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Abstract

Background Personalized therapy planning remains a significant challenge in advanced colorectal cancer care, despite
extensive research on prognostic and predictive markers. A strong correlation of sarcopenia or overall body composition
and survival has been described. Here, we explore whether automated assessment of body composition and liver me-
tastases from standard of care CT images can add to clinical parameters in personalized survival risk prognostication.
Methods We retrospectively analysed clinical imaging data from 85 patients (50.6% female, mean age 58.9 SD
12.2 years) with colorectal cancer and synchronous liver metastases. Pretrained deep learning models were used to as-
sess body composition and liver metastasis geometry from abdominal CT images before the initiation of systemic treat-
ment. Abdominal muscle-to-bone ratio (MBR) was calculated by dividing abdominal muscle volume by abdominal bone
volume. MBR was compared with body mass index (BMI), abdominal muscle volume, and abdominal muscle volume
divided by height squared. Differences in overall survival based on body composition and liver metastasis parameters
were compared using Kaplan–Meier survival curves. Results were correlated with clinical and biomarker data to de-
velop a machine learning model for survival risk prognostication.
Results The MBR, unlike abdominal muscle volume or BMI, was significantly associated with overall survival (HR
0.39, 95% CI: 0.19–0.80, P = 0.009). The MBR (P = 0.022), liver metastasis surface area (P = 0.01) and primary tu-
mour sidedness (P = 0.007) were independently associated with overall survival in multivariate analysis. Body compo-
sition parameters did not correlate with KRAS mutational status or primary tumour sidedness. A prediction model
based on MBR, liver metastasis surface area and primary tumour sidedness achieved a concordance index of 0.69.
Conclusions Automated segmentation enables to extract prognostic parameters from routine imaging data for person-
alized survival modelling in advanced colorectal cancer patients.
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Background

Colorectal cancer (CRC) is the third most common cancer in
Western countries. Up to 50% of patients either are initially
diagnosed with synchronous metastases or develop
metachronous metastases. The predominant organ of metas-
tases is with 77% the liver with 5 year overall survival of only
15% in these patients.1,2 Curative resection of liver metasta-
ses is well established in colorectal cancer care, but only
about 25% of patients qualify for this procedure.1,3 The per-
sonalized identification of colorectal liver metastasis (CRLM)
patients with poor prognosis under current treatment stan-
dards is of utmost importance. This may prevent futile over-
treatment and enable personalized referral for experimental
therapies within clinical trials. In this regard, studies have
shown that sarcopenia is an independent predictor of prog-
nosis in advanced CRC.4–7 However, to date, body mass index
(BMI) has been used as a standard measure in routine clinical
care, although it is not an appropriate prognostic marker in
CRC. Because the BMI fails to distinguish between different
tissues, it does not accurately reflect the physical condition
of patients. In contrast, CT image-based markers of body
composition have been shown to be more informative than
BMI.8,9 By assessing the body composition, the individual dis-
tribution of fat, muscle and bone of each patient can be ex-
amined. Previous studies calculated the body composition
by segmentation of CT sectional images at the level of the
L3 vertebra, which is only an approximation of the actual
body composition. Moreover, this approach depended to

varying degrees on manual processing, which is time- and la-
bor-intensive and is not suited for integration in routine care.
Consequently, body composition analysis is still largely
neglected in survival risk stratification. Due to recent devel-
opments in deep learning and image segmentation, fully au-
tomated assessment of body composition and tumour char-
acteristics from 3D CT scans has become possible.10,11 In
addition to assessing body compositions, this also enables
the accurate geometric analysis of CRLM, which has been
shown to be associated with overall survival in advanced
CRC patients.12–15 As regular CT scans are part of routine care
in oncology, automated extraction of in-depth information
could allow more granular prediction of prognosis.

Against this background, we have taken advantage of cur-
rent technical capabilities to develop a new prediction model
that can be incorporated into routine clinical care to enable
personalization.

Methods

Study design

We retrospectively evaluated 258 CRC patients treated at the
University Hospital Essen and included 85 patients with syn-
chronous CRLM in the final analysis (Figure 1). All patients
were treated with systemic cancer therapy between 2004
and 2017. Overall survival time was defined as time from
the start of systemic treatment to the date of death from

Figure 1 Flowchart depicting the process of patient enrolment.
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any cause. We censored patients for whom no date of death
was available at the date of the last follow-up. The study was
approved by the Ethics Committee of the Medical Faculty of
the University Duisburg-Essen (No. 21-10347).

Patient characteristics

All included patients were diagnosed with stage IV CRC with
synchronous liver metastases. The median age was 59.0 years
and 50.6% were female. 63.5% of patients were diagnosed
with a left-sided primary tumour. The median survival time
(MST) from start of palliative chemotherapy was 21.2 months
(95% CI: 15.6–27.2 months; see Figure S1). The patient char-
acteristics are summarized in Table 1.

Assessments

Baseline abdominal CT images taken before the initiation of
systemic treatment were used to segment body composition
and liver metastases. Body composition markers of the ab-
dominal cavity were assessed using a fully automated extrac-
tion pipeline.11 The markers analysed comprised the volumes
of muscle, bone, total adipose tissue (TAT), intermuscular ad-
ipose tissue (IMAT), subcutaneous adipose tissue (SAT), and
visceral adipose tissue (VAT). Prior to extraction of body com-
position markers, all CT images were resampled to 5 mm slice
thickness to meet the requirements of our extraction pipeline.
To ensure comparability between patients, the collected
markers were divided by the number of CT slices of the auto-
matically detected abdominal cavity for further analysis. Ab-
dominal muscle-to-bone ratio (MBR) andmuscle/height2 were
calculated by dividing abdominal muscle volume by abdominal
bone volume or by the body height squared (Figure S2). Liver
metastases were automatically segmented using the
pretrained nnU-Net architecture.10 The volume and surface
area of metastases were extracted with a triangle mesh ap-
proach using an internal feature extraction pipeline including
PyRadiomics 3.0.1 andwere normalized to the [0, 1] interval.16

In four cases, the segmented liver metastases were too small
for feature extraction and the respective values were set to
zero. Further patient information used in this study, including
primary tumour sidedness, was obtained from the patients’
electronic health records. Tumours originating from the rec-
tum, sigma, descending colon, and left flexure were defined
as left-sided. All tumours located in the transverse colon, right
flexure, ascending colon, and caecum were defined as right-
sided. BMI was calculated in 80 patients in whom respective
data were available at the initiation of therapy. In a subgroup
of 71 patients, data from genomic sequencing of
macrodissected tissue samples were available.

Statistical analysis

All statistical analyses were performed using Python 3.8 and
the packages lifelines, scikit-survival and SciPy.17–19 Based
on a Cox proportional hazards model, we selected the three
parameters MBR, liver metastasis surface area, and primary
tumour sidedness for further analysis. We formed subgroups
based on median MBR, median CRLM surface area or the pri-
mary tumour sidedness and compared overall survival using
Kaplan–Meier survival curves and a log-rank test. From these
parameters, we then built a prediction model using a
component-wise gradient boosting algorithm with partial
likelihood loss of a Cox proportional hazards model.17,20 Pre-
dictive performance was assessed calculating the mean con-
cordance index as result of a 5 × 5-fold cross validation. The
correlation between parameters was analysed by calculating
the Pearson correlation coefficient (r). P-values ≤0.05 were
regarded statistically significant. To understand the
decision-making of our model, we used SHapley Additive ex-
Planations (SHAP).21

Results

MBR is a predictor of prognosis in advanced CRC
patients

Body composition parameters extracted from abdominal CT
images were analysed (Table 1). Cox proportional hazards
analysis adjusted for age and gender revealed that abdominal
muscle volume alone did not serve as prognostic parameter
(HR 0.98, 95% CI: 0.95–1.00, P = 0.062). However, calculating
MBR by dividing abdominal muscle volume by abdominal
bone volume provided an independent predictor of prognosis
(HR 0.39, 95% CI: 0.19–0.80, P = 0.009). None of the remain-
ing body composition parameters were significantly associ-
ated with overall survival (Table S3).

MBR compared with muscle/height2 and BMI

For 80 patients, data on weight and height at initiation of
therapy were available. The median BMI was 24.0 kg/m2 with
a range of 14.5 to 38.4 kg/m2. In this subgroup, the MBR (HR
0.41, 95% CI: 0.19–0.87, P = 0.02) and muscle/height2 (HR
0.91, 95% CI: 0.84–0.98, P = 0.013), unlike the BMI (HR
0.98, 95% CI: 0.93–1.03, P = 0.507), were significantly associ-
ated with overall survival (Table 2). Further analysis using
Kaplan–Meier curves showed that based on the median
MBR, two subgroups could be defined that had significantly
different overall survival (P = 0.019, Figure 2A). In contrast,
subgroups based on median muscle/height2 (P = 0.219,
Figure 2B), or median BMI (P = 0.733, Figure 2C) did not show
significantly different overall survival. By plotting the rela-
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tionship between BMI and MBR, we found that a low BMI
was related to a lower MBR. With a higher BMI, there was
no clear correlation to MBR (Figure S4).

Prognostic relevance of CRLM geometry, primary
tumour sidedness and KRAS mutational status

Using automated image segmentation, we confirmed the sur-
face area (P = 0.006) and volume (P = 0.035) of liver metasta-
ses being predictors of prognosis (Table 3). Furthermore, pri-

mary tumour sidedness significantly associated with overall
survival (P = 0.034). KRAS mutational status was available in
71 of our 85 patients (84%). There was no significant associ-
ation between the KRAS mutational status and overall sur-
vival (P = 0.274, Table 3). In a multivariate analysis together
with KRAS mutational status, primary tumour sidedness,
age, and gender, MBR remained an independent predictor
of overall survival (HR 0.32, 95% CI: 0.15–0.69, P < 0.005).

Development of a machine learning model for
survival risk prognostication

In a multivariate Cox proportional hazards model together
with MBR and primary tumour sidedness, CRLM surface area
was an independent predictor (HR 4.52, 95% CI: 1.43–14.3,
P = 0.01, see Table S5), whereas CRLM volume showed only
borderline significance (HR 3.00, 95% CI: 1.00–9.05,
P = 0.051). All three independent parameters could signifi-
cantly separate the overall cohort in Kaplan–Meier analyses
(Figure 3). Using the three predictors MBR, CRLM surface
area and primary tumour sidedness, a prediction model was
developed. After 5x5 cross validation our model achieved a
mean concordance index of 0.69 (95% CI: 0.65–0.72). Our
model was able to identify risk groups that showed signifi-
cantly different overall survival (P < 0.005, Figure S6).
Through SHAP, we could confirm that our model uses the
three parameters in a reasonable way and in accordance with
the hazard ratios calculated by the Cox proportional hazards
model (Figure 4). Interestingly, primary tumour sidedness
had the highest impact on the model output, followed by
CRLM surface area and MBR.

Correlation analysis of the selected parameters
and KRAS mutational status

In the overall cohort there was a weak negative correlation
between both MBR and CRLM volume (r = �0.28,
P = 0.009) and between MBR and CRLM surface area
(r =�0.27, P = 0.014). We found no significant correlation be-
tween MBR and the primary tumour sidedness (P = 0.82) as
well as between primary tumour sidedness and CRLM surface
area (P = 0.15). In a subgroup with available data (n = 71),
there was no significant correlation between KRAS muta-
tional status and MBR (P = 0.57), CRLM surface area
(P = 0.37), or primary tumour sidedness (P = 0.87).

Discussion

Multiple effective treatment options and strategies are avail-
able for patients with CRC. In clinical practice, patients are
characterized by clinical and laboratory examination, imaging

Table 1 Characteristics of the overall cohort

n = 85

Age, years
Median 59.0
Range 26–83

Gender, N (%)
Male 42 (49.4)
Female 43 (50.6)

AJCC Stage, N (%)
IV 85 (100)

Liver metastasis, N (%)
Synchronous 85 (100)

First-line chemotherapy, N (%)
FOLFOX 57 (67.1)
FOLFIRI 18 (21.2)
Other 10 (11.8)

First-line antibody, N (%)
Bevacizumab 39 (45.9)
Cetuximab 21 (24.7)

KRAS status, N (%)
Mutant 21 (24.7)
Wild-type 50 (58.8)
Unknown 14 (16.5)

Primary tumour sidedness, N (%)
Left 54 (63.5)
Right 31 (36.5)

Abdominal body composition, median (range), L
Muscle 5.77 (3.21–10.10)
Bone 2.43 (1.66–3.84)
TAT 10.57 (1.22–33.09)
SAT 7.08 (0.50–21.33)
VAT 2.59 (0.25–10.60)
IMAT 0.89 (0.24–3.73)

Median survival time, months (95% CI) 21.2 (15.6–27.2)
1 year mortality rate, % (95% CI) 23.5 (15.9–34.1)
Censored, N (%) 6 (7.1)

Table 2 Results of a univariate Cox proportional hazards model adjusted
for age and gender in a subgroup where BMI was available

n = 80 HR (95% CI) P-value

BMI 0.98 (0.93–1.03) 0.507
MBR 0.41 (0.19–0.87) 0.020
Muscle/height2 0.91 (0.84–0.98) 0.013
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studies, tumour histology and molecular pathology. Never-
theless, the selection of the best strategy for an individual pa-
tient is still based on very few parameters, and thus does not
make sufficient use of all available clinical information.
Against this background we have demonstrated that it is pos-
sible to exploit body composition and liver tumour burden by
automated extraction from staging CT images. In contrast to
previous studies, we have assessed the body composition of
the entire abdomen and not only at the level of the L3 verte-
bra. We have identified MBR and CRLM surface area in addi-
tion to primary tumour sidedness as independent predictors
of overall survival. These parameters enabled us to develop
a prediction model that can be easily implemented in routine
clinical care.

There are conflicting studies on the importance of body
mass index in the prognosis of advanced CRC.22–24 In many
other solid tumours, however, a favourable effect of a higher
BMI on overall survival has been found, which is referred to
as the obesity paradox.25 In early stage CRC, the negative cor-
relation between BMI and sarcopenia was found to be an un-
derlying factor of this effect.26 In advanced CRC, sarcopenia
was thus demonstrated to be an independent negative pre-
dictor of overall survival.4–7 Because BMI does not distinguish
between fat and muscle tissue, CT image-derived body com-
position analyses proved to be a superior approach to assess
prognostic parameters such as sarcopenia.8,9 In those studies,
body composition was measured from CT sectional images at
the level of the L3 vertebra, which due to the limited data
source may be prone to imprecision or confounders. In con-
trast, our study is the first to automatically assess body com-
position from the entire abdominal cavity and compare

resulting markers with BMI. By segmenting the entire abdom-
inal cavity instead of single sectional images, our study seeks
to describe body composition more accurately and thus does
not rely on approximation. Moreover, previous studies have
used the skeletal muscle index, which normalizes muscle area
with the square of height, whereas we have normalized mus-
cle volume with bone volume by calculating the MBR. This is
based on the assumption that bone volume allows an infer-
ence of the general body structure and remains relatively
constant regardless of other changing body composition pa-
rameters. Our finding that MBR, as well as abdominal muscle
volume divided by height squared, are predictors of overall
survival in CRC patients independent of age and gender sup-
ports this hypothesis. Because only MBR could form sub-
groups that showed significantly different overall survival
and can be automatically extracted from CT images without
additional patient information, we propose MBR as a new
prognostic marker in this cancer entity.

Treatment decisions in advanced CRC are highly depen-
dent on the tumour genotype. In particular, the presence of
RAS mutations in association with the primary tumour sided-
ness is of major importance for the selection of antibody
therapies. In our study, we saw no correlation between the
KRAS mutational status and body composition parameters,
which is in line with previous studies.27 Because MBR was a
predictor of overall survival independent of KRAS mutational
status and the primary tumour sidedness, this suggests high
generalizability. In a subgroup with available information at
baseline, we could demonstrate that BMI, unlike MBR, did
not serve as predictor of overall survival. This finding is con-
sistent with the study by Dell’Aquila et al., which also found
no association between BMI and overall survival in metastatic
CRC.22 This underscores the need for a more differentiated
analysis of body composition than by using the traditional
body mass index, which is still part of routine clinical care.

To obtain additional assessment of individual patients be-
yond body composition, we performed automated image
segmentation to measure liver tumour burden. Previous
studies investigating CRLM from CT images have often
placed a strong focus on complex radiomic signatures in-

Figure 2 Kaplan–Meier survival curves showing the overall survival according to MBR (A), muscle/height2 (B), or BMI (C) in a subgroup (n = 80) where
data on weight and height were available.

Table 3 Results of a univariate Cox proportional hazards model adjusted
for age and gender

HR (95% CI) P-value

CRLM volume (n = 85) 2.96 (1.08–8.16) 0.035
CRLM surface area (n = 85) 4.49 (1.55–13.02) 0.006
Left-sided primary tumour (n = 85) 0.61 (0.38–0.96) 0.034
KRAS mutation (n = 71) 1.37 (0.78–2.41) 0.274
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cluding texture features.15,28,29 However, it was previously
shown that radiomic parameters are often only a surrogate
for tumour volume and are not prognostic on their own.30

Furthermore, the use of different CT scanners and protocols
poses significant difficulties for the analysis of many
radiomic features. To overcome this issue, we focused on
shape features such as the surface area and tumour volume,
which are reproducible across different CT scanners and
have shown a plausible association with survival indepen-
dent of the CT settings.12,31,32 We could confirm the surface
area and volume of CRLM as predictors of prognosis in ad-
vanced CRC patients. Because CRLM surface area, unlike
CRLM volume, was shown to be prognostically independent
of MBR and primary tumour sidedness, we included it in our
prediction model.

Tumour sidedness was previously shown to associate with
overall survival in advanced CRC.33,34 As studies have indi-
cated remarkable differences between right- and left-sided
tumours and also suggested an impact on the body composi-
tion of patients, we included primary tumour sidedness as
parameter in our model.7,35 Using SHAP we identified pri-

mary tumour sidedness as most relevant parameter for the
decision-making of our model, emphasizing its importance
in patient prognostication and treatment planning.

The three parameters included in our model were all inde-
pendently correlated with overall survival in our study. In
contrast to other prognostic tools, our model is based on
non-invasive parameters that do not depend on additional
laboratory testing or tumour morphology as determined by
histopathology.36 Furthermore, the included parameters are
relatively robust to acute events such as inflammation, which
can temporarily affect blood values. This distinguishes our
model from established prognostic tools such as the Glasgow
prognostic score and allows for future integration of addi-
tional parameters.37 We see great potential of our model in
identifying patients who are suitable for curative resection
of CRLM or who should be enrolled in clinical trials. Further
research is needed to investigate the prognostic value of
MBR in patients with earlier stages of CRC and in other can-
cer types.

Our study has limitations, which are particularly due to its
retrospective design and the lack of external validation using

Figure 3 Kaplan–Meier survival curves showing the overall survival according to MBR (A), CRLM surface area (B), or primary tumour sidedness (C) in
the overall cohort.

Figure 4 Decision-making of the prediction model based on SHAP. The parameters are ranked from top to bottom by their responsibility on the model
output. Feature values are represented by the colour gradient. Higher SHAP values indicate the responsibility of parameters for higher predicted sur-
vival risk.

550 J. Keyl et al.

Journal of Cachexia, Sarcopenia and Muscle 2023; 14: 545–552
DOI: 10.1002/jcsm.13158



an independent patient cohort. As we had to exclude pa-
tients for whom no suitable CT image was available or seg-
mentation was not possible, our cohort is only of medium
size. We investigated the association of our results with KRAS
mutational status but were unable to analyse the influence of
mutations or additional proto-oncogenes such as NRAS or
BRAF due to their overall rarity and representation in our co-
hort. Most patients were treated at a time, when NRAS and
BRAF testing were not part of routine diagnostics. Although
we performed extensive cross validation to prevent
overfitting on our data, external validation will be necessary
to confirm the results.

In conclusion, we propose a new pragmatic model for per-
sonalized survival risk prognostication in patients with ad-
vanced CRC that is based entirely on parameters that can
be automatically extracted from routine clinical data. We
have demonstrated that the inclusion of body composition
and exact metastasis geometry hold great promise in refining
current routine decision-making.
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