store all information regarding the treatment prescribed, how
the treatment was actually performed as well as potential
deviations. DL could be used to design a “learning health
system,” capable of predicting patients’ treatment response
or survival and constantly updating itself with new data. In
this review, we first briefly describe the methods available to
create models with DL and then continue with presenting
a selection of critical studies published so far that employ
DL in radiation oncology. By ordering these studies by
entity, and focusing on the clinical relevance, we hope this
review will provide a useful resource for clinicians to gain
an overview on the current application of deep learning in
radiation oncology.

METHODS

The authors conducted a literature review using
PubMed/Medline in order to identify important recent
publications to be synthesized into a comprehensive review
of the current status of Deep Learning in radiation oncology
directed at a clinically-oriented reader. The search strategy
included the search terms “radiotherapy” and “deep learning.” In
addition, reference lists of selected articles were hand searched
for further potential hits of relevance to this review. The
intervention of interest was the application of deep learning
technology in the field of radiation oncology. The search was
conducted in April 2018, and mainly identified studies published
between 1997 and 2018, strongly skewed toward 2015 and later.

Search results were judged for relevance by the research team
using the title, abstract and if necessary full text. Studies were
included when they were published as full articles in English
employing a deep learning technique in the field of radiation
oncology, e.g., for the prediction of side-effects or prognosis.

Studies were excluded for the following reasons: language
other than English; no deep learning techniques used; no
relevance to the field of radiotherapy; technical investigations
without patient data; no clinical application focus or reported
outcomes. In the end, 43 studies were included in this
analysis. Individual summaries were prepared by a team with a
multidisciplinary background (two machine learning scientists
and three clinicians) for each study as the basis for further
analysis in order to evaluate the technical and clinical aspects.
This involved quantitative assessment of the number of patients,
frequency and types of techniques used, and comparisons
of outcome metrics (if reported). In addition, qualitative
assessments were made regarding the reported benefits for
radiation oncology practice.

DEEP LEARNING

What Is Deep Learning?
The major application areas of deep learning in radiation
oncology include image segmentation and detection, image
phenotyping and radiomic signature discovery, clinical outcome
prediction, image dose quantification, dose-response modeling,
radiation adaption, and image generation (2, 3, 10, 14–32). As
an additional resource, Meyer et al. provided an excellent review
on the technical background, concepts and details of the various
different machine learning techniques subsumed under the term
deep learning and employed in radiation oncology (33). Of all
deep learning techniques, convolutional neural network (CNN)
is the most widely used deep learning technique, followed by
auto-encoder, deep deconvolution neural network, deep belief
network and transfer learning (9, 10, 14, 16, 17, 19, 20, 22, 23, 25,
26, 34–38). CNN, proposed by LeCun et al. for handwritten digit
recognition, uses shared “patch” feature detectors across different
regions of the input image, dramatically improved learning
efficiency (39). Advances in deep learning are quickly applied
to radiation oncology as seen by a surge of studies utilizing
modern deep learning architectures such as CNN, auto-encoder,
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and transfer learning since 2017, in contrast to the prevalence
of older neural networks such as deep belief networks and fully
connected feedforward neural networks in older studies.

Although the application of deep learning in radiation
oncology may seem diverse, they share a similar framework.
In brief, let D :{X,Y} denote a dataset containing training
examples X and their target labels Y . In deep learning studies,
Xoften represents unstructured data such as CT scans, histology
images, in contrast to structured data such as a yes/no tabular
referring to whether a patient shows specific symptoms, which is
frequently the case in statistical (i.e., non-deep) learning studies.
A (supervised) machine learning model, including deep learning,
aims to predict Y given X with a discriminant function f :X →

Y1. The difference between deep learning and traditional non-
deep machine learning methods is that the discriminant function
f is represented by a neural network. According to the Universal
Approximation Theorem, a neural network with a single layer of
infinite width can approximate any continuous functions, thus
neural networks (namely deep learning) are the most flexible
machine learning model family and have the highest model
capacity among all machine learning methods (41, 42). To solve
for the parameters that determine f , a loss function J(f (X) ,Y) is
defined and an optimization procedure is applied to determine f .
One characteristic of deep learning is that most of the useful loss
functions are non-convex, in contrast to many machine learning
models familiar to the medical community such as support
vector machines (SVM) and logistic regression, which means
no optimization procedure can guarantee to find the global
optimum representing the absolute best choice of f (43). This
is the reason deep learning is less of an off-the-shelf nature and
requires much skill and expertise from the researcher compared
to other machine learning techniques. The main advantage of
deep learning, however, is its power in analyzing unstructured
data, and for extracting useful features (such as edges in images)
without any guidance from humans. We continue in this review
by highlighting the application of deep learning in image analysis
to illustrate the advantages and caveats in utilizing deep learning
techniques in radiation oncology.

The input dimension of medical images is usually very
high. For example, a pathological image of size 100 by 100
pixels was used in Saltz et al. resulting in 10,000-dimensional
input vectors, which can be difficult for non-deep machine
learning classifiers, especially when the training samples are
not abundant (25). A well-known phenomenon in machine
learning research is referred to as the curse of dimensionality,
incurring high computational cost for machine learning (40). As
a result, dimension reduction is often crucial in medical image
classification by machine learning, including deep learning.

Perhaps the best-known dimension reduction technique
known outside of the machine learning research community
is principal component analysis (PCA) (44). PCA is a linear

1Readers more familiar with machine learning may know this is only one of the

three major machine learning perspectives, with the other two being generative

modeling and discriminative modeling (40). Without delving too deep into the

technical details of machine learning, we explain the principles of machine learning

specifically from this intuitive perspective.

dimension reduction technique, which transforms the original
data by multiplying it with a transformation matrix to achieve
minimal covariance among the resulting dimensions, called
principal components. However, PCA has a major limitation to
its applicability in that it can only model linear interactions. For
example, in the sample relation of y = x1 × x2, where x1 and
x2 are independent variables, PCA will not be able to distinguish
whether x1 and x2 are independent influence to y, because they
are interacting non-linearly.

Deep neural networks can also be used to reduce
dimensionality-related issues and untangle non-linear
interactions. For example, auto-encoder is a type of ANN
that can be used to reconstruct input data by a (often) lower-
dimensional hidden layer (45). It is often used in image
segmentation and organ detection to learn features automatically
(10, 20, 22).

Deep Learning—Clinical Aspects
The application of deep learning techniques to radiation
oncology can offer numerous advantages and significant support
to the clinicians in the different steps of radiotherapy treatment,
offering the opportunity to both improving technical parameters
(i.e., treatment quality and speed) and allowing clinically relevant
insights (i.e. survival or toxicity prediction).

The prior knowledge which originated from daily
clinical practice can therefore be applied to future patients
through these innovative techniques, thereby increasing the
quality and effectiveness of their radiation treatment and
offering them more tailored approaches. Figure 1 provides
an overview of the clinical aspects of DL in radiation
oncology. Table 1 summarizes the most significant clinical
outcome applications reported in the studies included in
this review, whereas Table 2 summarizes the most significant
segmentation results.

Segmentation
Deep learning techniques have been widely used in radiology to
segment medical imaging obtained through different techniques
(46). Segmentation still represents a significant burden in terms
of time and human resources in radiation oncology. Artificial
intelligence support could help to ensure contouring quality and
reduce its intrinsic inter-observer variability as well as the time
required for treatment planning.

Auto-segmentation can significantly reduce this burden, with
different solutions proposed in the literature as experimental
approaches or commercially available software aiding clinicians
(11). Several DL techniques have been tested as auto-
segmentation tools for radiotherapy purposes.

Brain
Numerous experiences have been published about the use of DL
techniques in diagnostic neuro-radiology for the segmentation of
brain tumors or secondary lesions, but the evidence of its direct
use in radiotherapy is still scarce.

Liu et al. recently developed an algorithm to segment brain
metastases on contrast-enhanced T1w MRI datasets, with an
architecture consisting of four sections: input, convolution,
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FIGURE 1 | Clinical applications of deep learning in radiation oncology.

fully connected and classification sections. This approach was
validated on data from the Multimodal Brain Tumor Image
Segmentation challenge (BRATS−65 patients) and 240 brain
metastases patients with T1c MRI scans collected at the
University of Texas Southwestern Medical Center.

Segmentation performances were evaluated through Dice
Similarity Index (DSI). DSI is a measure for the overlap between
two sets of contours (A and B) and is defined as the area of overlap
between the contours in exam divided by their mean area:

DSI =
2 | A ∩ B|

|A| + |B|

A DSI of 0 indicates the absence of overlap between the
structures, while a value of 1 means that the overlap is complete
(50). This study showed DSI values of 0.75 ± 0.07 in the tumor
core and 0.81± 0.04 in the enhancing tumor for the BRATS data,
which outperformed other techniques in the 2015 Brain Tumor
Image Segmentation Challenge. Segmentation results of patient
cases showed a mean DSI 0.67± 0.03 and achieved an area under
the receiver operating characteristic curve (AUROC) of 0.98 ±

0.01 (34).

A similar strategy has been proposed by Charron et al. who
adapted an existing 3D CNN algorithm (Deep-Medic) to detect
and segment brain metastases on MRI scans of patients who
were undergoing stereotactic treatments. Authors studied the
influence of a combination of multimodal MRIs, the addition of
virtual patients in order to increase the total number of patients
and the use of advanced segmentation maps to distinguish the
necrotic and the vital parts of the metastases. Additionally, in this
work, a quantification of the detection performance (defined as
the network ability to detect metastases contoured by physicians)
has been evaluated through the sensitivity:

Sensitivity =
TPmet

(TPmet + FNmet)

where the TPmet is the number of detected metastases and
FNmet the undetected metastases, the measurement of FPmet
defined as the number of false-positive lesions and the DSI.

The dataset included 182 patients with three MRI modalities
(T1w3D, T2flair2D, and T1w2D) and was split into training,
validation and test sets. The benchmark segmentation was
carried out manually by up to four radiation oncologists and
compared to the DL output. As first step authors set the
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TABLE 1 | Deep Learning for clinical applications in toxicity and outcome prediction as well as treatment planning.

Outcome Site Deep learning

strategy

Number of

patients/plans

Parameter of prediction Measure References

Toxicity Prostate ANN and SVM 321 G2 prediction ROC 0.7 (4)

Toxicity Prostate SVM 256 G2 rectal bleeding 97% prediction accuracy (25)

Toxicity Head and Neck SVM 125 Saliva flow rate MAPE 1.6% (25)

Toxicity Head and Neck various 47 Hearing loss AUC 0.7 (42)

Toxicity Cervix CNN 42 G2 rectal toxicity AUC 0.7 (24)

Response Prostate ANN 119 Biochemical control Sensitivity/specificity >55% (3)

Response Head and Neck ANN 95 2-year survival ROC 0.78 (2)

Planning Lung SVM/ANN 9 Real-time gated RT n/a (46)

Planning Lung ANN 5 Online treatment verification >97% precision and accuracy (16)

Planning Lung IIFDL 130 Intra- and inter-fractional variation various (26)

Planning Lung GAN + RAE + DQN 114 Automated dose-adaptation n/a (29)

Planning Pelvis 3D FCN 22 CT image based on MRI various (12)

ANN, Artifical Neural Network; AUC, Area Under the Curve; CNN, Convolutional Neural Network; DQN, Deep Q-Network; FCN, Fully Convolutional Neural Network; GAN, Generative

Adversarial Network; IIFDL, Intra- and Inter-fraction Fuzzy Deep Learning; MAPE, Mean Average Percentage Error; RAE, Radiotherapy Artificial Environment; ROC, Receiver Operating

Characteristic; RT, Radiotherapy; SVM, Support Vector Machine.

TABLE 2 | Deep Learning for segmentation.

Site Deep learning strategy Number of patients DICE (reported average or range) References

Brain CNN 305 0.67 (32)

3D CNN 182 0.66 (34)

Head and Neck DNN 52 0.62 to 0.90 (20)

CNN 50 0.37 to 0.89 (33)

DDNN 230 0.33 to 0.81 (36)

Lung CNN + conditional random fields 30 0.57 to 0.87 (47)

CNN 450 0.57 (0.16 to 0.99) (48)

Abdomen CNN 72 0.7 (17)

CNN 118 N/A (VOE = 0.06) (21)

Pelvis DDNN 230 0.63 to 0.81 (10)

CNN 140 0.7 (14)

DDCNN 278 0.62 to 93.4 (36)

2D CNN 93 0.74 (49)

CNN, Convolutional Neural Network; DNN, Deep Neural Network; DDN, Deep Deconvolutional Neural Network DICE; DDCNN, Deep Dilated Convolutional Neural Network; VOE,

Volumetric Overlap Error.

network parameters to correctly detect the metastases and
their segmentation. Six different multimodal MRI configurations
have been used (T1w3D, T2flair2D, T1w2D, T1w3D, and
T2flair2D, T1w3D, and T1w2D, T1w3D T2flair2D, and T1w2D)
as second step to measure the ability of the network for
metastases detection and segmentation evaluation. In this study,
performance improvement has been shown by using multimodal
MRI and in particular using T1w3D plus T2flair2D (Sensitivity
= 0.96, FPmet = 9.6 and DSI = 0.77). A slight improvement
has been shown using an advanced segmentation map but the
addition of virtual patients did not impact significantly on
the network.

The obtained results appear to be promising for the
application of DL techniques in the identification and
segmentation of brain metastases on multimodal MR
images (36).

Head and neck
Image segmentation of head and neck malignancies is a time-
consuming and difficult task in radiotherapy, which could
hamper the future developments of adaptive approaches (51).
The presence of large primary or nodal lesions and the effects
of surgical procedures can significantly modify the normal
anatomy of this site, resulting in the need for laborious manual
segmentation, as auto-segmentation approaches often fail to
manage these anatomical variations. Deep learning techniques
and prior knowledge may help in overcoming such difficulties.

CNNs have been used to speed up and improve organs at
risk delineation in head and neck cancer patients. A classic
CNN structure—repeating blocks of a convolutional layer, a
batch normalization layer, a rectified linear unit (“ReLU”)
activation layer, a dropout layer, and a pooling layer—was used
by Ibragimov and Xing in a tri-planar patch-based network on 50
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patients scheduled for head and neck radiotherapy. The CNN’s
performance was similar or superior when compared to the
reference segmentation for the spinal cord, mandible, parotid
glands, larynx, pharynx, eye globes and optic nerves, but less
satisfactory results have been obtained for the sub-mandibular
glands and optic chiasm, mainly due to their dimension and
position. One potential reason for the unsatisfactory results for
submandibular glands autosegmentation observed by Ibragimov
and Xing may be their proximity to oropharyngeal cancers and
upper neck positive lymph nodes (35).

Other approaches based on DL and more focused on the
delineation of target volumes have also recently been proposed,
aiming to speed up and improve the quality of this segmentation
process. Men and colleagues developed a deep deconvolutional
neural network (DDNN) for the delineation of nasopharyngeal
gross tumor volume (GTVnx), metastatic lymph node gross
tumor volume (GTVnd), corresponding clinical target volumes
(CTVs), and organs at risk in planning CT images of 230
patients diagnosed with nasopharyngeal carcinoma (stage I or
II). The results obtained in this study showed an improvement
of the consistency in contouring performance and radiotherapy
treatment workflow optimization with DL techniques when
compared to other segmentation methods (38).

Cardenas and colleagues describe an approach to high risk
CTV auto-delineation for head and neck tumors with deep neural
networks, demonstrating its potential to reduce the variability
in target delineation. Their results are comparable with those
reported by inter- and intra-observational studies for manual
delineation of these complex volumes (DSI values ranged from
0.62 to 0.90, and the median MSD was 2.75mm) (22).

Lung
Auto-segmentation of the thoracic site with traditional semi-
automatic tools showed good performances overall, reaching DSI
values above 0.9 when compared to manual benchmark, mainly
attributed to the particular anatomy of this site with its naturally
high contrast at the air/tissue interfaces (52).

Nevertheless, some interesting DL approaches have been
proposed to improve radiotherapy-oriented auto-segmentation
performance also in this site, adding to the significant
radiological evidence in this field that mainly aims to provide
nodule classification and conventional computer-aided diagnosis
(CAD) support (9, 46, 53).

Trullo et al. tested an investigational model composed of a
10-layer fully convolutional network with SharpMask, evaluating
its segmentation performance against manual definitions of the
esophagus, heart, trachea, aorta, and body contour in 30 CT
scans of patients affected by lung cancer or Hodgkin lymphoma
(54). The best performance was achieved by SharpMask with
a conditional random field as input of the deep learning
infrastructure to improve the segmentation results providing
fine edge details, achieving a 0.67 to 0.9 DSI ratio for different
organs (the general DSI ratio was 0.57 to 0.87 depending on the
organ) (54).

Lustberg et al. studied the time which can be saved when
using software-generated contouring as a starting point for
manual segmentation. They tested a commercially available
atlas-based software and a prototype of DL software based

on CNN for the delineation of thoracic organs at risk (lungs,
esophagus, spinal cord, heart and mediastinum) in 20 CT scans
of stage I-III lung cancer patients, finding a significant reduction
in contouring time with the user-adjusted software-generated
contours approach (55).

Abdomen
The use of auto-segmentation software, even based on innovative
DL techniques, is intrinsically hampered in the abdomen by
the significant anatomical variability of this site. Hollow organs,
bowel loops displacement and inter-patient variability limit the
possibility to use auto-segmentation, generally only achieving
relatively poor results. The liver appears to be the ideal candidate
for auto-segmentation applications in this anatomical region, due
to its usually regular position and shape.

A first attempt for intrahepatic portal vein (PV) segmentation
based on CNN has been proposed by Ibragimov et al. as support
for stereotactic body radiation therapy (SBRT) planning (19).
The portal vein is usually poorly visible in planning images
(e.g., due to artifacts, fiducial, stents, variable anatomy) and
its segmentation is often challenging even for expert operators.
However, automated DL-based segmentation algorithms could
satisfactorily support segmentation with DSI of 0.7–0.83 when
compared to manual benchmarks. Results on a par with manual
delineation were also found by Lu and colleagues, who developed
and validated a CNN with a graphcut-based strategy for liver
auto-segmentation using 78 CT as training set and 40 as test
set (23).

Pelvis
Several automatic strategies for pelvic auto-segmentation have
been assessed in the recent years, and the development of more
efficient DL technique may improve the current state-of-the-art
(56, 57).

Deep learning applications have been recently used as
segmentation support in the pelvic region, for both organs at
risk and MRI-based segmentation of target volumes. Men et al.
used a deep dilated convolutional neural network-based method
to automatically segment organs art risk and CTVs in planning
CTs of rectal cancer patients, obtaining a 87.7% concordance for
target volumes with very high segmentation speed (45 s) (38).

Trebeschi and colleagues proposed a 9 layers CNNmethod for
primary locally advanced rectal cancer lesions on T2 and DWI
MRI images, obtaining a DSI of 0.7 and a model’s area under
the curve (AUC) of 0.99 in the comparison of CNN-generated
vs. manually obtained contours (16).

Similar results were also reached by Wang et al. who
implemented a 2D CNN auto-segmentation model for GTV
segmentation on T2 MR images of 93 rectal cancer patients,
showing a segmentation performance comparable to manual
inter-observer variability (DSI 0.74) (47). An interesting DL
application for MRI for prostate cancer has been developed by
Guo et al. proposing to learn the latent feature representation
from prostate MR images using a stacked sparse auto-encoder
(SSAE), which included an unsupervised pre-training step and
also a task-related fine-tuning step on 66 patients (10).
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Outcome Prediction

Toxicity
A promising field to apply DL techniques in radiation oncology
is predicting toxicity as a valuable decision support system for
the clinician (48). A first machine learning study has been
published in 2009 by Zhang et al. describing a plan-related
clinical complications prediction model in an IMRT framework.
one hundred and twenty-five plans were generated for one head
and neck cancer case and another 256 plans were generated
for one prostate cancer case, with saliva flow rate and G2
rectal bleeding being used as prediction outcomes. The mean
absolute error for saliva flow rate prediction compared with
the ground truth obtained from the equivalent uniform dose
(EUD) exponential model was 0.42%, while an average prediction
accuracy of 97.04% was achieved for G2 rectal bleeding. A direct
inference of plan-related complications using the knowledge-
base of computed plans and modeling as described in this work
therefore appears to be feasible and promising for further DL
applications (27).

Pella and colleagues recorded clinical and dosimetric data
of 321 prostate cancer patients, scoring gastro-intestinal and
genito-urinary acute toxicities and stratifying patients into a
mild and a severe toxicity category (with a cut-off of G2
acute toxicity according to Radiation Therapy Oncology Group
(ROG)/European Organization for Research and Treatment of
Cancer (EORTC) scale); the resulting neural networks and SVM-
based solutions showed comparable toxicity prediction accuracy,
exhibiting a AUC of 0.7 (4).

Rectal toxicity prediction in cervical cancer radiotherapy has
been studied by Zhen and colleagues developing a CNN model
based on transfer learning that analyzed the dose distribution in
the rectum in 42 patients and predicted the relative > G2 rectal
toxicity with an AUC of 0.7 (26).

More recently, Adbollahi et al. conducted a multi-variable
modeling study on sensorineural hearing loss in head and
neck cancer patients treated with radiochemotherapy using CT
radiomics information: the average obtained predictive power of
the tested methods was higher than 70% in accuracy, precision
and AUROC (58).

Response and survival
The use of DL techniques for response and survival prediction in
radiotherapy patients represents a great opportunity to further
develop decision support systems and provide an objective
evaluation of the relative benefits of various treatment options
for individual patients.

Bryce et al. analyzed data from a phase III trial randomizing
95 patients with locally advanced squamous cell carcinoma
of the head and neck (SCCHN) to undergo irradiation with
or without concurrent chemotherapy. Prediction power was
evaluated using the round-robin cross-validation method and
ROC analysis. The best ANN model used tumor stage, nodal
stage, tumor size, tumor resectability, and hemoglobin to predict
2-year survival with an area under the ROC curve value of
0.78 ± 0.05, confirming its ability to identify and use predictive
variables other than the TNM variables and to classify each
patient individually (2).

A more recent model has been explored to predict biological
outcomes for patients receiving radical radiotherapy for prostate
cancer, using a three-layered ANN (Perceptron) model on
retrospective clinical data, learning the relationship between
the treatment dose prescription, dose distribution and the
corresponding biological effect in 119 patients.

In this study, the ANN was able to predict biochemical
control and specific bladder and rectum complications with
sensitivity and specificity of above 55% when the outcomes were
dichotomized (3).

End-to-end deep learning radiomics pipeline
We are currently witnessing a turning point in the radiomics
methodologies used in treatment response prediction and
prognosis. Most traditional radiomics methods use handcrafted
features and involve manual segmentation of the region of
interest (e.g., the tumor) on medical imaging, and extraction
of thousands of hand-crafted and curated quantitative features
from the region of interest, which supposedly describe tumor
characteristics. This could actually introduce human bias into
the process, raising concerns of reproducibility (49, 58, 59). The
intra-reader and inter-reader variability that results frommanual
segmentation of the tumor and the variation in imaging and pre-
processing techniques for feature extraction could significantly
impact the models that are created afterwards. Deep learning
allows for automated segmentation, extraction and learning
of relevant radiographic features without the need for human
intervention in the analysis pipeline. For that reason, DL could
boost reproducibility, generalizability and accuracy and reduce
potential bias (60).

Planning
Over the past years, a growing role of DL techniques in
radiotherapy planning optimization has been observed, especially
for lung cancer.

Lin et al. proposed a model for real time detection of lung
cancer targets in a treatment gating window using a sequence of
10 fluoroscopic images of nine patients. Different combinations
of dimension reduction techniques and DL based classifiers
(SVM and ANN) were tested. The ANN combined with principal
component analysis (PCA) approach appeared to be a more
effective algorithm compared to the other combinations for real
time gated radiotherapy, despite the study’s conclusions being
drawn using the same patient’s image sequence as training and
testing data (61).

A similar study was conducted by Tang and colleagues,
who proposed an ANN-based algorithm for online treatment
verification by monitoring tumor position in 5 lung cancer
patients undergoing hypofractionated radiotherapy, using
digitally reconstructed radiographs (DRR) with artificially added
shifts in tumor location and PCA for dimension reduction
from 10,000 from 100 by 100 cine images to 15 top principal
components for classification. An accuracy of 98.0%, recall of
97.6% and precision of 99.7% were observed (18).

The prediction of intra- and inter-fractional variations of lung
tumors has been further investigated by Park and colleagues
based on the breathing data of 130 patients. The proposed
model is based on fuzzy DL technique and was compared with
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CNN. The proposedmodel improved root-mean-square-error by
29.98% and prediction overshoot by 70.93% compared with the
other existing methods. The average computing time for intra-
and inter-fraction fuzzy deep learning (IIFDL) was 1.54ms for
both intra- and inter-fractional variations, which is smaller than
existing methods, confirming the advantages in the use of this
technique (28).

An innovative delivery optimization technique for automated
plan adaptation in lung cancer radiotherapy based on deep
reinforcement learning has been proposed by Tseng et al. with
the aim to maximize tumor local control and reduce rates of
radiation-induced Grade 2 pneumonitis.

A retrospective cohort of 114 NSCLC patients receiving
radiotherapy was used as training set. Input features included
clinical, genetic and radiomics information in addition to tumor
and lung dosimetric variables. A validation cohort of 34 patients
treated on avid PET signal in the tumor with real clinical
protocols was used as test set for benchmarking.

The proposed model generated dose distributions similar to
the clinical protocol ones, with a root mean square error of
0.5Gy; at the same time, the neural network-based decisions
seemed to have a superior concordance with patients’ eventual
outcomes. The authors concluded that deep reinforcement
learning is a feasible and promising approach for automatic
radiation adaptation, that currently represents a intensively
studied radiation oncology delivery technique (31).

An innovative approach for simulation workflows has been
proposed by Nie et al. who developed 3D fully convolutional
networks to estimate CT imaging from MRI data based
on a pelvic dataset of 22 patients. When compared to the
classical approach (atlas-based methods), 3D convolutional
neural network (CNN) was able to capture the complex non-
linear mapping from the input space to the output space and
generate a structured output which can better preserve the
neighborhood information in the predicted CT image.

Themost immediate clinical advantage of this approach is that
it could avoid patients to undergo the simulation CT, reducing
unnecessary X-ray exposure This clearly is a very contemporary
topic considering the emergence of innovative applications such
as MR guided hybrid radiotherapy (MRgRT) (14, 62).

DISCUSSION AND CONCLUSION

This review presents an overview on the application of deep
learning techniques in radiation oncology. Synthesizing a total of
43 studies, it can be concluded that over the past few years there
has been a significant increase in both the interest in as well as the
performance of DL techniques in this field.

Promising results have been obtained that demonstrate how
DL-based systems can aid clinicians in their daily work, be it by
reducing the time required for or the variability in segmentation,
or by helping to predict treatment outcomes and toxicities. It
remains to be seen when these techniques will be employed in
routine clinical practice, but it seems warranted to assume that
we will see AI to contribute to improving radiotherapy in the
near future.

We found during this review that it is common in radiation
oncology literature to use deep learning only for dimension

reduction or feature extraction, then employing a separate non-
deep classifier, such as SVM or logistic regression, to perform
the classification on extracted features (20). The advantage of
this approach is its straightforward framework and the fact
that the extracted features are accessible for additional analyses
such as risk evaluation by studying their associations with
disease phenotypes (63). Although this approach does yield
better performance than using machine learning classifiers on
handcrafted features, end-to-end deep learning approach usually
perform better if properly trained (43). In oncology studies,
the number of human subjects is usually a limiting factor for
the statistical power of the findings of the study; therefore, the
previous approach will be highly restricted by the number of
human subjects recruited or by the number of medical images
obtained for a study, while end-to-end approaches can leverage
powerful pre-trainedmodel such as Google Inception (64). These
models are trained on millions of images, and the researchers
only need to fine tune the last layer to refine the decision
boundary for medical image analysis. In addition, the hidden
layers are more likely to extract agnostic features which may lead
to the discovery of new biomarkers (24).

Another caveat is that most studies so far use relatively small
patient cohorts or numbers of training images. For example,
only 52 CT scans were used in the image segmentation study
by Cardenas et al. and only 42 patients were included in the
radiation toxicity prediction reported by Zhen et al. (22, 26). To
train a deep neural network effectively, a rule of thumb is to use
5,000 labeled examples as training input (43).

Neural networks have a relatively high model capacity
compared to other machine learning techniques such as SVM
or logistic regression. This means that they are prone to over-
fitting small datasets, and therefore special caution needs to
be applied when making comparisons of neural network and
other machine learning techniques on the classification of small
datasets. One solution is to validate on a similar dataset obtained
from a different cohort (20). Another solution is to build large
imaging datasets such as those in the UK Biobank (http://www.
ukbiobank.ac.uk/imaging-data/).

In conclusion, the application of deep learning has great
potential in radiation oncology. However, it is less of an “off-
the-shelf ” in nature than other machine learning techniques
such as SVM, ensembles, k-nearest neighbors algorithm (KNN),
and logistic regression, as it has more hyper-parameters to tune
and requires more technical skills from the researchers. Deep
learning continues to be an important research area and many
aspects of training neural networks remain “more of an art than
science” (43).

Finally, we would also like to highlight the need to make
bigger standardized datasets available for future collaborative
endeavors. This would hopefully enable researchers to develop
more robust algorithms for clinical use, thereby facilitating the
introduction of new technologies into daily care, ultimately
leading to improved outcomes for cancer patients.
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