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In this paper, we propose an easy to implement generalized linear models (GLM) methodology for esti-
mating the basic reproduction number, R0, a major epidemic parameter for assessing the transmissibility
of an infection. Our approach rests on well known qualitative properties of the classical SIR and SEIR sys-
tems for large populations. Moreover, we assume that information at the individual network level is not
available. In inference we consider non homogeneous Poisson observation processes and mainly concen-
trate on epidemics that spread through a completely susceptible population. Further, we examine the
performance of the estimator under various scenarios of relevance in practice, like partially observed
data. We perform a detailed simulation study and illustrate our approach on Covid-19 Canadian data sets.
Finally, we present extensions of our methodology and discuss its merits and practical limitations, in par-
ticular the challenges in estimating R0 when mitigation measures are applied.
� 2022 The Authors. Published by Elsevier Ltd. This is anopenaccess article under the CCBY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

During the recent Covid-19 pandemic there was revived inter-
est in finding reliable estimates of the so-called basic reproduction
number R0 that can, among others, give a conservative bound to
the proportion of the population that needs to be immunized in
order to stop the spread of an epidemic; according to Anderson
and May (1992) for R0 > 1 this proportion is 1� 1=R0 in a homoge-
neous population. In this paper, we consider GLM type methods for
estimating R0 in an epidemic that spreads through a completely
susceptible population, a good approximation for the recent
Covid-19 pandemic where no previous immunity seemed to be
present. A generalization is also proposed, for the case where part
of the population is immune at the start of the epidemic. The main
purpose is to suggest a core methodology that can be easily applied
to data gathered by health agencies while pointing to its
limitations.

In what follows, we refer to compartmental models, where it is
supposed that individuals go through three main stages, once a
small number of infectious cases are introduced in a large popula-
tion: from susceptible (not diseased, not immune) to infected (dis-
eased) to removed (cured and immune or dead). To these main
stages one can add various refinements, in particular, one can con-
sider intermediate phases (see Section 2).

In modeling and defining R0 the most common approaches in
the literature are either purely deterministic (Hethcote, 2000) or
purely stochastic, in either continuous or discrete time (Kendall,
1956; Isham et al., 2005; Yan, 2008). In spite of the stochastic
aspect of any outbreak, in large populations the deterministic mod-
els are still good approximations and therefore are widely used to
give preliminary estimates of the main epidemic parameters and
make predictions. Moreover, it has been proven (Kurtz, 1970;
Kurtz, 1971) that, if the population size N tends to infinity, the
paths of some stochastic models like the one in Kendall (1956) con-
verge weakly to the solution of the SIR model (1) where the integer
values of the stochastic process are translated into proportions. In
order to perform data analyses, the deterministic modeling has
been enriched by considering stochastic noise, given that we deal
with count data. In particular, Poisson noise in the sense of
Capaldi et al. (2012) was successfully applied to analyzing
COVID-19 data, for instance in Kuniya (2020). Another proposal
that relates deterministic epidemic systems to data is the one in
Southall et al. (2020) where incidence is modeled as a non homo-
geneous Poisson process; in their simulation study, O’Driscoll et al.
(2021) resorted to the same kind of Poisson model.

For the definition of R0 in the deterministic context we refer to
Heesterbeek and Dietz (1996). In the applied literature, R0 is
described as the average number of infections generated by a sin-
gle infectious case, sometimes called index case, introduced in a
completely susceptible population: given the exponential nature
of outbreaks, this initial number of infections plays a major role
in the final size (how many people get infected in the end) of the
epidemic.

In this paper we consider the analysis of large populations
counts as reported by health agencies. When analyzing such data,
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an important class of methods is based on the so-called final size
formula (Daley and Gani, 2001; Ma and Earn, 2006) that is valid
at the end of the epidemic, i.e. once the number of infected is
essentially reduced to 0; for the flu this would be the end of a given
flu season. This formula relates the total number of infected to the
final number of susceptibles, as described in the SIR model (1) but
is valid in other instances as well; for a more extensive description
see Chowell and Brauer (2009). The estimation method is
described for example in Ma and Earn (2006) and has been applied
to serological survey data as in Farrington et al. (2001), among
others.

Our approach is centered on applying standard generalized lin-
ear models (GLM) methodology to data collected by health agen-
cies by proposing to relate observed new cases to the number of
passed infections until time t, as expressed in the cumulative num-
ber of dead and cured, i.e. the total number of removed until t. This
relation is a consequence of a dynamic link between susceptibles
and removed, a more flexible approach than the one expressed in
the final size formula but maybe somewhat less general, as its
application supposes a more restricted class of deterministic sys-
tems. Therefore, in the vein of O’Driscoll et al. (2021) or Southall
et al. (2020), we take as starting point a deterministic model and
introduce count data modeled by non homogeneous Poisson pro-
cesses, with the novelty that we consider a pair of such processes,
corresponding to cases and removals, and we emphasize how their
rates are related (see Leduc (2011) and Section 2.3). Thus, in order
to estimate R0, we make use of well known qualitative properties
of the underlying SIR or SEIR deterministic systems and introduce
the GLM methodology. It is mentioned in Section 2.1 why the SEIR
system makes sense in the context of the COVID-19 pandemic;
indeed, the classical SEIR system and its various refinements have
been extensively used in recent data analyses (see Kemp et al.
(2021) and references therein).

Moreover, another major point of our paper is to address vari-
ous important robustness issues that occur in practice. First, we
take into account that data is never collected from time 0 (start
of the epidemic). Further, it can happen that cases are assessed
only partially and therefore we have to base our estimation on
an unknown proportion of actual cases, as a second typical hurdle
in this context. Indeed, the preoccupation with underreporting or
reporting bias in epidemics, or more generally count data, is not
new, and the literature is quite extensive. The issue has been
addressed in various ways, depending on the estimation methodol-
ogy, the type of disease or the available data: for a good overview
we refer to the recent paper by Bracher and Held (2021) and refer-
ences therein; see also Chowell et al. (2007) for specific issues that
are common in practice. In this paper, we take a simple approach,
described in Sections 2.2 and 2.3: we assume there is a fixed the-
oretical unknown proportion of cases and corresponding removals,
given either the nature of the epidemic (presence of asymptomatic
cases, e.g.) or the design study (follow-up of a subpopulation, like
hospitalizations, e.g.) while the reported data is produced by bino-
mial thinning. Finally, having a large number of initially immune
reduces R0 (Britton, 2010) and our method estimates correctly this
reduced value. A related type of situation, where part of the popu-
lation does not participate in the spread of the infection although
not immune, occurs when mitigation or suppression measures
are implemented for longer periods of time.

Finally, it is worth mentioning that, unlike some of the most
popular estimation methods cited in O’Driscoll et al. (2021), our
approach does not require information at the individual network
level and makes no assumptions on additional parameters. On
the other hand, our method supposes that both new cases and
new removals (or at least new deaths) are regularly followed up
(daily or weekly) but when such data are available they are
assessed only approximately.
2

The paper is organized as follows. Section 2 gives the theoretical
basis of our approach, namely both the deterministic and stochas-
tic models and their properties, as well as how the GLM estimation
methodology can be applied to a typical data set. In Section 3 we
make an extensive simulation study and illustrate the method on
some Covid-19 data sets. Finally, in Section 4 we discuss various
practical issues.

2. Theoretical basis

2.1. SIR and SEIR systems

In what follows, we consider two classical deterministic com-
partmental models for homogeneous populations: SIR (Suscepti-
bles, Infected and Infectious, and Removed), introduced in
M’Kendrick (1925) and Kermack and McKendrick (1927), and SEIR
(Susceptibles, Exposed, Infectious, and Removed), as a special case
of a more general model MSEIR given in Hethcote (2000).

The systems can be expressed in proportions and we start with
the SIR system where we have x tð Þ; y tð Þ; z tð Þð Þ standing for propor-
tions at time t, namely: x tð Þ, susceptibles, y tð Þ, infected and infec-
tious, z tð Þ, removed (dead or cured); at time 0, the initial value is

x0; y0; z0ð Þ 2 0;1½ �3 with x0 þ y0 6 1, and the system is:

x0 tð Þ ¼ �bx tð Þy tð Þ;
y0 tð Þ ¼ bx tð Þy tð Þ � cy tð Þ ¼ cy tð Þ b

c x tð Þ � 1
n o

;

z0 tð Þ ¼ cy tð Þ;

8>><>>: ð1Þ

with b > 0; c > 0. We define R0 ¼ b=c; as far as x tð Þ; z tð Þ are con-
cerned, x tð Þ is decreasing and z tð Þ is increasing, while �x0 tð Þ and
z0 tð Þ are unimodal.

Further, consider a population of fixed (during the time of the
epidemic) size N, so that the population is divided into three dis-
joint classes (compartments). Then, the relationships in (1) can
be expressed in terms of the compartments’ sizes

~x tð Þ; ~y tð Þ;~z tð Þð Þ ¼ Nx tð Þ;Ny tð Þ;Nz tð Þð Þ;
the initial value is ~x0; ~y0;~z0ð Þ ¼ Nx0;Ny0;Nz0ð Þ and the equations
relating the three classes are identical to those in (1) but of param-
eters bN ¼ b=N; cN ¼ c with b > 0; c > 0 as given in (1). In the liter-
ature, bN ¼ b=N is sometimes designated as contact rate per
susceptible (the name of the concept makes sense in the case where
~x0 � N). Further, consider SEIR, where the infected are divided into
two subclasses, namely w tð Þ, exposed, and y tð Þ, infectious, and thus
the percentage of infected comes to the sum w tð Þ þ y tð Þ. In other
words, there is a notable delay (latency) between the moment of
exposure and the moment of becoming infectious and infected does
not always mean infectious. It seems appropriate to make this type
of distinction in the case of an epidemic like Covid-19, but may be
less important to make in the case of the flu, where the latency per-
iod is much shorter. In the SEIR system, the initial values are

x0;w0; y0; z0ð Þ 2 0;1½ �4; x0 þ y0 þw0 6 1, and the first and last equa-
tions of the SEIR system (A.1) (see Appendix A) are the same as in
the case of the SIR system (1); the behaviour of x tð Þ; z tð Þ is the same
as in (1). As for the evolution of infected, their progress is divided
into two stages: a susceptible gets infected but is exposed only
(not yet infectious) and after a delay (latency time) the exposed
becomes infectious. This latency period is described by the param-
eter r, with 1=r the mean latency time. As in the case of the SIR sys-
tem, one can translate the equations in the SEIR system (A.1) in
terms of sizes of each compartment, Nx tð Þ;Nw tð Þ;Ny tð Þ;Nz tð Þð Þ;
then the parameters are bN ¼ b=N; cN ¼ c;rN ¼ r with
b > 0; c > 0;r > 0 as in (A.1).

It is worth noting that in models like (1) or (A.1) the epidemic
‘‘reproduces itself” in proportion, no matter the size of the popula-
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tion, i.e. if we consider two populations where the outbreak starts
from the same initial percentages x0;w0; y0ð Þ, respectively
x0;w0; y0; z0ð Þ, the timing of events such as the maximum number
of new deaths or new removals is the same; also, the percentage
of infected after a fixed number of days since the beginning of
the epidemic is the same in any population (no matter its size)
although, obviously, the absolute numbers differ according to pop-
ulation size.

Although there are versions of (1) or (A.1) that include demo-
graphics (i.e. take into account births and deaths that occur during
the epidemic) our research concerns only diseases of epidemic
type, like seasonal influenza (or a specific wave of Covid-19), that
reach eventual extinction in a relatively short time (i.e. y tFð Þ � 0
at some final time tF); thus, demographics can be ignored in such
cases.

To summarize, the positive parameters in the SIR and SEIR sys-
tems have the following interpretation (all are supposed unknown
in our estimation method):

� b=N: contact (infectivity) rate per susceptible (or per
individual);

� 1=c : mean infectious time (how long one is infectious, on
average);

� 1=r : mean latency time;
� R0 ¼ b=c: basic reproduction number.

2.2. Additional properties of the deterministic systems

At the core of our estimation method are some straightforward
analytic properties of the deterministic systems (1) and (A.1).
Therefore, in this section, we set forth these results, while in Sec-
tion 2.3 we introduce the probabilistic model and related features
of the observed data on which we base our inference. In view of
this stochastic development we use statistical terminology to
express some deterministic properties. In the case of the SIR sys-
tem, Bailey (1955) and Daley and Gani (2001) mention an equation
that relates ~x tð Þ to ~z tð Þ, and applies in the case of the SEIR system
(A.1) as well. This relationship is obtained as follows: consider
the first and last equations in (1) and (A.1) translated into compart-
ment sizes, namely

~x0 tð Þ ¼ � b
N
~x tð Þ~y tð Þ () log ~x tð Þf g½ �0 ¼ � b

N
~y tð Þ;

~z0 tð Þ ¼ c~y tð Þ; ð2Þ

that imply log ~x tð Þf g½ �0 ¼ � R0=Nð Þ~z0 tð Þ. By integrating from time
s0 P 0 we have the following implicit relationship (system
integral):

log ~x tð Þ ¼ log ~x s0ð Þ � R0

N
~z tð Þ � ~z s0ð Þf g: ð3Þ

We start by dealing with the special case s0 ¼ 0 and ~z0 ¼ 0,
while the case ~z0 > 0 is left to Appendix A.

In practice, one observes new cases that correspond to a reduc-
tion in susceptibles; in the deterministic model they are typified by
~x sð Þ � ~x tð Þ with s < t; note that ~x sð Þ > ~x tð Þ. Thus it makes sense to
consider the behaviour of the differences ~x sð Þ � ~x tð Þ; s < t:

~x sð Þ � ~x tð Þ ¼ ~x0 exp � R0
N
~z sð Þ� �� exp � R0

N
~z tð Þ� �� �

¼ ~x0 exp � R0
N
~z sð Þ� �

1� exp � R0
N

~z tð Þ � ~z sð Þf g� �� �
:

ð4Þ

Further, we approximate the logarithm of a difference
~x sð Þ � ~x tð Þ; s < t, by applying 1� e�a � a and subsequently letting
~x0 � N:
3

log ~x sð Þ � ~x tð Þf g � log ~x0ð Þ � R0
N
~z sð Þ þ log R0ð Þ � log Nð Þ þ log ~z tð Þ � ~z sð Þf g

� log R0ð Þ � R0
N
~z sð Þ þ log ~z tð Þ � ~z sð Þf g:

ð5Þ

The remainder is negligible because increments ~z tð Þ � ~z sð Þf g are
typically very small (if s; t are close) when compared with N. This
last formula is at the core of our estimation method to be described
in the next section. Indeed, in order to perform the estimation of
R0, we can view Eq. (5) as the ‘‘regression”

log ~x sð Þ � ~x tð Þf g ¼ aþ b~z sð Þ þ offset; ð6Þ
where we regress log ~x sð Þ � ~x tð Þf g on ~z sð Þ and the offset is
log ~z tð Þ � ~z sð Þf g.

Often, in practice (in large populations), one follows up only
some proportion p of the data, either by design (we consider only
hospitalizations for instance) or because of field realities (there are
many asymptomatic cases) and therefore we study how the above
relationship (5) is transformed if we relate p ~x sð Þ � ~x tð Þf g to p~z sð Þ
while taking into account p ~z sð Þ � ~z tð Þf g. Of course, if p is assumed
known there is no issue; otherwise, we deal with incomplete infor-
mation. The transformation is given below:

log p ~x sð Þ � ~x tð Þf g½ � ¼ log ~x sð Þ � ~x tð Þf g þ log pð Þ
� log R0ð Þ � R0

N
~z sð Þ þ log ~z tð Þ � ~z sð Þf g þ log pð Þ

¼ log R0ð Þ � R0
pN p~z sð Þf g þ log p~z tð Þ � p~z sð Þf g;

ð7Þ

which can be viewed as the ‘‘regression”

log p ~x sð Þ � ~x tð Þf g½ � ¼ aþ bp p~z sð Þf g þ offset; ð8Þ
where the intercept a ¼ log R0ð Þ does not change with p, while the
slope bp ¼ �R0= pNð Þ > �R0=N depends on p. As a by-product we
obtain a relationship that could be used to estimate p:

p ¼ � R0

bpN
¼ � exp log R0ð Þf g

bpN
¼ � exp að Þ

bpN
: ð9Þ

Finally, another theoretical issue that is addressed in estimation
is the fact that typically an epidemic is not observed from day one,
but from some time s0 > 0. Then, ~x s0ð Þ ¼ p�~x0 where p� 2 0;1ð � is
unknown and (3) implies ~x tð Þ ¼ ~x s0ð Þ exp �R0=N ~z tð Þ � ~z s0ð Þf g½ �,
which gives the differences

~x sð Þ � ~x tð Þ ¼ ~x s0ð Þ

� exp
R0

N
~z s0ð Þ

� 	
exp �R0

N
~z sð Þ

� 	
1� exp �R0

N
~z tð Þ � ~z sð Þf g


 �� 

:

ð10Þ
By taking logarithms, we obtain:

log ~x sð Þ � ~x tð Þf g � log ~x s0ð Þ � R0
N

~z sð Þ � ~z s0ð Þf g þ log R0ð Þ � logN
þ log ~z tð Þ � ~z sð Þf g

¼ log ~x0 þ log p� � R0
N

~z sð Þ � ~z s0ð Þf g þ log R0ð Þ � logN
þ log ~z tð Þ � ~z sð Þf g

� log p� þ log R0ð Þ � R0
N

~z sð Þ � ~z s0ð Þf g þ log ~z tð Þ � ~z sð Þf g:

Therefore, for the log of the differences, the intercept
a ¼ log R0ð Þ is replaced with a� ¼ log R0ð Þ þ log p�ð Þ, and we can
define R�

0 ¼ p�R0 < R0. Thus, the observed data would display a
lower intercept, but the same slope, as long as p ¼ 1. If both p
and p� are less than one, the relationship expressed in (9) is
affected but as long as p� is close to one the change is negligible:

� exp a�ð Þ
bpN

¼ � exp log R0ð Þ þ log p�ð Þf g
bpN

< � exp log R0ð Þf g
bpN
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Given that the slope is affected by the proportion p of followed-
up cases and that p� acts on the intercept but can be expected to be
close to 1 in practice (see our examples in Section 3.1), we prefer to
base the estimation on the intercept.

2.3. Stochastic approach

Our main analysis tackles the spread of an epidemic in a large
population and, therefore, the proposed stochastic versions Xt ; Zt

of susceptibles and removed are supposed to revolve ‘‘around”
the deterministic solutions described in Section 2. The main pur-
pose is: on one hand to have E Xtð Þ ¼ ~x tð Þ; E Ztð Þ ¼ ~z tð Þ; on the other
hand, to preserve, if possible, one or both Eqs. (3) and (5). First, we
note that, in practice, we observe new cases and new removals,
which should be realizations of the increments of such processes:

~x0 � Xtð Þ � ~x0 � Xsð Þ ¼ Xs � Xt and Zt � Zs; s < t:

The simplest idea is to follow Leduc (2011) (a model related to
the SIR system that makes sense for the SEIR one as well). In such
an approach, we postulate two independent non homogeneous
Poisson processes of related intensities, corresponding to: (i) the
difference between the initial number of susceptibles ~x0 and sus-
ceptibles at a fixed time t and (ii) removed until time t, namely

Vt ¼ ~x0 � Xt such that E Vtð Þ ¼ ~x0 � ~x tð Þ;
Zt such that E Ztð Þ ¼ ~z tð Þ:

�
In other words, Vt is the cumulative number of cases who have

fallen ill until time t (some may still be active, i.e. still infected
whether exposed or infectious, some are already removed). Obvi-
ously we have:

Vs;t ¼ Vt � Vs ¼ Xs � Xt such that lV ;s;t ¼ E Vs;tð Þ ¼ x
�

sð Þ � x
�

tð Þ:
In other words, the intensity functions of the processes Vt and

Zt; t P 0 are, respectively:

kV tð Þ ¼ b
N
~x tð Þ~y tð Þ and kZ tð Þ ¼ c~y tð Þ;

and are related by the equation

kV tð Þ ¼ R0

N
x
�ðtÞkZ tð Þ: ð11Þ

This kind of Poisson model is akin to developments in Rizoiu
et al. (2018), Southall et al. (2020) or O’Driscoll et al. (2021) but
these authors deal only with the process corresponding to new
cases, and therefore do not exploit formulas like (11).

Further, our basic idea in estimation is to resort to stochastic
equivalents of relation (5), and therefore we focus on the link
function:

loglV ;s;t ¼ log R0ð Þ � R0

N
~z sð Þ þ log ~z tð Þ � ~z sð Þf g; ð12Þ

with offset log ~z tð Þ � ~z sð Þf g. How we make use of this model in esti-
mation is discussed in Section 2.4.

Moreover, in estimation, we propose to consider the case where
we observe only a proportion p of the data, i.e., the stochastic
equivalent of (7) with 0 < p < 1. This type of observation corre-
sponds to the thinned processes, ~Zt and ~Vt , where:

~Zt ¼
XZt
j¼1

IZ;j; Zt > 0;

0; otherwise;

8><>: and ~Vt ¼ ~x0 � ~Xt ¼
XVt

j¼1

IV ;j; Vt > 0;

0; otherwise;

8><>:
ð13Þ
4

with IZ;j; IV ;j; j ¼ 1;2; . . . i.i.d. Bernoulli variables of success probabil-
ity p (and independent of Zt;Vt). Thus, we have:

E ~Zt jZt

� �
¼ pZt; E ~Vt jVt

� �
¼ pVt . Moreover, by using the technique

in Leduc (2011) and Froda and Leduc (2014) that adapt the proof
of Theorem 2C of Chapter 4 in Parzen (1962), we conclude that
~Zt; ~Vt are also non homogeneous Poisson processes, of respective
intensities keZ tð Þ ¼ pkZ tð Þ, and keV tð Þ ¼ pkV tð Þ. Therefore, keV tð Þ; keZ tð Þ
are also related by Eq. (11).
2.4. Estimation

Our main point is that, given the deterministic formula (5) of
the SIR (or SEIR) model, if we deal with a large population of
known fixed size N we could try to apply straightforward estima-
tion methods of the GLM-type and estimate R0 by relating
observed new cases, Vt � Vs ¼ Xs � Xt ; s < t to observed cumula-
tive removed, Zs; s P 0, while taking into account newly removed,
Zt � Zs; s < t.

In practice, we deal with count data observed at consecutive
discretized times, like daily data. If the data follow the stochastic
model considered in Section 2.3, then in such consecutive disjoint
time intervals, the increments Vt � Vs; s < t and Zt � Zs; s < t are
independent Poisson variables. On the other hand, the link function
defined in (12) depends linearly on the unknown deterministic
value ~z sð Þ. Thus, we have to replace ~z sð Þ by its natural estimate,
i.e. the observed value zs, since E Zsð Þ ¼ ~z sð Þ. Therefore, we propose
to fit a Poisson regression model (Agresti, 2015; Dobson and
Barnett, 2018) to the increments Vt � Vs; s < t,

loglVs;t
¼ log R0ð Þ � R0

N
zs þ log zt � zsð Þ; ð14Þ

where log zt � zsð Þ is an estimate of the offset. Then b ¼ �R0=N is the
slope in (14), while a ¼ log R0ð Þ is the intercept.

Let â and b̂ be the maximum likelihood estimators of a and b.

Then, we define our estimator of R0 as R̂0 ¼ exp âð Þ. A fact to be
exploited in estimation is that by factoring out in (4) the exponen-
tial in ~z tð Þ the approximations (5) and (7) still hold if we replace
the regressor ~z sð Þ with ~z tð Þ. Then, it is possible to obtain two esti-

mators of R0 : R̂0;s by regressing on zs and R̂0;t by regressing on zt .
Since the neglected term in (5) is positive in one case and neg-

ative in the other it makes sens to use the averagebR að Þ
0 ¼ R̂0;s þ R̂0;t

� �
=2; therefore, bR að Þ

0 is our proposed estimator of

R0. Further, if we observe only an unknown proportion p of the
data, we preserve the link function but the slope of the linear rela-
tionship is altered, as seen in (7); still, the intercept stays
unchanged and can be used to estimate R0 as above. We can esti-
mate p by referring to the relationship (9) and the processes
defined in (13). We regress on the observed zs, estimate R0 by expo-

nentiating the intercept and this gives R̂0;s; the estimator of the

slope is b̂p. Then the estimator of p is p̂ ¼ �R̂0;s= b̂pN
� �

.

3. Numerical results

In this section, we first explore the performance of our proposed
method on simulated data sets and then we apply the method to a
real data set.
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3.1. Simulation study

In order to study the performance of our method in a broad
range of setups, we consider various scenarios of transmissibility;
all seem plausible in the context of the Covid-19 epidemic. The
parameters correspond to the case where time is measured in days.

3.1.1. Parameters
For all scenarios, let N ¼ 100 000 be the size of the population

(the size plays no role in this type of model), and let y0 ¼ 0:02%
which comes to ~y0 ¼ 20 initial cases. Moreover we consider a com-
pletely susceptible population and let ~w0 ¼ ~z0 ¼ 0. Although the
maximum percentages of infected, newly infected and newly
removed depend on R0 and ~x0 only, the timings of the maxima
change according to R0 and the infectious and latency periods, with
a longer epidemic if 1=c and 1=r are larger. Trying to mimic what
was reported in the early literature on Covid-19, in simulation we
settle for a mean latency time of 1=r ¼ 4:5 days and 1=c ¼ 7 days
of average infectivity. Note that, as seen in Section 2.4, the estima-
tion method uses neither the time distributions nor these specific
parameter values.

We consider three different values for R0, namely R0 ¼ 1:8;2:4
and 3. Note that once R0 is chosen, one can deduce the value of
the parameter b from b ¼ R0 	 c. With c and r given above, Table 1
reports the timing, tx and tz, of the maximum number of new cases
and new removals respectively and the proportion of removed at
time tz, i.e. z tzð Þ, for each value of R0. These quantities are impor-
tant since they can have an impact on the quality of the estimation
of R0.

Further, we propose to explore to what extent observing only
some proportion p of epidemic cases (as mentioned in Section 2.2)
influences the results, and take p ¼ 0:2;0:5;0:8 and 1 in Eq. (7).
Moreover, we propose to perform the estimation by taking into
account the time window d where the epidemic is observed: we
estimate over 45, 60, and 90 days (corresponding roughly to 6, 8
and 12 weeks) that start at day s0 ¼ 1;15 and 30 of the ‘‘true” epi-
demic, as mentioned in Section 2. So the maximum observation
time after the true, typically unknown, beginning of the epidemic
would be 120 days. As pointed out in the next section, these
times can correspond to different moments in each outbreak,
i.e. before the peak, close to the peak, after the peak, where
the peak refers to the maximum number of either new cases
or new removals. Moreover, note that when s0 ¼ 30 and
R0 ¼ 1:8;R0 ¼ 2:4, or R0 ¼ 3, then p�;R�

0

� �
is equal to, respectively:

0:9976;1:796ð Þ; 0:9937;2:385ð Þ, and 0:9849;2:955ð Þ ; we see that
p� is close to 1. With our parameters it makes sense to limit the
analysis to the case where the observation time starts at s0 6 30
but not later since, in a population of size one hundred thousand,
we would have, depending on R0;240;630;1510 cases by day 30,
and these are large tallies to pass completely ‘‘unnoticed”.

In Section 3.1.2 we concentrate on p ¼ 0:2 and 1 while leaving
to Appendix B various tables that summarize the statistical proper-
ties of our estimators.

3.1.2. Results
For each scenario, i.e. each combination of R0; p; d, and s0, we

performed nsim ¼ 500 simulations yielding nsim estimates,
Table 1
Days tx and tz where �x0 tð Þ, respectively z0 tð Þ; are maximum; proportion z tzð Þ.

R0 tx tz z tzð Þ
1.8 122 133 0.351
2.4 80 90 0.407
3.0 61 71 0.433

5

bR að Þ
0;1; . . . ;

bR að Þ
0;nsim

, of R0. Boxplots of these estimates for scenarios in
which p ¼ 0:2 or 1 are given in Fig. 1.

Moreover, we calculated two statistics, namely, the mean value
�R0 and the mean relative absolute bias Babs expressed as a percent-
age, i.e.:

�R0 ¼ 1
nsim

Xnsim
i¼1

bR að Þ
0;i ; Babs ¼ 1

nsim

Xnsim
i¼1

jbR að Þ
0;i � R0j
R0

 !
� 100:

These values are reported in Tables B.5 and B.6 of Appendix B.
In the standard case where data is fully observed over a long

period of time, i.e. p ¼ 1; s0 ¼ 1; d large, the performance is very
good. Otherwise, under the different constraints considered here,
it appears that the performance is best if data are close enough
to the time of the respective peak and, in such a case, even
d ¼ 45 can give very good results. A worthy feature is the good per-
formance in the case p ¼ 0:2 where the behaviour is very similar to
the case of fully observed data, i.e. p ¼ 1. This is of great relevance
in practice where we can expect to deal with partially observed
data.

Another set of results concerns the coverage probabilities of the
estimates, that are smaller than the nominal value; the coverage
deteriorates if the observation time interval goes well beyond the
peak of z0 tð Þ. In part this phenomenon can be explained by the fact
that the asymptotic variance in the GLM gets quite small once we
use data collected well after the time of the peak of the epidemic,
where the percentage z tð Þ of those already infected and removed
becomes quite large. A similar problem concerning the widths of
the confidence intervals as one progresses over time has been
noticed by O’Driscoll et al. (2021) who applied a different set of
estimation methods. Most likely, as soon as one relies on proper-
ties of a deterministic system, be it SIR or SEIR, but performs the
inference based on noisy data, some form of measurement error
is introduced and needs to be corrected. In order to attain the nom-
inal coverage probability, we propose to use confidence intervals
based on the jackknife [eq. 12.5] (Tibshirani and Efron, 1993),
meaning that the bounds of a confidence interval of level 1� a

are bR að Þ
0 
 z1�a=2 bse bR að Þ

0

� �
, where za is the a-quantile of a standard

normal variable and bse bR að Þ
0

� �
is the jackknife estimate of the stan-

dard error of bR að Þ
0 [eq. 11.5] (Tibshirani and Efron, 1993). In Table 2

we consider each scenario and report the coverage probability (in
percentage) computed from the nsim ¼ 500 confidence intervals
obtained by jackknifing where a ¼ 0:05. These results are very
good in general, with a slight tendency to overcoverage if we resort
to data until the end of the epidemic. If desired, in practice one
could use only earlier data once the peak has passed.

Finally, we present the performance of our method in estimat-
ing the proportion p in the scenarios where p < 1; in this section
we give the results for p ¼ 0:2. For each scenario, we obtain the
estimates p̂1; . . . ; p̂nsim as described at the end of Section 2.4, and
assess the performance of our estimator by computing

�p ¼ 1
np

Xnsim
i¼1

p̂i 	 1 0 6 p̂i 6 1ð Þ; where np ¼
Xnsim
i¼1

1 0 6 p̂i 6 1ð Þ;

and 1 	ð Þ is the indicator function. In other words, we compute the
performance statistics by considering only the observed values
0 6 p̂i 6 1; i ¼ 1; . . . ;nsim (and discard the other ones). Our experi-
ments suggest that unless p ¼ 1 or very close to 1 or 0, the estimates
of p usually fall in the right interval 0;1½ � and the estimators per-
form quite well as long as one observes the data long enough. Of
course, in practice, one could set at 1 any estimate p̂ > 1 and reject
an estimate p̂ < 0. Estimating p is rather a by-product than a main
objective of this research and given that R0 is well estimated (by



Fig. 1. Boxplots of bR að Þ
0;1; . . . ;

bR að Þ
0;500: true R0 is 1.8 (upper panels), 2.4 (middle panels) and 3 (lower panels) and the observed proportion p ¼ 1 (left panels) and p ¼ 0:2 (right

panels). In each panel, we have 9 different combinations of s0 ¼ 1;15 or 30 and time window d ¼ 45;60 or 90.
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exponentiating the intercept) it seems that the issue with estimat-
ing p is the estimator of the relatively small slope �R0= pNð Þ. The
values of �p and np=nsim (in percentage) are reported in Table 3.
3.2. Data illustration

To illustrate our methodology we applied it to Canadian Covid-
19 data by considering the four provinces with the highest popula-
tion (Alberta, British Columbia, Ontario, Quebec). In this context,
whether in Canada or elsewhere, mitigation measures have been
enforced, and one could argue that the ‘‘true” R0 cannot be fully
appraised. On the other hand, as explained in Appendix A, in the
same spirit as in Britton (2010) we can estimate the reduced value
R��
0 given by (A.2) that can incorporate mitigation measures as well
6

and thus allows us to compare the success of such mitigation mea-
sures. Thus, our analysis is geared towards this comparison.

The analyzed data has the advantage of coming from the same
database, namely the Canada Public Health Infobase during the so-
called ‘‘second wave”; in Canada, the first wave was considered
elapsed by the end of June; the data on the second wave was
counted since September 2020 (Detsky and Bogoch, 2021). During
such a wave there is a clear epidemic behaviour, like in a flu sea-
son. In analyzing European data, some authors, e.g. Proverbio
et al. (2022), resorted to the recent literature on early warning sig-
nals of disease re-emergence, EWS (Southall et al., 2021) in order to
better assess the beginning of a new wave, an important practical
issue. For our analysis, we proceeded empirically, and considered
the time interval from September 1st 2020 till January 31st 2021,
a period when the second wave was surely under way. Indeed, in



Table 2
Coverage probability in percentage computed with nsim ¼ 500 confidence intervals based on the jackknife; nominal coverage 1� a ¼ 0:95.

R0 ¼ 1:8

d s0 ¼ 1 s0 ¼ 15 s0 ¼ 30

p ¼ 0:2 p ¼ 1 p ¼ 0:2 p ¼ 1 p ¼ 0:2 p ¼ 1

45 94.4 94.2 94.2 94.8 94.8 94.0
60 94.4 95.0 93.4 93.8 94.8 93.0
90 95.4 93.6 94.2 95.4 94.4 96.6

R0 ¼ 2:4

d s0 ¼ 1 s0 ¼ 15 s0 ¼ 30

p ¼ 0:2 p ¼ 1 p ¼ 0:2 p ¼ 1 p ¼ 0:2 p ¼ 1

45 92.8 95.8 94.2 97.0 97.0 96.4
60 94.8 96.0 97.6 95.6 96.0 97.2
90 96.4 97.0 97.0 96.4 97.0 96.6

R0 ¼ 3

d s0 ¼ 1 s0 ¼ 15 s0 ¼ 30

p ¼ 0:2 p ¼ 1 p ¼ 0:2 p ¼ 1 p ¼ 0:2 p ¼ 1

45 95.4 96.2 97.8 96.0 96.0 98.0
60 97.4 97.0 97.4 98.2 97.2 98.2
90 97.8 98.6 97.8 98.8 97.4 98.2

Table 3
Values of �p and np=nsim (in percentage) rounded off to three decimals for nsim ¼ 500 and the true value p ¼ 0:2.

R0 ¼ 1:8

d s0 ¼ 1 s0 ¼ 15 s0 ¼ 30

�p np=nsim �p np=nsim �p np=nsim

45 0.014 46 0.037 47 0.090 50
60 0.032 48 0.118 53 0.208 68
90 0.214 68 0.239 96 0.200 100

R0 ¼ 2:4

d s0 ¼ 1 s0 ¼ 15 s0 ¼ 30

�p np=nsim �p np=nsim �p np=nsim

45 0.070 53 0.201 72 0.197 100
60 0.206 75 0.197 100 0.195 100
90 0.195 100 0.196 100 0.197 100

R0 ¼ 3

d s0 ¼ 1 s0 ¼ 15 s0 ¼ 30

�p np=nsim �p np=nsim �p np=nsim

45 0.205 75 0.192 100 0.193 100
60 0.192 100 0.193 100 0.194 100
90 0.195 100 0.195 100 0.195 100

Table 4
Comparison of four Canadian provinces: estimate bR að Þ

0 , 95% confidence interval (CI) for
R0 obtained by jackknifing, and coefficient of determination, R2

V ; we use 153 days of
data starting September 1st 2020.

Province bR að Þ
0

CI R2
V

Alberta 1:697 1:553;1:840ð Þ 0.51
British Columbia 1:548 1:352;1:744ð Þ 0.23
Ontario 1:349 1:281;1:418ð Þ 0.33
Quebec 1:345 1:260;1:430ð Þ 0.30
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principle, our method can be applied to data in any time window.
On the other hand, the simulations indicated that the estimation is
improved by including data close to the peak, which in this case
occurred around the Christmas/holidays season. We stop at the
end of January in order to separate the effects of vaccination from
those of provincial sanitary measures prior to the vaccination cam-
paign. Although one cannot suppose homogeneous mixing at the
provincial level, in each province the dynamics of contacts and
infections is driven by what happens in its most populous city,
with a large share of cases (Montreal, Toronto, Calgary, and Van-
couver); such cities can be considered as having a high level of
good mixing.

As for the recorded data, we noticed issues with the reported
daily cases and recoveries in this data set, given the many correc-
tions and updates operated over time that introduced artificial
variability. For example, there were instances where data accumu-
lated over periods of 2 to 5 days between two dates was reported
in the last day of the period while leaving sequences of zeros in-
between dates. Besides, recoveries of mild cases were indirectly
7

assessed but in a similar way across provinces. In the present illus-
trative treatment, in order to deal with such sequences of zero val-
ues, we considered the first positive value after such a sequence
and redistributed it equally among the preceding days with miss-
ing data. The final estimate of R0 was not greatly affected by this
imputation but we report the results with the imputed data in
Table 4. Other refinements involving more sophisticated prepro-
cessing of the available data, like some form of smoothing, could



Fig. 2. COVID-19 cases in four Canadian provinces. New daily cases (left panels): fitted (full line) and observed (grey dots). Cumulative cases (right panels): fitted (full line)
and observed (black dots), where, for ease of presentation, the dots correspond to weekly data.
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prove helpful. In Fig. 2 we present, on one hand, the imputed daily
data (new cases, grey dots) and the estimated values obtained from
the GLM fitting (curve). On the other hand, we display the cumula-
tive cases: fitted (curve) and observed (dots), that follow closely
the estimated curve. Moreover, in Table 4 we report the coefficient
of determination R2

V as defined in Zhang (2017). Its values range
from 0:23 to 0:51 which indicate a satisfactory fit for such noisy
data, but also that the fit could be improved by taking into account
additional explanatory variables.

We can expect the estimates to express the differences in mit-
igation measures among provinces. Thus Ontario and Quebec have

similar bR að Þ
0 estimates while British Columbia and Alberta have

higher values, with the highest bR að Þ
0 for Alberta, which may reflect

that some mitigation measures were delayed in these provinces
(during the second wave).
4. Discussion and conclusion

In this paper, we propose to estimate the basic reproduction
number R0 by resorting to stochastic equivalents of a known equa-
tion relating new cases and cumulative removed (i.e. dead or
cured) that characterize some SIR and SEIR deterministic systems.
We are using a straightforward GLM approach that is geared
towards large populations counts. Our analyses indicate that this
relationship remains of interest in observed count data as well;
on the other hand, the fit could be improved by taking into account
explanatory variables. Moreover, we assess the impact of various
forms of missing information, namely: (i) unknown starting time
of the epidemic, (ii) partially observed data, and (iii) a large propor-
tion of initially removed. Theoretical appraisal and simulation
studies indicate that our estimation methodology works well as
far as (i) and (ii) are concerned. In practice, this would allow to
8

base the estimation on a specific part of the population, like hospi-
talizations. In case (iii), for instance if massive vaccination takes
place, given the available data our method recuperates a reduced
R��
0 value that comes essentially to the effective reproductive rate

at time 0 as defined in Anderson and May (1992). In the case where
mitigation is enforced one could produce an estimate of R0 by
resorting to the proportionality R��

0 ¼ R0N
�=N deduced from (A.3),

where N� is the part of the population that participates in the
spread of the disease. The unknown N� < N can be estimated by
relying on results like those in Mossong et al. (2008), for instance.
Thus, our method seems to be more appropriate for providing
comparisons.

This being said, some of the theoretical properties described in
Section 2 could impact any estimation method based on models
like (1) or (A.1), and some issues we raise in this paper have a lar-
ger scope. In particular, given that the timing of the main events
and the initial values are unknown to the practitioner one should
exercise some caution on basing evaluations or predictions by
assuming that one has observed the n-th case, the n-th death,
etc, as these may be inaccurate. Indeed, even methods based on
initial growth are impacted by the initial proportion of susceptibles
in the population, a proportion that is related to vaccination or
early mitigation. One merit of our approach is that an equation like
(4) is valid during the whole progress of the epidemic.

Another aspect is the assumption of homogeneous mixing.
Models like (1) and (A.1) are less realistic in the case of a larger
population, but the proposed method for estimating R0 could be
applied to smaller and more homogeneous communities. Since in
a given time frame like a specific flu season, for example, an epi-
demic is generally characterized by a single R0, one can consider
to estimate it from data collected in such smaller communities.
How such estimates of R0 could be refined and combined is a
development that goes beyond the scope of the present paper.
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Appendix A. General formulas, case ~z0 > 0

The SEIR system expressed in percentages can be written as
follows:

x0 tð Þ ¼ �bx tð Þy tð Þ;
w0 tð Þ ¼ bx tð Þy tð Þ � rw tð Þ;
y0 tð Þ ¼ rw tð Þ � cy tð Þ;
z0 tð Þ ¼ cy tð Þ;

8>>>>>><>>>>>>:
ðA:1Þ

with b > 0; c > 0;r > 0. The initial values x0;w0; y0; z0ð Þ satisfy
either x0 > 0; y0 > 0 and w0 ¼ 0; z0 ¼ 0 or x0 > 0; y0 > 0; z0 > 0 and
w0 ¼ 0. The second case expresses the fact that, at the beginning
of the epidemic, part of the population is ‘‘removed” without expe-
riencing the disease, in other words it is immune (either naturally
or by vaccination). For modeling purposes we can include in this
framework the mitigation/suppression case where part of the pop-
ulation is not circulating and thus it is ‘‘removed” and cannot get
infected.

Indeed, we can follow an argument given in Britton (2010) con-
cerning vaccination. Let the true parameters be b; c; then, in a vac-
cination program we replace ~z0 ¼ 0 with a positive ~z0 and the
susceptible population of size ~x0 ¼ N � ~y0 � ~w0 ¼ N � ~y0 is
replaced with a susceptible population of size
~x0 ¼ N � ~z0 � ~y0 � ~w0 ¼ N � ~z0 � ~y0 < N � ~y0. Further, let ~y0 � 0
and let N� ¼ N � ~z0. Then, as long as we can assume that the con-
tact (infection) rate per individual does not change, we have the
relationship

b
N

¼ b�

N� ) b� < b:

So, the ‘‘apparent” basic reproduction number is the value R��
0

that satisfies

R��
0 ¼ b�

c
<

b
c
¼ R0; ðA:2Þ
9

since the denominator c remains unchanged. In other words: if ~z0
individuals are immune at the beginning of the epidemic, an out-
break in a susceptible population of size N and basic reproduction
number R0 behaves like an outbreak in a susceptible population of
size N� ¼ N � ~z0 and reduced basic reproduction number R��

0 . This
property is at the basis of any vaccination campaign and, based
on field data, any inference method would estimate R��

0 rather than
R0. Indeed, the value R��

0 ¼ R0N
�=N � R0x0 comes to the effective

reproductive rate at time 0, as defined in Anderson and May (1992).
It is commonly accepted (Bjørnstad et al., 2020) that the argu-

ment for reducing R0 used in the case of vaccination can be,
approximately, translated to the case of mitigation/suppression
while the measures are enforced, as part of the susceptible popula-
tion is not circulating, is ‘‘removed”, although not immune, as in
the case of vaccination. The two basic reproduction values can be
compared by computing their ratio:

R0

R��
0
¼ b

b� ¼
N
N� �

N
N � ~z0

¼ ~x0 þ ~z0
~x0

¼ 1
p�� ; ðA:3Þ

Further, we assess the behaviour of the formulas developed in
Section 2 in the case where we deal with ~x tð Þ; ~w tð Þ; ~y tð Þ;~z tð Þð Þ and
the sequence of observed times starts at time 0, but ~z0 > 0. In this
case, we refer to (10) with s0 ¼ 0 and ~z0 > 0 and write

log ~x sð Þ � ~x tð Þf g � log R0ð Þ þ log ~x0ð Þ � logN þ log ~z tð Þ � ~z sð Þf g

� R0

N
~z sð Þ � ~z0f g:

Given that in the case where ~z0 > 0 the available information is
not on ~z sð Þ but on ~z sð Þ � ~z0, in practice one ‘‘regresses” on the dif-
ference ~z sð Þ � ~z0. Therefore, the estimation method described in
Section 2.4 can give good results as in the case ~z0 ¼ 0, in the follow-
ing sense: by neglecting ~y0 and letting N � N � ~y0 ¼ ~x0 þ ~z0, the
exponential of

logR0 þ log
~x0
N

� logR0 þ log
~x0

~x0 þ ~z0
¼ logR0 þ logp��

is R0p�� ¼ R��
0 and one estimates R��

0 as defined in (A.2).
Finally, we have seen in Section 2.2 that the same reduction in

R0 occurs when data is observed not from time 0 but from time
s0 > 0, in which case ~x s0ð Þ ¼ p�~x0. Further, suppose that ~z0 > 0 as
well, and therefore ~x0 ¼ p��N. By combining the assumptions
s0 > 0; z0 > 0 we can write:

log ~x sð Þ � ~x tð Þf g � log R0ð Þ þ log ~x s0ð Þ � logN � R0

N
~z sð Þ � ~z s0ð Þf g

þ log ~z tð Þ � ~z sð Þf g;

of intercept

log R0ð Þ þ log p�~x0ð Þ � logN � log R0ð Þ þ log p�p��Nð Þ � logN
¼ log R0ð Þ þ logp� þ logp��:

Thus the intercept is reduced from log R0ð Þ to
log R0ð Þ þ log p� þ log p��f g. As noted above, we can expect the val-
ues of p� to be close to one, i.e. to observe the epidemic early
enough. Thus, in practice, the reduction in the estimate of R0

reflects its reduction due to vaccination or mitigation measures.
Appendix B. Additional numerical results

We start this section by presenting two statistics defined in Sec-
tion 3.1.2, namely the mean value �R0 and the mean relative abso-
lute bias Babs expressed as a percentage. For ease of presentation
the results on �R0 are rounded off to three decimals and on Babs to
two decimals (or one decimal if the bias is above 10%). In

https://health-infobase.canada.ca/
https://health-infobase.canada.ca/
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Table B.5 we consider p ¼ 0:2 and 1, while in Table B.6 we take
p ¼ 0:5 and 0:8.

The rest of the section presents additional results for the cases
p ¼ 0:5 and p ¼ 0:8, in tabular format. The coverage probabilities
Table B.5
Values of �R0 and Babs (in percentage) for nsim ¼ 500.

R0 ¼ 1:8

s0 ¼ 1

p ¼ 0:2 p ¼ 1 p ¼
d �R0 Babs

�R0 Babs
�R0 Babs

�R0 Babs
�R0 Babs

45 1.864 23.3 1.813 10.4 1.807
60 1.817 14.2 1.807 6.67 1.784
90 1.793 5.89 1.802 2.74 1.796

R0 ¼ 2:4

s0 ¼ 1

p ¼ 0:2 p ¼ 1 p ¼
d �R0 Babs

�R0 Babs
�R0 Babs

�R0 Babs
�R0 Babs

45 2.423 12.6 2.416 5.20 2.412
60 2.412 6.03 2.403 2.49 2.404
90 2.399 1.99 2.398 0.90 2.398

R0 ¼ 3

s0 ¼ 1

p ¼ 0:2 p ¼ 1 p ¼
d �R0 Babs

�R0 Babs
�R0 Babs

�R0 Babs
�R0 Babs

45 3.017 6.23 3.005 2.77 3.001
60 3.001 2.66 2.998 1.28 2.999
90 2.999 1.41 3.000 0.63 2.999

Table B.6
Values of �R0 and Babs (in percentage) for nsim ¼ 500.

R0 ¼ 1:8

s0 ¼ 1

p ¼ 0:5 p ¼ 0:8 p ¼
d �R0 Babs

�R0 Babs
�R0 Babs

�R0 Babs
�R0 Babs

45 1.824 14.0 1.822 11.3 1.798
60 1.807 9.14 1.807 7.07 1.794
90 1.798 3.91 1.800 3.06 1.799

R0 ¼ 2:4

s0 ¼ 1 s0 ¼ 15 s0 ¼
p ¼ 0:5 p ¼ 0:8 p ¼ 0:5 p ¼ 0:8 p ¼ 0:5

d �R0 Babs
�R0 Babs

�R0 Babs
�R0 Babs

�R0 Babs

45 2.413 7.57 2.405 5.94 2.402
60 2.403 3.91 2.398 2.95 2.402
90 2.399 1.34 2.397 1.02 2.398

R0 ¼ 3

s0 ¼ 1

p ¼ 0:5 p ¼ 0:8 p ¼
d �R0 Babs

�R0 Babs
�R0 Babs

�R0 Babs
�R0 Babs

45 3.009 4.24 3.002 3.60 3.004
60 3.005 1.79 3.003 1.53 2.999
90 2.999 0.88 2.999 0.71 2.998
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(in percentage) for confidence intervals based on the jackknife
where a ¼ 0:05 are reported in Table B.7. Finally, Tables B.8 and
B.9 contain the values of �p and np=nsim (in percentage) for p ¼ 0:5
and p ¼ 0:8 respectively.
s0 ¼ 15 s0 ¼ 30

0:2 p ¼ 1 p ¼ 0:2 p ¼ 1

�R0 Babs

16.4 1.793 7.20 1.792 10.3 1.801 4.83
9.45 1.795 4.38 1.795 6.37 1.802 2.93
4.24 1.799 1.86 1.799 2.97 1.800 1.30

s0 ¼ 15 s0 ¼ 30

0:2 p ¼ 1 p ¼ 0:2 p ¼ 1

�R0 Babs

6.48 2.402 2.64 2.404 3.15 2.399 1.53
3.06 2.399 1.48 2.399 2.05 2.398 0.97
1.55 2.398 0.73 2.398 1.44 2.398 0.67

s0 ¼ 15 s0 ¼ 30

0:2 p ¼ 1 p ¼ 0:2 p ¼ 1

�R0 Babs

2.81 2.999 1.36 2.999 1.76 2.999 0.78
1.69 2.998 0.76 2.998 1.49 2.999 0.64
1.38 3.000 0.60 2.999 1.44 3.000 0.61

s0 ¼ 15 s0 ¼ 30

0:5 p ¼ 0:8 p ¼ 0:5 p ¼ 0:8

�R0 Babs

10.4 1.800 7.85 1.798 6.40 1.801 5.38
6.08 1.799 4.90 1.797 4.24 1.798 3.35
2.72 1.800 2.05 1.800 1.94 1.800 1.48

30

p ¼ 0:8

�R0 Babs

4.12 2.396 3.24 2.401 2.12 2.398 1.73
2.08 2.398 1.70 2.399 1.39 2.397 1.07
1.04 2.397 0.78 2.398 0.96 2.397 0.74

s0 ¼ 15 s0 ¼ 30

0:5 p ¼ 0:8 p ¼ 0:5 p ¼ 0:8

�R0 Babs

1.88 3.001 1.57 2.999 1.10 2.998 0.87
1.06 2.998 0.88 2.999 0.93 2.999 0.71
0.86 2.998 0.68 2.999 0.88 2.999 0.68



Table B.7
Coverage probability in percentage computed with nsim ¼ 500 confidence intervals based on the jackknife; nominal coverage 1� a ¼ 0:95.

R0 ¼ 1:8

d s0 ¼ 1 s0 ¼ 15 s0 ¼ 30

p ¼ 0:5 p ¼ 0:8 p ¼ 0:5 p ¼ 0:8 p ¼ 0:5 p ¼ 0:8

45 95.8 96.2 94.4 95.8 95.0 94.2
60 95.6 96.2 93.2 94.8 95.2 94.2
90 93.4 95.6 93.4 94.8 94.0 95.8

R0 ¼ 2:4

d s0 ¼ 1 s0 ¼ 15 s0 ¼ 30

p ¼ 0:5 p ¼ 0:8 p ¼ 0:5 p ¼ 0:8 p ¼ 0:5 p ¼ 0:8

45 95.0 95.2 95.0 93.6 95.4 95.2
60 95.2 94.6 95.8 95.4 96.2 94.6
90 96.6 94.6 96.8 97.0 97.0 97.0

R0 ¼ 3

d s0 ¼ 1 s0 ¼ 15 s0 ¼ 30

p ¼ 0:5 p ¼ 0:8 p ¼ 0:5 p ¼ 0:8 p ¼ 0:5 p ¼ 0:8

45 95.6 92.8 96.4 96.0 97.4 96.4
60 95.4 95.6 97.2 96.2 97.4 97.6
90 98.2 97.4 98.2 97.4 98.2 97.8

Table B.8
Values of �p and np=nsim (in percentage) rounded off to three decimals for nsim ¼ 500 and the true value p ¼ 0:5.

R0 ¼ 1:8

d s0 ¼ 1 s0 ¼ 15 s0 ¼ 30

�p np=nsim �p np=nsim �p np=nsim

45 0.049 48 0.107 49 0.247 55
60 0.105 53 0.242 54 0.429 67
90 0.448 71 0.515 96 0.493 100

R0 ¼ 2:4

d s0 ¼ 1 s0 ¼ 15 s0 ¼ 30

�p np=nsim �p np=nsim �p np=nsim

45 0.174 53 0.447 74 0.486 100
60 0.453 77 0.485 100 0.486 100
90 0.487 100 0.490 100 0.491 100

R0 ¼ 3

d s0 ¼ 1 s0 ¼ 15 s0 ¼ 30

�p np=nsim �p np=nsim �p np=nsim

45 0.426 73 0.475 100 0.483 100
60 0.475 100 0.483 100 0.486 100
90 0.486 100 0.487 100 0.487 100
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Table B.9
Values of �p and np=nsim (in percentage) rounded off to three decimals for nsim ¼ 500 and the true value p ¼ 0:8.

R0 ¼ 1:8

d s0 ¼ 1 s0 ¼ 15 s0 ¼ 30

�p np=nsim �p np=nsim �p np=nsim

45 0.075 47 0.175 48 0.382 54
60 0.186 50 0.382 54 0.613 61
90 0.626 64 0.760 87 0.789 100

R0 ¼ 2:4

d s0 ¼ 1 s0 ¼ 15 s0 ¼ 30

�p np=nsim �p np=nsim �p np=nsim

45 0.264 53 0.628 63 0.773 99
60 0.663 67 0.774 99 0.779 100
90 0.779 100 0.784 100 0.786 100

R0 ¼ 3

d s0 ¼ 1 s0 ¼ 15 s0 ¼ 30

�p np=nsim �p np=nsim �p np=nsim

45 0.608 61 0.761 100 0.773 100
60 0.760 100 0.773 100 0.778 100
90 0.778 100 0.780 100 0.780 100
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