SYNTHETIC
BIOLOGY

Synthetic Biology, 2021, 6(1): ysab001

doi: 10.1093/synbio/ysab001
Advance Access Publication Date: 22 February 2021
Software

SynBiopython: an open-source software library for

Synthetic Biology

Jing Wui Yeoh', Neil Swainston®*, Peter Vegh?, Valentin Zulkower,

Pablo Carbonell
Chueh Loo Poh'*

4> Maciej B. Holowko

®, Gopal Peddinti’, and

'NUS Synthetic Biology for Clinical and Technological Innovation (SynCT1I), Life Sciences Institute, National
University of Singapore, Singapore, Singapore, “Institute of Systems, Molecular and Integrative Biology,
University of Liverpool, Liverpool, UK, *Edinburgh Genome Foundry, University of Edinburgh, Edinburgh, UK,
“Instituto Universitario de Automatica e Informatica Industrial, Universitat Politécnica de Valéncia, Valencia,
Spain, *Manchester Synthetic Biology Research Centre for Fine and Speciality Chemicals (SYNBIOCHEM),
Manchester Institute of Biotechnology, The University of Manchester, Manchester, UK, 6CSIRO Synthetic
Biology Future Science Platform, Canberra, ACT, Australia and VTT Technical Research Center of Finland,

Espoo, Finland

*Corresponding authors: E-mail: poh.chuehloo@nus.edu.sg

Abstract

Advances in hardware automation in synthetic biology laboratories are not yet fully matched by those of their software
counterparts. Such automated laboratories, now commonly called biofoundries, require software solutions that would help
with many specialized tasks such as batch DNA design, sample and data tracking, and data analysis, among others.
Typically, many of the challenges facing biofoundries are shared, yet there is frequent wheel-reinvention where many

labs develop similar software solutions in parallel. In this article, we present the first attempt at creating a standardized,
open-source Python package. A number of tools will be integrated and developed that we envisage will become the obvious
starting point for software development projects within biofoundries globally. Specifically, we describe the current state of
available software, present usage scenarios and case studies for common problems, and finally describe plans for future
development. SynBiopython is publicly available at the following address: http://synbiopython.org.

Key words: Software; Synthetic Biology; Biofoundries; Open-source; Automation

Introduction

With synthetic biology developing at an increasing pace, there
are now a large number of tools covering the Design-Build-Test-
Learn (DBTL) cycle available to researchers, originating from
both academic and commercial sources. For instance at the
Design stage, computer-aided metabolic engineering tools such
as Cameo (1) and RetroPath2.0 (2); or tools in the transition from

Design to Build for sequence optimization such as DnaChisel (3)
and PartsGenie (4); tools at the Build stage such as CloneFlow
for planning ligase cycling reaction DNA assemblies (5); tools at
the Test stage, such as mzmine for mass spectrometry data
processing (6), tools from Test to Learn and Design such as
BioModel Selection System (BMSS) that performs automated

Submitted: 6 December 2020; Accepted: 28 December 2020
© The Author(s) 2021. Published by Oxford University Press.

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/),
which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

https://orcid.org/0000-0002-0993-5625
https://orcid.org/0000-0002-1535-4296
http://synbiopython.org
https://academic.oup.com/

2 | Synthetic Biology, , Vol. 4, No. 1

BioModel selection (7), or tools facilitating the transition from
Learn to Design such as the cobrapy library for genome-scale
metabolic modeling (8). Increasing automation in synthetic biol-
ogy laboratories [the consensus term for such an automated lab
used for synthetic biology research and development is ‘bio-
foundry’ (see also ref. to GBA article, https://biofoundries.org/)]
is posing another set of problems. While many laboratories may
not require sophisticated software for data collection, sample
tracking or batch genetic construct design, such software is es-
sential for heavily automated labs. The main reason for this is
the significant number of samples being processed daily (in the
order of 10 to 10%. Without appropriate software, manually
generated mistakes can become increasingly prevalent and,
given the volume of samples processed, such mistakes can be-
come very costly in terms of both time and money.

Selecting appropriate software solutions for an automated
laboratory can be difficult. The solutions are scattered and there
are no definite guidelines or universally agreed state-of-the-art.
As a result, many groups have created software solutions in-
house, which typically involves directly hiring developers. This
approach, however, leads to the multiplication of efforts, and
since these solutions are usually developed with that specific
lab in mind, it is often difficult to reuse these solutions in a dif-
ferent lab, even if the code is open-sourced. Commercial solu-
tions, on the other hand, are usually developed with big
operations in mind and do not scale well to smaller operations.
Additionally, such solutions are often expensive and such costs
are hard to justify for a relatively small, albeit automated, lab.
Furthermore, many tools, whether academically or commer-
cially developed, are typically end-to-end applications. Such
solutions provide a predefined set of functionalities, which are
difficult for other developers to unpick in order to reuse individ-
ual components in their own software.

In the 2000s, the bioinformatics community was in a similar
situation and created Biopython (9) as a library of primitives.
The advantages of such libraries include, (i) increased reliability,
due to community testing; (ii) increased reusability and interop-
erability between the different modules of the project; and (iii)
increased community uptake, due to easier discovery of fea-
tures that are organized under a single umbrella project. The
approach has been very successful, with over 2000 manuscript
citations and 3500 Github projects using Biopython. However,
since Biopython is primarily focused toward classical bioinfor-
matics, with an emphasis on sequence analysis, the Global
Biofoundries Alliance (GBA) (10) software group identified a
need for a library specific to the requirements of the synthetic
biology community. These requirements include tools assisting
in DNA design and assembly, software for automation and ro-
botic equipment. A project specific to synthetic biology provides
better visibility and also encourages contributions from devel-
opers in this field.

The Software Working Group of Global Biofoundries
Alliance, therefore, introduces a new package, named
SynBiopython, to support aspects of development efforts that are
common to many DNA design and assembly projects. Python is
recognized as being ubiquitous in biofoundry software develop-
ment efforts and is, therefore, a natural choice for such a con-
solidated, collaborative effort.

In introducing this work, it is recognized that there remains
a large amount of development work to be performed, requiring
the introduction of a multitude of new modules, for the package
to be considered ‘full-suite’. This article, therefore, acts as a ‘call
to arms’ on the synthetic biology community, introducing the
concept of reusable libraries, exemplifying its use through the

development of specific, community-developed modules and
specifying the governance requirements to manage the growth
of the resource over time.

The initial modules demonstrated here include standard
file parsers and tool interoperability, an automation library
and support for codon usage tables. The presented tools were
chosen from a number of tools that were originally written in
different biofoundries that are part of the GBA. The decision
was made to work on these modules first to meet the follow-
ing general objectives of SynBiopython: (i) collation and de-
velopment of synthetic biology-oriented code and tools in
Python; (ii) support for both novice and advanced developers
of synthetic biology software; and (iii) prevention of dupli-
cated efforts. There are also a number of specific aims that
the Authors would like SynBiopython to meet: (i) standardiza-
tion of read/write operations and other procedures and auto-
mation related tools to allow ease of access and interaction;
(ii) simplification of parsing of different synthetic biology-
related file formats; and (iii) development of more intuitive
APIs and wrapper functions on top of more complex code,
hiding underlying details.

Results

Here, we describe the three modules that show how future
modules in SynBiopython should be written and used. Each
module is provided together with a case study and some exam-
ple code for easier understanding. First, we describe Genbabel, a
tool that enables translation between file formats relevant to
synthetic biology. Next, we discuss the Automation Library, a
module that can be used to create instruction files for auto-
mated equipment. Finally, we show how the Codon Usage
Tables tool can be used to optimize DNA sequences.

Standard file parsers and tool interoperability: Genbabel

Driving interoperability between tools via a common standard
is a deep-rooted effort in synthetic biology. Several standard file
formats such as GenBank (11), FASTA, Synthetic Biology Open
Language (SBOL) (12), Systems Biology Markup Language (SBML)
(13), Simulation Experiment Description Markup Language
(SED-ML) (14) and Computational Modeling in Biology Network
(COMBINE) archives (15) have been proposed at different infor-
mation levels to overcome the reproducibility challenge and to
serve as a common integrated knowledge base for data sharing.
Despite these standards having been adopted in many of the
developed tools, there is no one-size-fits-all tool that supports
the parsing of these common standard files in the field of syn-
thetic biology. To mitigate these issues, SynBiopython introdu-
ces a universal environment, named Genbabel, which serves as
a repository of standard file parsers built upon existing libraries
and applications to enable easy generation and conversion of
different standard files as mentioned above, including formats
for DNA/protein sequences, genetic circuits, and model simula-
tions. This aims to reduce redundant or overlapping efforts and
to improve reusability which are essential to accelerate the
progress of the field.

At the lower level, GenBank and FASTA files are the most
ubiquitous standard formats used to encode DNA and protein
sequence data (11). To capture the structural information at a
higher level, the SBOL and SBOL Visual compliant diagrams
have been introduced and applied in many software platforms
(12). To enable the transferability of different data standards,
built upon existing online platform and packages (16-18), a

https://biofoundries.org/

standard file parser has been developed in Genbabel to support
the conversion between SBOL files and the aforementioned se-
quence data formats including General Feature Format (GFF3),
and the rendering of highly customizable genetic circuits and
their associated regulations.

Aligning with the use of the model-driven approach in for-
ward and reverse cell engineering, the advent of SBML enables
the representation of computational models in a declarative
form to ease the exchange of quantitative descriptions (13).
SBML is widely used for modeling and simulation for chassis op-
timization through Python-based tools for flux analysis and
knock-out/knock-in optimization such as COBRApy (8) or cameo
(1). Genome-scale metabolic models for the most common
industrial hosts are available at public databases, such as
BioModels (19) and BiGG (20) and can be downloaded in SBML.
The support of modeling in general and SBML in particular is
therefore of increasing interest to the synthetic biology commu-
nity. The Genbabel module was thus extended to provide the
capability of generating SBML files and other formats related to
modeling, such as SED-ML (14) and COMBINE archives in Open
Modeling EXchange (OMEX) format (15), which are hinged on
several developed packages (21-23).

The incorporation of Genbabel module in the SynBiopython
package seeks to provide a universal parser environment which
supports the gathering of and interfacing with parsers spanning
across gene sequence, circuit, and systems levels. Longer-term
goals include the development of an improved interface, linking
file parsing encoded in different formats from sequence,
structure, model, simulation and analysis.

JW. Yeohetal. | 3

Case study: standard file generation and model
generation

To demonstrate the capability of Genbabel, we present an
example (Code Block 1) to demonstrate the conversion of a
GenBank file, which encodes an AND logic gate genetic circuit
generated from Benchling (Benchling Inc., San Francisco, USA)
during the Design phase, to SBOL file using the GenSBOLconv
submodule. The circular plasmid map can also be constructed
based on the given GenBank file (Figure 1a). Meanwhile, the cor-
responding SBOL-compliant genetic circuit diagram can be gen-
erated using the SimpleDNAplot submodule (Figure 1b).

During the Design phase before the actual circuit construc-
tion, one can also utilize the SBMLgen submodule to generate
the SBML file which encodes the kinetic model of the AND gate
for simulation as demonstrated in Code Block 2. All the different
elements such as the ODEs, variables, initial conditions,
parameters names, values and units are to be provided in lists
of strings as input arguments to the export_sbml function.
Otherwise, in the Learn phase, using characterization data of
the AND gate, an SBML file can also be generated via running
the BMSS tool (7). With the available SBML file, the correspond-
ing SED-ML file and COMBINE archive in OMEX format can
subsequently be generated and executed wusing the
SEDMLOMEXgen submodule with the AND gate simulation
results shown in Figure 2. These formats ensure the reproduc-
ibility of the model implementation and simulation. A detailed
example code implementation is provided in the SynBiopython
GitHub repository.

import synbiopython.genbabel as stdgen

stdconv = stdgen.GenSBOLconv ()

uri prefix =
inputfile = 'pBAD BLind AND.gb'

output = 'SBOLZ2’

stdconv.export plasmidmap (inputfile)

simplot = stdgen.SimpleDNAplot ()
circuit =
t o.pl5A"'
regulations =
>p2.Activation2.blue’

'"http://synbiohub.org/public/igem’

stdconv.run sbolvalidator (inputfile, output, uri prefix)

'-c.orange.AraC -p p.pBAD r.rbs34 c.blue.EL222 t p.BLind r.rbs34 c.red.RFP
"'cO0->pl.Repression pl->pl.Derepression.red cl->p2.Activation p2-

simplot.plot circuit(circuit, regulations, "ANDgate circuitplot.png")

Code Block 1. Demonstration of the features of GenSBOLconv and SimpleDNAplot submodules. Here, we exemplified the conversion of a GenBank file to SBOL file,
which encodes an AND logic gate for a blue-light inducible system, using the run_sbolvalidator function from GenSBOLconv class. This function enables the intercon-
version of GenBank, Fasta, GFF3 and SBOL files. With the provided GenBank file, the linear and circular plasmid maps can be exported. Users can also employ the plot_-
circuit function from SimpleDNAplot class to generate the SBOL-compliant gene circuit diagram. The circuit configuration and the corresponding regulations were to
be defined in the form of string following proper sequences separated by spaces. The alphabets p, 1, ¢, t, o represent the promoter, ribosome binding site, coding se-
quence, terminator and origin with the negative sign denoting the reverse direction. Each of the parts consists of the part type followed by the color (optional) and part
name (optional). The regulations were defined in the form of ‘from part->to part’ followed by the type of regulation and color (optional). The parts were numbered

starting from 0 following the sequences defined in circuit from left to right.

4 |

Synthetic Biology, , Vol. 4, No. 1

oﬁ,%
. 8
v %)

§
g 3

(b)

Figure 1. A case study of an AND logic gate genetic circuit generated using the Genbabel module. The AND gate consists of a blue-light inducible system using a photo-
sensitive DNA-binding protein EL222 (24, 25). The system is turned on in the presence of both blue light and the arabinose inducer, to drive the expression of red fluo-
rescent proteins (RFPs). (a) Circuit plasmid map generated using the GenSBOLconv submodule; and (b) SBOL Visual compliant gene circuit diagram generated using the

SimpleDNAplot submodule of Genbabel module.

import synbiopython.genbabel as stdgen

. define odes, variables, initial wvalues,

sbmlgen = stdgen.SBMLgen ()
sbml str =

param units, outputfile =

omexgen = stdgen.SEDMLOMEXgen ()
antimony str =
phrasedml str = """

modell =

siml =

H{}ll

simulate uniform(O,
rk4

model
720,
siml.algorithm =

nwnn

parameters’

sbmlgen.export sbml (odes, variables, init, param name, param,
"ANDgate sbml.xml")

omexgen.sbmltoantimony ("ANDgate sbml.xml")

1000)

state 11 = run siml on modell
model2 = model modell with statel =
state 10 = run siml on model2

omex str= omexgen.export omex (antimony str, phrasedml str)

names, values, units

1, state2 =0

Code Block 2. Demonstration of the features of SBMLgen and SEDMLOMEXgen submodules. To generate a SBML file, the function export_sbml from the SBMLgen class
is used to generate the ANDgate_sbml.xml file. Input arguments such as ODEs, variables, initial conditions, parameters’ names, values and units have to be defined
and provided into the function. To generate the COMBINE omex file, the previously generated SBML file is read and converted into an antimony string representation
using function from SEDMLOMEXgen submodule. Users can then define the phrasedml string which encodes the descriptions for the simulation experiment. The anti-
mony and the phrasedml strings are then supplied as input arguments to the export_omex function to generate the corresponding omex file.

Automation library

In the spirit of developing computational infrastructure across
the DBTL cycle, the Build phase is supported through the intro-
duction of the SynBiopython automation library. The goal of the
library is to provide an easy-to-use, standardized solution for

the creation of automated workflows for biofoundries. It is en-
visaged that the library will act as the first software suite that a
user of a biofoundry will have contact with and by setting good
practices it will reinforce them in the users.

There are currently a number of solutions that allow lab
workflow automation, including Aquarium (26), Antha
(Synthace Ltd., London, UK), TeselaGen BUILD (TeselaGen
Biotechnology Inc., San Francisco, USA) and the Autoprotocol
[Strateos Inc. (formerly Transcriptic), Menlo Park, USA].
However, these may not be suitable for a biofoundry operator.
Some of these are still under development, or do not allow the
development of protocols via scripts. Proprietary software can

1e-6 AND gate Model Simulations
— slate_11.Pep3
204 — state_10.Pep3
—— state_01.Pep3
— state_00.Pepd
1.5 1
1.0 4
0.5 -
0.0 1

0 100 200 300 400 500 600 700
state_11.time
Figure 2. Model simulation results for the AND logic gate with four state inputs
(00, 01, 10, 11) generated from the SBML and SED-ML files contained in the

COMBINE archive OMEX format. The simulation is performed using the execu-
te_inlineomex function from the SEDMLOMEXgen submodule.

JW. Yeohetal. | 5

be costly and inhibits collaborative development and adapting
the software to custom needs.

The GBA recognizes automation to be a major bottleneck
in the development of the biofoundry technology. For the most
part, each lab uses their own collection of open-source, in-
house and commercial automation software which makes col-
laborations and comparative studies very difficult. Many of the
routine tasks that are performed in biofoundries involve liquid
manipulation, including dilutions, normalizations, transfers
between plates and rearraying. Creating reliable protocols and
picklists for such operations is a time-consuming effort and,
without proper software support, very error prone.

The introduction of the lab automation module within the
SynBiopython package aims to address these issues. This mod-
ule, adapted from Plateo by the Edinburgh Genome Foundry,
enables generation of picklists and protocols for commonly
used machines, focusing on liquid handlers (e.g. Labcyte Echo).
A long-term goal is the integration of this module with a num-
ber of open-source libraries and APIs (e.g. Biopython, Benchling,
Teselagen, other common LIMS or DNA synthesis providers) to
enhance its data-tracking capability.

Case study: generating a picklist

The lab automation module includes a number of classes: the
plate class (e.g. a microplate) which contains objects of the well
class (which stores information about the contents of a given
well in the plate), the transfer class that stores information
about transfers to be performed between wells and finally the

import synbiopython.lab automation as lab

transfer 1 = lab.Transfer(
source.wells["C2"],

transfer 2 = lab.Transfer (

picklist = lab.PickList()

print (picklist.to plain string())

picklist.simulate ()

source = lab.Plate96 (name="96-well plate)
source.wells["Al"].add content ({"Compound 1": 1}, volume=5 * 10 ** (-6)
source.wells["C2"].add content ({"Compound X": 1}, volume=15 * 10 ** (-6))

destination = lab.Plate384 (name="384-well plate”)

destination.wells["G8"],

source.wells["Al"], destination.wells["I12"],

picklist.add transfer (transfer=transfer 1)
picklist.add transfer (transfer=transfer 2)

3 * 10 ** (-6))

2 * 10 ** (-6))

Code Block 3. Demonstration of the lab automation module. First, a 96 well source plate object is created, followed by two lines which fill the wells of that plate with
content of given volume (plate is created empty). Next, a 384 well destination plate is created, then two transfers from source wells to destination wells are defined.
Finally, a picklist is created, and the transfers are added to it. The user can then choose to simulate the picklist to see if the transfers are resolved correctly.

6 | Synthetic Biology, , Vol. 4, No. 1

from collections import Counter

from synbiopython.codon import table,

name
tax id

taxonomy utils.get organism name (4

name)
print ("Taxonomy id:",

print ("Name:",
tax_id)

name_table
tax id table

table.get table (name)
table.get table(tax id)

assert name table == tax id table

1 codons

name table["L"]
print (1_codons)

sampled = [utils.sample (name table, "L")
codons = Counter (sampled)
for cdn, count in codons.items () :

print (cdn, count / len(sampled),

aa_seq = 'ACDEFGHIKLMNPQORSTVWY'

print (utils.optimise (name table, aa seq))

taxonomy utils, utils

taxonomy utils.get tax id("Saccharomyces cerevisiae')

1 codons([cdn])

932)

for in range(10000)]

Code Block 4: Demonstration of the features of the Codon Usage module, codon.

The taxonomy_utils module supports mapping between organism names and taxon-

omy ids. The names and the taxonomy ids can be used to retrieve the codon usage table which is a simple dictionary of amino acids to codons, and the codons are

themselves a dictionary of a codon to usage frequency.

picklist class, which contains a list of transfers to be made
within a single plate or between different plates.

The example in Code Block 3 shows how a picklist can
be generated. The picklist object can be initiated with a prede-
termined list of transfers to be performed or the transfers
can be directly defined using the add_transfer method. After
defining all the transfers, the picklist can be then translated to
a form accepted by a relevant liquid handler (which will be
a future feature) and finally executed. More detailed code
demonstrating these features is available in the examples
directory of the code repository.

Codon usage tables

A typical task in the Design step of a biofoundry workflow is
the optimization of the coding sequence of a given amino acid

sequence for recombinant expression in a host of interest. As
codon usage differs across organisms, such codon optimization
is reliant on codon usage tables, which specify a given organ-
ism’s frequency of use of each degenerate codon. While codon
usage tables are publicly available (27), there remains as yet no
standardized means for the programmatic access and
manipulation.

SynBiopython consequently includes a module for support
of codon usage tables and codon optimization. This module is
based on previous work from the Manchester Centre for
Synthetic Biology (SYNBIOCHEM) and the Edinburgh Genome
Foundry. Following a simple interface, codon usage tables may
be automatically accessed from the Kazusa Codon Usage
Database and used in a number of codon optimization methods.
The library complements the existing Biopython CodonTable
module but includes codon frequency in addition to translation

tables. Example code for the codon module is provided in Code
Block 4.

Future work may include support for custom codon usage
tables of novel or rare organisms, more sophisticated codon op-
timization algorithms, and support for Biopython sequences.

Future directions

It is hoped that future directions of development for the
SynBiopython library will be driven by the needs of the commu-
nity, and by interested volunteers who would happily provide
useful modules that would be of general utility. Synthetic biol-
ogy is an umbrella term, encompassing a number of sub-
disciplines, and the SynBiopython project aspires to support a
range of tools and applications across these numerous sub-
communities.

One such application of interest for the metabolic engineer-
ing community is to provide a straightforward scripting way for
in silico prototyping of genetic constructs once inserted into the
optimized chassis organisms. Such approach should be
addressed effortlessly, as examples and tutorials exist in both
cameo and COBRApy about adding biochemical species and
reactions to genome-scale models in order to represent the
genetic circuit of metabolic circuits and pathways.

To connect the dots, combinatorial genetic circuits repre-
sented in SBOL and designed through tools such as Cello (28)
should generate annotated SBML models that can be seamlessly
added into the genome-scale model of the chassis. Standard in-
terconversion procedures exist between SBML and SBOL and
have been implemented in the Java-based iBioSim tool (29). In
general, the generation of an annotated SBML model from SBOL
can be accomplished by using terms from ontologies (30).
Ontologies are controlled vocabularies that can be associated
with different elements in the SBOL. The Sequence Ontology
(31) allows defining roles to the components such as promoters,
coding sequences or terminators, while the Systems Biology
Ontology (SBO) (32) allows the definition of biochemical species
and reactions. As a first approach, SBOL should provide the
minimal annotations required in order to be able to integrate
the engineered circuit of the pathway into the SBML model and
perform steady-state flux analysis simulations.

Furthermore, an extensive number of freely available online
(web-based) and offline tools are available to expedite the different
phases of the DBTL cycle of synthetic biology. Supporting interop-
erability between these tools will allow for more efficient develop-
ment of computational pipelines and the reduction of redundant
efforts (Figure 3). Such interoperability will pave the way toward a
long-standing goal of synthetic biology: full lab automation assis-
ted by streamlined computer-aided tools. Several useful tools
that serve to automate design, modeling and optimization phases
are compiled below, and depending upon the priorities of the
community, these will be incrementally supported by future
developments of SynBiopython. Such a platform for the support of
third-party applications will be made highly extensible to allow
more tools to be interfaced over time.

Potential tools for future incorporation are as follows, and
readers are encouraged to contact the Authors with comments
regarding their prioritization and to make further suggestions.

a. ‘Cello’ allows for the automatic design of genetic logic gates
using a high-level language known as Verilog. Circuit perfor-
mance can be predicted, factoring in growth and load (28).

b. The ‘RBS Calculator’ predicts translation initiation rates,
based on the start codon of mRNA transcripts, and designs

JW. Yeohetal. | 7

_ Cello
Bass CAD tools ’: RBS caleulater
T SRNA
SBOL ~
Codon usage gRNA tools
~ Genbabel
MLE 7 Automation
library
Experimental Robofics
design Microfluidics

Design
Data High-throughput
analysis -omics

)
Bio py&\\oo

Figure 3. Current SynBiopython modules within the Design-Build-Test-Learn
(DBTL) cycle of synthetic biology (33). Genbabel module provides the link be-
tween Design and Build by allowing the interconversion of sequence-based files
into gene circuit representation format in SBOL, and the generation of SBML
models and other modeling-related formats, which could then be interfaced
through the CAD tools with external tools such as BMSS, Cello, RBS Calculator or
SRNA, gRNA tools. The link between Build and Test is implemented through the
Codon usage and the Automation library.

and optimizes synthetic ribosome binding site (RBS) sequen-
ces to achieve a desired translation rate (34).

c. The ‘Biomodel Selection System (BMSS) automatically
derives or selects the best mathematical model based upon
part/circuit characterization data (7).

d. SsRNA design tools include ‘IntaRNA’ which is used to predict
the mRNA target sites for a given sRNA or to predict the
interactions between two RNA molecules. ‘CopraRNA’ is
built upon IntaRNA and computes whole-genome sRNA tar-
get predictions for a set of given organisms (35).

e. gRNA design tools. ‘Cas-OFFinder’, ‘CHOPCHOP’ and
‘CRISPOR’ are free web-based tools which allow off-target
site analysis, with some providing specificity scores and
cleavage likelihood of a gene sequence (36).

The overarching goal is to support the interoperability of file
formats and software tools, from sequence design, through
automation, data analysis and representation, and machine
learning, allowing for the development of computational
pipelines across the DBTL cycle, complementing the work con-
ducted on the bench.

Conclusion

This work introduces SynBiopython, in which initial efforts
in creating a standardized, open-source, Python library to be
used in biofoundry-type facilities around the world are demon-
strated. The library is modeled on the existing Biopython
library, being divided into modules of different functionalities.
To our knowledge, this is the first synthetic biology specific
software package for standardizing development efforts across
automated synbio facilities.

8 | Synthetic Biology, , Vol. 4, No. 1

It is strongly envisaged that SynBiopython will be a commu-
nity effort. As the global biofoundry community grows and
more labs join the automation effort, the hope is to attract more
developers and other stakeholders. A key goal is for members of
the community to offer additional modules, used locally in their
own labs but with perhaps wider utility, and thereby to help
with the development and curation of the package. Such an
approach has many mutual benefits, reducing duplication of
efforts and thereby freeing up resources to focus on the devel-
opment of more novel and innovative methods. It is clear that
there are developers and users in the general synbio commu-
nity with skills and interests that would benefit the develop-
ment efforts of the SynBiopython package, and interested
members are encouraged to mail info@synbiopython.org to dis-
cuss their potential involvement.

With an increasing number of contributors, a governance
model will also be developed to help steer the future develop-
ment of the package. Such governance matters include deciding
on the scope of the package and which new modules to priori-
tize, and more technical matters including code standardiza-
tion, automated testing and documentation requirements. All
such decisions will be made with the consultation of the
SynBiopython development community and more details can
be found in the relevant file in the Github repository.

With the introduction of the SynBiopython package, a clear
mechanism for the sharing and reusability of code being devel-
oped in individual biofoundries is proposed. Promoting such
standardization and interoperability is not intended to stifle in-
novation, but rather to support the development of novel
approaches through reducing effort spent on finding solutions
to universal problems that are shared across many labs. Such
developments are of benefit to all stakeholders in synthetic bi-
ology, from lab-based researchers, informaticians, research
leaders and funders.

Funding

N.S. acknowledges funding from the Biotechnology and
Biological Sciences Research Council (BBSRC) under grant
‘GeneORator: a novel and high-throughput method for the
synthetic biology-based improvement of any enzyme’ (BB/
S004955/1) and from the University of Liverpool. The
Edinburgh Genome Foundry is supported by the UK Research
Councils Synthetic Biology for Growth Programme and
acknowledges funding from BBSRC grants (BB/M00029X/1, BB/
MO025640/1, BB/M025659/1, BB/M018040/1). SYNBIOCHEM is
supported by the UK Biotechnology and Biological Sciences
Research Council (BBSRC) and the Engineering and Physical
Sciences Research Council (EPSRC) under grant: ‘Centre for
synthetic biology of fine and speciality chemicals
(SYNBIOCHEM)’ (BB/M017702/1). P.C. acknowledges support
from the Universitat Politécnica de Valencia Talento
Programme. M.B.H. acknowledges support from CSIRO’s
Synthetic Biology Future Science Platform. C.L.P. acknowl-
edges support from Singapore NRF Synthetic Biology Program
(SBP-P5, SBP-P6) and the Synthetic Biology Initiative of the
National University of Singapore (DPRT/943/09/14).

Conflict of interest statement. None declared.

Code availability

The code repository for SynBioPython is located on Github:
https://github.com/Global-Biofoundries-Alliance/SynBioPython

References

1. Cardoso,].G.R,, JensenXK., Lieven,C.,, Leerke Hansen,A.S.,
Galkina,S., Beber,M., Ozdemir,E., Herrgdrd,M.J., Redestig,H.,
Sonnenschein,N. et al. (2018) Cameo: a Python library for
computer aided metabolic engineering and optimization of
cell factories. ACS Synth. Biol., 7, 1163-1166.

2. Delépine,B., Duigou,T., Carbonell,P. and Faulon,.-L. (2018)
RetroPath2.0: a retrosynthesis workflow for metabolic engi-
neers. Metab. Eng., 45, 158-170.

3. Zulkower,V. and Rosser,S. (2020) DNA Chisel, a versatile se-
quence optimizer. Bioinformatics, 36, 4508-4509.

4. Swainston,N., Dunstan,M., Jervis,AJ.,, Robinson,CJ.,
Carbonell,P., Williams,A.R., Faulon,J.-L., Scrutton,N.S. and
Kell,D.B. (2018) PartsGenie: an integrated tool for optimizing
and sharing synthetic biology parts. Bioinformatics, 34,
2327-2329.

5. Chandran,S. (2017) Rapid assembly of DNA via ligase cycling
reaction (LCR). Methods Mol. Biol., 1472, 105-110.

6. Katajamaa,M., Miettinen,J. and Oresic,M. (2006) MZmine:
toolbox for processing and visualization of mass spectrome-
try based molecular profile data. Bioinformatics, 22, 634-636.

7. Yeoh,JW., NgK.B.I, Teh,AY., Zhang].Y., Chee,W.K.D. and
Poh,C.L. (2019) An automated biomodel selection system
(BMSS) for gene circuit designs. ACS Synth. Biol., 8, 1484-1497.

8. Ebrahim,A., Lerman,].A., Palsson,B.O. and Hyduke,D.R. (2013)
COBRApy: COnstraints-based reconstruction and analysis for
Python. BMC Syst. Biol., 7, 74.

9. Cock,PJ.A.,, Antao,T., Chang].T., Chapman,B.A., Cox,C]J.,
Dalke,A., Friedberg,I., Hamelryck,T., Kauff,F., Wilczynski,B. et
al. (2009) Biopython: freely available Python tools for compu-
tational molecular biology and bioinformatics. Bioinformatics,
25, 1422-1423.

10.Hillson,N., Caddick,M., Cai,Y. et al. (2019) Building a global al-
liance of biofoundries (vol 10, 2040, 2019). Nat. Commun., 10,
1-4.

11.Benson,D.A., Boguski,M.S., Lipman,D.J., Ostell,].,
Ouellette,B.F.F., Rapp,B.A. and Wheeler,D.L. (1999) GenBank.
Nucleic Acids Res., 27, 12-17.

12.Galdzicki,M., Clancy,K.P., Oberortner,E., Pocock,M.,
Quinn,J.Y., Rodriguez,C.A., Roehner,N., Wilson,M.L., Adam,L.,
Anderson,J.C. et al. (2014) The Synthetic Biology Open
Language (SBOL) provides a community standard for commu-
nicating designs in synthetic biology. Nat. Biotechnol., 32,
545-550.

13.Hucka,M., Finney,A., Sauro,H.M. et al. (2003) The systems bi-
ology markup language (SBML): a medium for representation
and exchange of biochemical network models. Bioinformatics,
19, 524-531.

14.Waltemath,D., Adams,R., Bergmann,F.T., Hucka,M.,
Kolpakov,F., Miller,A.K., Moraru,L.l., Nickerson,D., Sahle,S.,
Snoep,J.L. et al. (2011) Reproducible computational biology
experiments with SED-ML—the Simulation Experiment
Description Markup Language. BMC Syst. Biol., 5, 198.

15.Bergmann,F.T., Adams,R., Moodie,S., Cooper,)J., Glont,M.,
Golebiewski,M., Hucka,M., Laibe,C,, Miller,A K.,
Nickerson,D.P. et al. (2014) COMBINE archive and OMEX for-
mat: one file to share all information to reproduce a modeling
project. BMC Bioinformatics, 15, 369.

16.Zundel,Z., Samineni,M., Zhang,Z. and Myers,C.J. (2017) A vali-
dator and converter for the synthetic biology open language.
ACS Synth. Biol., 6, 1161-1168.

17.Der,B.S., Glassey,E., Bartley,B.A., Enghuus,C., Goodman,D.B.,
Gordon,D.B., Voigt,C.A. and Gorochowski,T.E. (2017)

DNAplotlib: programmable visualization of genetic designs
and associated data. ACS Synth. Biol., 6, 1115-1119.

18.Quinn,].Y., Cox,R.S., Adler,A., Beal,J., Bhatia,S., Cai,Y., Chen,)].,
Clancy K., Galdzicki,M., Hillson,N.J. et al. (2015) SBOL visual: a
graphical language for genetic designs. PLoS Biol., 13,
€1002310.

19.Le Novere,N., Bornstein,B., Broicher,A. et al. (2006) BioModels
Database: a free, centralized database of curated, published,
quantitative kinetic models of biochemical and cellular sys-
tems. Nucleic Acids Res., 34, D689-D691.

20.Schellenberger,J., Park]J.O., Conrad,T.M. and Palsson,B.@.
(2010) BiGG: a Biochemical Genetic and Genomic knowledge-
base of large scale metabolic reconstructions. BMC
Bioinformatics, 11, 213.

21.Cannistra,C., Medley,K. and Sauro,H. (2015) SimpleSBML: a
Python package for creating and editing SBML models.
BioRxiv; 030312. doi: 10.1101/030312.

22.Bornstein,B.J., Keating,S.M., Jouraku,A. and Hucka,M. (2008)
LibSBML: an API library for SBML. Bioinformatics, 24, 880-881.

23.Choi,K., Medley] K., Kénig,M., Stocking K., Smith,L., Gu,S. and
Sauro,H.M. (2018) Tellurium: an extensible python-based
modeling environment for systems and synthetic biology.
Biosystems, 171, 74-79.

24.Jayaraman,P., Devarajan,K., Chua,T.K., Zhang H., Gunawan,E.
and Poh,C.L. (2016) Blue light-mediated transcriptional
activation and repression of gene expression in bacteria.
Nucleic Acids Res., 44, 6994-7005.

25.Jayaraman,P., Yeoh,JW., ZhangJ. and Poh,C.L. (2018)
Programming the dynamic control of bacterial gene expres-
sion with a chimeric ligand- and light-based promoter
system. ACS Synth. Biol., 7, 2627-2639.

26.Keller B.,Vrana J.,Miller A., et al. Aquarium: the laboratory
operating system (Version v2.5.0). Zenodo.

JW. Yeohetal. | 9

27.Nakamura,Y., Gojobori,T. and Ikemura,T. (2000) Codon usage
tabulated from international DNA sequence databases: sta-
tus for the year 2000. Nucleic Acids Res., 28, 292-292.

28.Nielsen,A.AK., Der,B.S., Shin,]., Vaidyanathan,P.,
Paralanov,V., Strychalski,E.A., Ross,D., Densmore,D. and
Voigt,C.A. (2016) Genetic circuit design automation. Science,
352, aac7341.

29.Watanabe,L., Nguyen,T., ZhangM., Zundel,Z.,, ZhangZ,
Madsen,C., Roehner,N. and Myers,C. (2019) iBioSim 3: a tool
for model-based genetic circuit design. ACS Synth. Biol., 8,
1560-1563.

30.Roehner,N., Zhang,Z.,, Nguyen,T. and Myers,CJ. (2015)
Generating systems biology markup language models from
the synthetic biology open language. ACS Synth. Biol., 4,
873-879.

31.Eilbeck,K., Lewis,S.E., Mungall,CJ., YandellLM., Stein,L.,
Durbin,R. and Ashburner,M. (2005) The Sequence Ontology: a
tool for the unification of genome annotations. Genome Biol.,
6, R44.

32.Juty,N. (2010) Systems biology ontology: update. Nature
Precedings. doi: 10.1038/npre.2010.5121.1.

33.Carbonell,P., Radivojevic,T. and Garcia Martin,H. (2019)
Opportunities at the intersection of synthetic biology, ma-
chine learning, and automation. ACS Synth. Biol., 8, 1474-1477.

34.Salis,HM. (2011) The ribosome binding site calculator.
Methods Enzymol., 498, 19-42.

35.Wright,P.R., GeorgJ., Mann,M.,, Sorescu,D.A., Richter,A.S., Lott,S.,
Kleinkauf,R., Hess,W.R. and Backofen,R. (2014) CopraRNA and
IntaRNA: predicting small RNA targets, networks and interac-
tion domains. Nucleic Acids Res., 42, W119-W123.

36.Wilson,L.O.W., O’Brien,A.R. and Bauer,D.C. (2018) The current
state and future of CRISPR-Cas9 gRNA design tools. Front.
Pharmacol., 9, 749.

