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Background/Aims: Anti-tumor vaccines have been shown to be effective in cancer ther-

apeutics ever since the anti-HPV vaccine was developed. Compared to conventional che-

motherapy, anti-tumor vaccines can specifically target cancer cells and they have lower side

effects. We developed a recombinant vaccinia virus (VACV) (Western Reserve) WR strain,

and we tested its anti-tumor effects in an animal model.

Methods: A recombinant VACV WR strain expressing mutant survivin T34A (SurT34A) and

FilCwas constructed and validated. Its oncolytic effect was tested in vitro using a CCK-8 assay, and

its tolerance and anti-tumor effects were tested in a murine gastric cancer model. The proportion of

lymphocytes in the spleen and tumor was determined after antibody-mediated immuno-depletion.

Results: The recombinant VACV showed a stronger replication ability in tumor cells, and it was

safe in vivo, even at high doses. The combination of vv-SurT34A and vv-FilC resulted in

a stronger anti-tumor effect compared to either construct alone. However, the inhibitory effect

of vv-SurT34A was stronger than the combination. The recombinant VACV activated the host

immune response, as indicated by lymphocyte infiltration in the spleen and tumor tissues.

Conclusion: The recombinant VACV WR strain expressing SurT34A and FilC is a safe and

effective anti-tumor vaccine.
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Introduction
Gastric cancer is the second most commonmalignancy in China, with 42.7 million new

cases and about 30.1 million deaths recorded in 2013, making it the third most common

cause of cancer-related mortality in China.1 The major therapies of gastric carcinoma

are surgery, radiotherapy, chemotherapy, and molecular targeted therapy. Despite new

drugs in clinical practice, the results have been far from satisfactory. In China, the

5-year overall survival rate is only 46%.2 Biological therapies, including anti-cancer

vaccines, have gained considerable attention in recent years, and the vaccinia virus

(VACV) is considered to be a suitable vector for anti-tumor vaccine therapy.3

Survivin or Birc-5 (Sur) is a member of the apoptotic inhibitory protein (IAP) family,

and it is widely expressed in almost all tumor cells, but usually not in normal cells.4 Recent

studies have shown that survivin can stimulate anti-tumor cytotoxic T-cell (CTL)

responses.5,6 Krieg et al reported that the high levels of survivin in gastric cancer cells

was correlated with a high mortality rate, recurrence, metastasis, and other adverse

outcomes.7 Our previous study showed that the survivin T34A mutant (Sur-T34A),

when fused with the TAT cell-penetrating peptide and transduced into cancer cells, can
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induce apoptosis in melanoma cells in vitro and in vivo.8 Ogura

et al further demonstrated that Sur-T34A induced apoptosis in

cancer cells by activating mitochondrial pathways,9 while other

researchers showed little toxicity of Sur-T34A in normal cells

both in vitro and in vivo.10,11 Therefore, SurT34A is a potential

antigen for developing therapeutic anti-tumor vaccines.

Bacterial flagellin (FilC) is a pathogen-associated

molecular pattern (PAMP) ligand that binds to the Toll-

like receptor 5 (TLR-5) on the surface of dendritic cells

(DC), triggers cytokine release, and activates innate and

adaptive immune responses.12,13 Previous research also

showed that FilC is widely used as a key protein and

peptides encoded by both DNA vaccines or viral vectors,

which showed a favorable adjuvant effect, are also

key.14,15 Lee et al reported that FilC acted as a potent

adjuvant by activating the TLR5 signaling pathway in

a cervical cancer mouse model.16 Thus, we examined

whether FilC could be used as a molecular adjuvant with

the viccinia virus Western Reverse (WR) strain as a vector.

A number of viruses, such as adenoviruses (Ads), HSV,

alphaviruses, rhabdoviruses, and Newcastle disease virus

(NDV), among others, have been used as oncolytic viruses

in a number of animal models and clinical trials.17–21 VACV

has been used as a vaccine for decades, and the WR strain is

a particularly attractive oncolytic viral vector due to its high

lytic ability and natural selectivity against tumor cells.22

Despite the therapeutic potential of VACV in gastric cancer,

the combination of Sur-T34A and FilC encoded by the

VACV WR strain has never been reported previously.

In this study, we developed a recombinant VACV-based

anti-tumor vaccine expressing SurT34A and FilC. We

expected to observe both therapeutic and prophylactic effects

from SurT34A, and enhanced immunogenicity from FilC,

eventually leading to synergically enhanced anti-tumor effects.

Materials and Methods
Cell Lines
Vero (African green monkey kidney epithelial), B-16

(murine melanoma), NIH3T3 (murine embryo fibroblast),

and hepa1-6 (murine hepatoma) cell lines were cultured in

DMEM supplemented with 10% fetal calf serum (FCS).

AGS, SGC-7901 (human gastric carcinoma), and MFC

(murine forestomach carcinoma) cell lines were cultured in

RPMI 1640 medium with 10% fetal bovine serum (FBS).

The 4T1 (murine breast carcinoma) cell lines were cul-

tured in RPMI 1640 medium with 10% FCS. All of the cells

lines were cultured at 37°C and 80% humidity under 5% CO2.

Plasmids
The sequence of the mouse survivin gene was obtained from

Genbank, NCBI (NM_009689.2), and the pUC57-Survivin

T34A plasmid was generated by GenScript Co. Ltd(Nanjing,

Chnia). after T34A mutagenesis and codon optimization for

the vaccinia virus system. The pCZ vector was constructed by

incorporating the mcherry, pgt, and Zeocin genes into the pCB

plasmid, and it was used as the empty vector control for the

Thymidine Kinase(TK) gene deletion virus. The pCZ-

SurT34A-ch vector was constructed by digesting pUC57-

Survivin T34A and pCZ wtih Bgl-II and SwaI (New England

Biolabs), and cloning SurT34A into pCZ using T4DNA ligase

(NEB). To construct the pCZ-fliC-ch vector, the genomicDNA

of Salmonella ZJ111 was extracted and a FilC gene fragment

wasfirst amplified using the primers P1 and P2 (see below) and

digested with Swal and BanHI. The pCZ vector was then

digested with Bgl-II and Swal, and the FilC fragment was

inserted into the pCZ Vector with T4 DNA ligase. All of the

plasmids were extracted with a SanPrep Column Plasmid

Mini-Prep Kit (Shanghai Sangon Biotech Co. Ltd.), and

sequenced by Sangon Biotech (Shanghai Sangon Biotech Co.

Ltd.). The primer sequences were as follows:

P1: 5ʹgcgcatttaaatgcggccgcattaacgcagtaaagagag 3ʹ,

P2: 5ʹ gaaggatccatcgatgaattcactagtgccaccatggcacaagt-

cattaatacaaac 3ʹ.

Construction of the TK Gene Deleted

Recombinant VAVC
All of the viruses used in this study are based on the WR

strain. The wild-type (WT) virus was kindly provided by

the NIH-AIDS Research & Reference Reagent Program.

Vero cells were transfected with the plasmids pCZ-

SurT34A-ch, pCZ-FilC-ch, and pCB-MCZ using

Lipofection (NEB). A mixture of 4 µg plasmid, 10 µL

Lipofection, and 500 µL serum-free DMEM was added

onto Vero monolayers and incubated for 4 hrs. The cells

were then infected with the parental virus (WT VACV) at

the multiplicity of infection (MOI) of 0.1 PFU/cell. After

48–72 hrs, the recombinant vaccinia viruses were har-

vested, freeze/thawed thrice, and then used to serially

infect new Vero monolayers. The infected cells were

selected by xanthine-guanine phosphoribosyltransferase

(XGPRT) due to the presence of the gpt gene in the

recombinant virus. After several plaque purification pas-

sages, the TK-deleted VACV infected cells were selected

and isolated with the help of the mCherry reporter gene.

Following several rounds of selection, the virus was
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plaque tested to confirm purity. The pure VACVs were

then amplified in Vero cells, extracted by sucrose gradient

centrifugation, and quantified by a plaque assay in terms of

the number of plaque-forming units per milliliter

(PFU/mL).

CCK-8 Assay
Cells were seeded in a 96-well plate at the density of 104 cells/

well in 100 μLmedium, and cultured in a CO2 incubator at 37°

C for 24 hrs. After adding 10 μL of recombinant viruses at

different MOIs (0.01 PFU/cell, 0.1 PFU/cell, 1 PFU/cell, 10

PFU/cell), the cells were incubated for another 48 hrs. Ten

microliters of CCK-8 solution (Sangon Biotech, China) was

added to each well, and the plate was incubated for 1 hr, after

which the absorbance was measured at 450 nm using

a microplate reader (Thermo, USA).

Western Blotting
The virus-infected cells were incubated at 37°C for 48 hrs,

and the total protein and recombinant viruses were extracted.

After separating the proteins using 13% SDS-PAGE, the

bands were transferred onto a polyvinylidene fluoride

(PVDF) membrane. The latter was blocked with 5% milk

for 2 hrs at 37°C, and incubated overnight with anti-survivin

antibodies (1:1000, Abcam ab182132) and anti-flagellin anti-

bodies (1:1000, Abcam ab93713) at 4°C. After washing with

TBST, the membrane was incubated with HRP-conjugated

goat anti-Rabbit IgG (1:5000) for 1 hr at room temperature.

The protein bands were detected using the SuperLumia ECL

Plus Western blotting detection reagents (Abbkine) and

bands were quantified with NIH ImageJ.

Flow Cytometry Analysis
Mice inoculated with viruses or PBS were sacrificed, and

their spleens and tumors were removed and collected in

ice-cold PBS containing 1% FBS and 2 mM EDTA. After

homogenizing the spleen tissues, the resulting splenocytes

were incubated with Fc Block (mouse anti-CD16/CD32;

ab25235), followed by anti-CD3 (ab16669), anti-CD4

(ab25475), anti-CD8 (ab22378), anti-CD11b (ab8878),

anti-CD19 (ab31947), anti-CD11c (ab11029), anti-MHC

II (ab23990), and anti-foxp3 (ab20034) antibodies. The

stained cells were acquired on BD FACSCalibur, and

data were analyzed using FlowJo software (v.10.0.7; Tree

Star, Ashland, OR, USA). The CD4+ T lymphocytes were

characterized as CD3+/CD4+, CD8+ T lymphocytes as

CD3+/CD8+, B lymphocytes as CD11b+/CD19+, DCs as

CD11c+/MH II +, and T-reg cells as CD4+/foxp3+.

Virus Replication and Cytotoxicity Assay in vitro

To verify the infection ability of the TK gene-deleted

recombinant VACV in different cancer cells, 5 × 106

cells of each line were infected at the MOI of 0.1 PFU/

cell. The viral titers were measured at 12, 24, 48, and

72 hrs post infection (hpi). All of the cell lines were then

infected at different MOIs, and cell viability was deter-

mined with a CCK-8 assay at 72 hpi.

Viral Toxicity Assay in vivo

The mice were intraperitoneally (i.p.) injected with recom-

binant VACV, WT VACV (1×107 PFU/mouse, 100 μL), or
PBS. The tumor weights and survival duration of the mice

were recorded daily for 15 days. In addition, some mice

were sacrificed at 24, 72, 120, and 168 hpi, and their

parenchymal organs were removed. Viral titers in the

homogenates of the brain, liver, and ovaries and peritoneal

effusion were then measured (schemes are shown in

Figure 1A).

Tumor Modelling and Vaccination Protocol

Female BALB/c mice (6–8 weeks old, weighing 18 ± 2 g)

were purchased from the Experimental Animal Center,

Zhejiang Academy of Medical Sciences. The animals

were housed under controlled environmental conditions

(temperature and humidity), and they were given access

to food and water ad libitum.

To establish the xenograft tumor model, the mice were

injected subcutaneously with 5 × 105 MFC cells under their

right flanks. Once the tumor volume reached ~50 mm3, the

recombinant VACV (1 × 108 PFU) or PBS was injected i.p.

Some mice (3 mice each group) were sacrificed on days 3,

6, 9, and 12 post injection, and their tumors and spleens

were removed. The percentage of CD4+, CD8+, and CD19

+ lymphocytes were analyzed as described, and the viral

titers of the tumor homogenates were determined with

a plaque assay. In another cohort, mice were injected i.p.

with recombinant VACV (1 × 108 PFU/mouse, 100 μL) or
100 μL PBS 4 times. The size of the tumor was measured

every 3 days and survival duration was recorded. A part of

the cohort (n = 6) was sacrificed on day 30 and their tumors

were weighed, and the tumor volume was calculated as

(length × width 2) × 2.23

To vaccinate the mice, the mice were injected i.p. with

recombinant VACV (1 × 108 pfu/mouse, 100 μL) or 100 µL

PBS on days 7, 14, 21, and 28 after acclimatization. The

MFCs (5 × 105/100 μL/mouse) were then transplanted at 7

days after inoculation. Tumor growth and survival durations
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were recorded every 3 days, and the volume of the tumors

was calculated as above.

Antibody-Mediated Immuno-Depletion in vivo

To deplete specific immune cell subsets prior to and during

recombinant VACV therapy, the mice were injected with

purified monoclonal antibodies against CD4+ (GK 1.5) and

CD8+ (53–6.7) T-cells on days −4 and −2, relative to day 0

whenMFC cells (1 × 106/100 μL/mouse)were inoculated. The

recombinant VACV (1 × 108 pfu/mouse, 100 μL) was injected

on days 5, 9, and 13. Immuno-depletion was repeated before

and after every vaccination on days 4, 7, 11, and 15. T-cell

Figure 1 Viral toxicity and replication in vivo. Female BALB/cmice (4mice each group) were inoculated (i.p.) with 100 µL of different viruses (WT-VV, vv-MCZ, vv-SurT34A, vv-Sur and

vv-FilC at 1×107 or 1×108 PFU/mouse), and their weight and survival time were recorded daily until day 15. (A) Scheme of virus injection; (B) Survival time of mice inoculated with 1 ×

107 PFU/mouse, mice were sacrificed when body weight reduction was > 20%; (C) Inoculation of 1 × 107 PFU/mouse, weights of the mice were recorded and evaluated for percent

weight change; (D) Inoculation of 1 × 108 PFU/mouse, weights of the mice were recorded and evaluated for percent weight change; (E) Inoculation of 1 × 107 PFU/mouse, viral titer in

the brain, liver, ovary, and peritoneal effusion at 24 hpi, 72 phi, 120 hpi, and 168 phi. Data are shown as the mean ± SD. **p < 0.01.
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depletionwas confirmed byflowcytometry on days 0, 5, 9, and

13, and it was consistently > 95%. In addition to the isotype

control, unvaccinated (injectedwith PBS instead of VACVand

not immuno-depleted), therapeutic (injected only with recom-

binant VACV), and non-depleted controls were also included.

Statistical Analysis
All of the data were obtained from at least three independent

experiments, and the data are presented as the mean ± SD.

Statistical analyses were carried out using SPSS v22.0 (IBM,

USA). Significance for comparison between groups was deter-

mined using a one-way ANOVA test with Bonferroni correction

for multiple comparisons. Differences in tumor growth were

analyzed using a two-tailed Student’s t-test. Survival between

groupswas determinedwith a Log rank test and survival Kaplan-

Meier survival curve. Differences were considered to be statisti-

cally significant when *p < 0.05 or **p < 0.01.

Results
Construction and Identity of

Recombinant Virus
The recombinant VACV expressing Sur-T34A and FilC was

constructed using GPT, Zeocin, and mCherry as the selecting

genes. The cloning scheme is shown in Figure 2A–D, respec-

tively, show fluorescent virus-infected cells, FilC expression in

vv-FilC, and expression of survivin protein in vv-SurT34A-

infected cell lines.

Viral Replication in vitro
To verify the replication ability of recombinant VACV,

different cells were infected at the same MOI (0.1 PFU/

cell), and after harvesting the viruses at different times

(12 h, 24 h, 48 h, and 72 h), their titers were determined

using the Vero cells. As shown in Figure 3, the titers were

stable in all of the cell lines after 48 hrs of infection, as no

significant difference was seen between the 48 hpi and

72 hpi viral titers. The replication ability of the recombi-

nant VACV was not weaker than that of the parental strain,

except in the NIH3T3 cells, where lower titers were

obtained. In the cancer cell lines, the recombinant virus

had a stronger replication ability than the WT VACV,

while both recombinant and WT VACV were less replica-

tive in 4T1 cells.

Viral Cytotoxicity in vitro
To evaluate the oncolytic ability of the recombinant

virus, different cell lines were infected with different

MOIs of the WT and recombinant VACV, and cell

viability was measured with a CCK-8 assay at 72 hpi.

Both viruses had poor oncolytic potency in the 4T1,

while the WT VACV had a stronger oncolytic potency

than the recombinant VACV in NIH3T3 cells. In the

three tumor cell lines and Vero cells, the oncolytic effect

of both viruses were similar, and the cell viability was

less than 20% at the MOI of 10 PFU/cell at 72 hpi

(Figure 4).

Viral Toxicity and Replication in vivo
To evaluate the viral toxicity in mice, they were injected

with 100 µL recombinant VACV (1 × 107PFU/1 × 108

PFU), WT VACV (1 × 107PFU/1 × 108PFU; control

group), or PBS (mock-group). As shown in Figure 1B–D,

the main adverse effect of VACV was weight loss; when

inoculation of 1 × 107 PFU/mouse, the control group mice

rapidly lost weight and died within 1 week. Mice injected

with the recombinant VACV started regaining weight 7–10

days after injection; when inoculation was 1 × 108 PFU/

mouse, mice injected with recombinant VACV started

regaining weight 11–14 days after injection. Therefore,

a high dose of WT VACV was not suitable in vivo due to

its toxicity.

To evaluate the viral replication in mice, they were sacri-

ficed at 24, 72, 120, and 168 h after inoculation of 1 × 107 PFU/

mouse. As shown in Figure 1E, viral titers in the peritoneal

exudates were initially significantly lower than the injected

dose, and they gradually decreased over time. There was little

virus in the brain due to the blood-brain barrier. Viral titers

decreased rapidly in the liver and was eradicated in 168

h. Interestingly, the WT VACV showed more replication in

the ovaries compared to the recombinant VACV.

In vivo Oncolytic Ability of Recombinant

VACV
The anti-tumor effect of recombinant VACV in vivo was

determined as described in the Methods section

(Figure 5A). The tumor volume of the vv-MCZ and PBS

groups was similar during the first 10 days post virus injec-

tion, and it decreased significantly in the vv-MCZ mice after

20 days. The tumor volume of the vv-SurT34A and vv-FilC

groups were significantly smaller than that of the vv-MCZ

group after the first injection. The combination of vv-Sur-

T34A and vv-FilC showed a stronger anti-tumor effect than

either virus alone (Figure 5B). As shown in Figure 5C, the

unvaccinated mice had a poor prognosis, while those injected
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with recombinant VACV survived longer. The median survi-

val duration of the PBS, vv-MCZ, vv-SurT34A, vv-FilC, and

vv-SurT34A/vv-FilC groups were 19, 35, 44, 41, and 50

days, respectively. The weight of the tumors correlated sig-

nificantly with tumor volume and mice survival (Figure 5D).

Recombinant Virus Activates Mice Immunity
High viral titers weremaintained in the tumor homogenates even

12 days after injection (schemes of virus infection are shown in

Figure 6A), with no significant differences between the three

recombinant viruses (Figure 6B). Since the spleen is the key

Figure 2 Characterization of vv-SurT4A and vv-FilC. (A) Cloning scheme; (B) Survivin expression in virus and cells: Lane 1: vv-Sur (1 × 107 PFU), Lane 2: vv-SurT34A (1 × 107 PFU),

Lane 3: B-16 cells, lane 4: MFC cells, Lane 5: Hepa1-6, Lane 6: VERO cells and Lane 7: wild-type VACV; (C) FilC expression in virus and cells: Lane 1: vv-FilC (1 × 107 PFU), Lane 2:

Escherichia coli, BL21, Lane 3: Salmonella ZJ-111, Lane 4: VERO cells and Lane 5: wild-type VACV; (D) Red fluorescent of VERO infected with recombinant VACV.
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organ in the adaptive immune response, we evaluated the splenic

lymphocytes to assess the immune response elicited by recombi-

nant VACV. As shown in Figure 6C–E, there was no significant

difference in the proportionof theCD4+,CD8+, andCD19+cells

between the groups three days after virus inoculation. However,

the recombinant VACVgroup hadmore CD4+ and CD8+ splenic

T-cells compared to the uninfected controls, peaking on the

ninth day post infection (Figure 6C and D). In addition, the

proportion of CD4+ and CD8+ T-cells in the vv-SurT34A/vv-

FilC group was higher than that of the vv-MCZ group (p<0.05).

CD19+ B-cells were abundant in the vv-FilC and vv-SurT34A

/vv-FilC groups from the 9th day onwards and lasted until the

Figure 3 Viral replication in vitro. Murine tumor cell lines (A–D, B16, Hepa1-6, MFC and 4T1), the normal cell line (E, NIH3T3), tool cells (F, VERO), and human gastric

carcinoma cell lines (G, H, SGC-7901, and AGS) were infected with wild type VACV (WT-VV), vv-MCZ, vv-SurT34A, vv-FilC, and vv-Sur at 0.1 MOI and samples were

collected at indicated times. Viral titers were determined in Vero cells. Each bar represents the mean ± SD of three separate experiments (n = 4). **p < 0.01.
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12th day, but they were lower in the vv-SurT34A, vv-MCZ, and

PBS groups (Figure 6E).

We also analyzed T-cell infiltration in the tumor tissues

of different groups (Figure 6F–I), and we observed sig-

nificantly increased recruitment of CD4+ and CD8+ T-cells

in the recombinant VACV group, compared to the PBS

and vv-MCZ groups, peaking on the 9th day and

remaining sustained until the 12th day (Figure 6F and

G). The proportion of DCs in the vv-FilC and combination

groups was about 2-fold higher compared to that in the vv-

SurT34A group on the 6th day, and 3-fold higher on the

9th and 12th days (Figure 6H). The proportion of T-reg

cells in the vv-FilC and combination groups increased to

30% between days 6 and 12, while that in the vv-SurT34A

Figure 4 Viral cytotoxicity assay in vitro. B-16, Hepa1-6, MFC, 4T1, NIH3T3, SGC-7901, AGS, and Vero cells were infected with WT-VV, vv-MCZ, vv-FilC, vv-Sur, and vv-

SurT34A at different MOIs (0.01 PFU/cell, 0.1 PFU/cell, 1 PFU/cell, and 10 PFU/cell). Cell viability was measured with a CCK-8 assay at 72 hrs hpi. Each bar represents the

mean ± SD of three separate experiments (n = 4). **p < 0.01.
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group remained at 10% (Figure 6I). These results clearly

indicated that vv-FilC acted as an adjuvant and enhanced

the immunogenicity of the recombinant VACV vaccine.

Tumor Inhibition of Recombinant VACV
To evaluate the anti-tumor effect of recombinant VACV, the

micewere immunizedwith four inoculations of the recombinant

VACV or PBS, and then challenged with MFC cells

subcutaneously (Figure 7A). The median oncogenesis time in

the PBS and vv-FilC groups was 4 days, 5 days in the vv-MCZ

group, and7 days in the vv-SurT34Agroup.As shown inFigure

7B, the vv-FilC group had similar tumor growth rate as the PBS

group, while vv-SurT34A had a stronger inhibitory effect on

tumor growth than vv-MCZ, and significantly inhibited tumor

growth from day 10 to 20 after inoculation. Surprisingly, in

Figure 7C, the combination and vv-FilC groups did not show

superior tumor inhibitory activity compared to the vv-SurT34A

group. The median survival time of the PBS, vv-MCZ, vv-

SurT34A, vv-FilC, and vv-SurT34A/vv-FilC groups were 18,

23, 39, 20, and 20 days, respectively. The rate of the tumor

growth correlated with mice survival.

Antibody-Mediated Immuno-Depletion

Diminished the Anti-Tumor Response
To evaluate the role of tumor-specific CD4+ and CD8+ T-cells in

recombinant VACV-mediated anti-tumor responses, we depleted

the above cells in the mice using specific antibodies (Figure 8A)

before and after vaccination. As shown in Figure 8B and C,

depletion of CD8+ T-cells significantly reduced the survival of

the vaccinated mice compared to the non-depleted and isotype

control groups (p<0.01), to that of the unvaccinated mice.

Vaccinatedmicedepletedof bothCD4+andCD8+T-cells showed

an even worse prognosis compared to the CD8+-depleted and

unvaccinated groups. Although depletion of CD4+ T-cells also

reduced survival, the effect was less severe. The median survival

time of anti-CD4+, anti-CD8+, anti-CD4+/CD8+, PBS, and non-

depleted groups vaccinated with vv-SurT34Awas 20, 17, 14, 18,

and 31 days, respectively, and 17, 14, 13, 16, and 28 days,

respectively, in the mice vaccinated with vv-FilC.

To assess the effect of specific T cells in tumor pro-

gression, we measured the tumor volume every 2 days

after MFC implantation. As shown in Figure 8D and E,

the mean tumor volumes of the anti-CD4+, anti-CD8+,

anti-CD4+/CD8+, PBS, and non-depleted groups vacci-

nated with vv-SurT34A were 121.5±13.2 mm3, 126.8

±16.2 mm3, 217.2±15.5 mm3, 121.5±14.4 mm3, and

113.4±17.1 mm3, respectively, and 105.8±11.2 mm3,

126.5±16.3 mm3, 214.5±11.2 mm3, 103.5±10.6 mm3, and

82.6±9.3mm3, respectively, in mice vaccinated with vv-

FilC, at 5 days post-implantation. Mice depleted of both

T-cell subtypes had the largest tumor volume and the

fastest tumor growth, whereas CD8+ T-cell depletion also

accelerated tumor growth. Until day 10 post-implantation,

tumor growth in the anti-CD4+ group paralleled that in the

non-depleted and IgG2 groups, and accelerated thereafter.

Figure 5 Tumor model and therapeutic protocol. MFC (5 × 105 cells·100 μL/mice,

6 mice each group) were injected subcutaneously under the right flank. When the

tumor volume reached 50 mm3, the mice were injected (i.p.) with recombinant

VACV (1 × 108PFU/100 μL) or 100 μL PBS at the interval of 3 days, with a total of 4

injections. Some of the mice were sacrificed at day 30. Combination groups were 5

× 107PFU/50 μL of vv-SurT34A and vv-FilC. (A) Scheme of viral infection; (B) The
tumor volume of mice in each group; (C) Kaplan-Meier survival curves for tumor

bearing mice; (D) Weights of tumors at day 30. * p < 0.05.
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Discussion
Following the success of immune checkpoint inhibitors (PD-

1, PDL-1, and CTLA-4), the next promising anti-tumor

immunotherapeutic strategy was based on oncoltytic

viruses.23 These viruses specifically infect and replicate

within tumor cells, and lyse them to release their progeny,

thereby continuing an infection-lysis cycle until all of the

tumor cells are cleared. We chose VACV in this study since it

is the only virus that replicates in the cytoplasm, and larger

exogenous genes (about 25 kb) can be inserted into its

genome without any risk of integrating into the host

genome.24 The modified, highly attenuated Ankara strain of

VACV (MVA) is used as a broad spectrum vaccine, but

compared to the WR strain, it is poorly immunogenic in

Figure 6 Recombinant VACV activates immunity of mice. MFC cells (5 × 105) were injected subcutaneously under the right flank. Recombinant VACV (1 × 108 PFU/100μL)
or PBS was injected (i.p.) when the tumor volume reached 50 mm3. Mice were sacrificed at 3, 6, 9, and 12 days post injection, and the tumor and spleen were removed. The

CD4+ T lymphocytes were characterized as CD3+/CD4+, CD8+ T lymphocytes as CD3+/CD8+, B lymphocytes as CD11b+/CD19+, DCs as CD11c+/MH II +, and T-reg cells

as CD4+/foxp3+. (A) Scheme of virus infection; (B) Tumor viral titer in each group; (C) Percentage of CD4+ T lymphocytes in the spleen; (D) Percentage of CD8+

T lymphocytes in the spleen; (E) Percentage of CD19+ cells in the spleen; (F) Percentage of CD4+ T lymphocytes in the tumor tissue; (G) Percentage of CD8+

T lymphocytes in the tumor tissue; (H) Percentage of dendritic cells in the tumor tissue; (I) Percentage of T-reg cells in CD4+ cells; Data are shown as the mean ± SD.
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BALB/c mice; the WR strain elicited a 20-fold stronger

CD8-T+ lymphocyte response compared to MVA.25

Thymidine kinase (TK) is the key enzyme in the pyrimidine

synthesis pathway, and it is present in significantly higher levels

in tumor cells compared to normal cells. The TK gene-deleted

VACV therefore requires thymidine triphosphate (TTP) from

the host cells to replicate, and the TK-deficient VACV selec-

tively infect and replicate in the rapidly dividing tumor cells,

whichhavehigher levels of nucleotides compared to the healthy,

less replicative cells.26,27 For its tumor cell selectivity and lower

virulence in mice, TK-deficient VACV is often used as an

oncolytic virus vector.28,29 The ability to infect different tumor

cells is not diminished after TK gene deletion, and with sig-

nificantly less replicative ability in normal cells, even high doses

of recombinant VACV were found to be safe for the BALB/c

mice, thereby providing the basis for high titer viral therapy. The

New York City Board of Health vaccine (Wyeth) strain is TK

gene deleted (VACV:JX-594), and it expresses granulocyte-

macrophage colony-stimulating factor (GM-CSF).30 It has

shown good host tolerance in a Phase I clinical trial, and longer

survival in a Phase II trial, after both intra-tumoral and intrave-

nous injections.31–33 However, this vaccine has a poorer anti-

tumor effect in vitro compared to the wild-type (WT) strain.34

Recombinant VACV has shown therapeutic effects in several

murine tumormodels, including those of glioblastoma, pancrea-

tic cancer, andmelanoma.35–38 Interestingly, we found that both

WTand recombinant VACVwere less replicative in the murine

triple-negative breast cancer (TNBC) cell line 4T1, which

shows high levels of TTP,39 both in vitro and in vivo.

Furthermore, TNBC cells from different species differ in

termsofTTPexpression,which affects the replicationof recom-

binant VACV.

This is the first study to express the survivin T34A mutant

in the VACVWR vector, as previous studies have only cloned

wild-type survivin in the vaccinia Ankara vector or truncated

survivin in other vectors.40,41 The wild-type survivin inhibits

apoptosis in tumor cells and enables the cells to escape host

immune surveillance, since it is usually not recognized by the

immune system due to its low antigenicity. However, the

SurT34A mutant reversed the immunosuppressive tumor

microenvironment and induced apoptosis in tumor cells.

However, we did not observe a stronger anti-tumor effect of

vv-SurT34A compared to vv-MCZ, vv-FilC, or even wild-

type VACV in vivo or in vitro, possibly because the high anti-

tumor effect of VACV made the apoptosis induced by

SurT34A redundant.

Tumor growth is frequently assisted by the evasion of host

immune responses by the tumor cells.42 In the murine tumor

microenvironment, DCs are involved in the innate immune

response and the CD4+, CD8+, and T-reg cells mediate the

specific immune response. Tumor cell lysis releases the tumor-

associated antigens that attract more antigen-presenting cells

(APCs), thereby intensifying the anti-tumor immune response.

The VACVs elicited 1.4-fold higher CD4+ and CD8+ T-cells in

the spleen, and 15-, 10-, and 2-fold higher CD4+, CD8+, and

regulatory T-cells, respectively, in the tumors compared to vv-

MCZ. In addition, vv-FilC acted as a strong adjuvant that

augmented immune cell production. The depletion of CD4+

and CD8+ T-cells resulted in larger tumor volumes and shorter

survival, thereby proving the vital role of the adaptive immune

responses in tumor progression and regression, as well as the

potent anti-tumor effects of reversing immunosuppression.

Figure 7 Tumor inhibition of recombinant VACV. Mice were inoculated with

recombinant VACV (1 × 108PFU/100 μL) or 100 μL PBS 4 times, and the right

flank was injected subcutaneously with MFC (5 × 105cells/100 μL). (A) Scheme of

virus infection; (B) The tumor volume of mice in each group; (C) Kaplan-Meier

survival curves for tumor-bearing mice.
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Taken together, the combination of vv-SurT34A and vv-FilC

had a significantly stronger anti-tumor effect than either con-

struct alone.

Helper T cell (Th) function is critical for the adaptive

immune response against tumors, since the APCs present

the processed tumor antigen to CD4+ Th cells via MHC-II

molecules. The activated CD4+ T-cells subsequently stimu-

late the antigen-specific CD8+ cytotoxic T lymphocytes

(CTLs), which clear the antigen-harboring tumor cells.

However, the survival and tumor growth in the VACV- or

Figure 8 Antibody-mediated immuno-depletion diminished the anti-tumor response. The antibodies were injected on days −4 and −2, followed by MFC (1 × 106/100 μL/
mouse) transplantation on day 0, and recombinant VACV (1 × 108 pfu/mouse, 100 μL) inoculation on days 5, 9, and 13. Further depletion was carried out before and after

each vaccination on days 4, 7, 11, and 15. (A) Scheme of antibodies and virus injection; (B) Kaplan-Meier survival curves for immuno-depleted mice treated with vv-

SurT34A; (C) Kaplan-Meier survival curves for immuno-depleted mice treated with vv-FilC; (D) The tumor volume in mice treated with vv-SurT34A; (E) The tumor volume

in mice treated with vv-FilC.
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vv-FilC-inoculated mice were similar to that of the unvac-

cinated and vv-MCZ groups. This is consistent with pre-

vious reports that showed early accelerated tumor growth in

the tumor-bearing BALB/c mice treated with flagellin com-

pared to the saline-treated group, which can be explained by

a flagellin-induced shift in the Th1/Th2 response, resulting

in a decreased IFN-γ:IL-4 ratio and increased proportion of

CD4+ and CD25+ T-cells.43–47 These lymphocyte are asso-

ciated with increased immune tolerance that desensitize the

anti-tumor immune effector mechanisms, thereby acceler-

ating tumor growth.48 In this study, the proportion of CD4+

and CD25+ T-cells might have decreased before MFC

transplantation, and, therefore, did not accelerate tumor

growth.43

We incorporated only a single gene fragment into the

VACV vector. To enhance its antigenicity and increase its

tumor spectrum, other tumor-associated genes can be

incorporated into the survivin T34A construct.

Furthermore, other adjuvants should also be tested since

vv-FilC was not particularly strong. Finally, other animal

models should also be tested for recombinant VACV anti-

tumor function and safety.
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