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Background: Sexual dysfunction, namely, erectile dysfunction (ED) and premature

ejaculation (PE), has been found to be associated with abnormal structural connectivity in

the brain. Previous studies havemainly focused on a single disorder, however, convergent

and divergent structural connectivity patterns of the brain network between ED and PE

remain poorly understood.

Methods: T1-weighted structural data and diffusion tensor imaging data of 28 patients

with psychological ED, 28 patients with lifelong PE (LPE), and 28 healthy controls (HCs)

were obtained to map the white matter (WM) brain networks. Then, the graph-theoretical

method was applied to investigate the differences of network properties (small-world

measures) of the WM network between patients with ED and LPE. Furthermore, nodal

segregative and integrative parameters (nodal clustering coefficient and characteristic

path length) were also explored between these patients.

Results: Small-world architecture of the brain networks were identified for both

psychological ED and LPE groups. However, patients with ED exhibited increased

average characteristic path length of the brain network when compared with patients

with LPE and HCs. No significant difference was found in the average characteristic path

length between patients with LPE and HCs. Moreover, increased nodal characteristic

path length was found in the right middle frontal gyrus (orbital part) of patients with ED

and LPE when compared with HCs. In addition, patients with ED had increased nodal

characteristic path length in the right middle frontal gyrus (orbital part) when compared

with patients with LPE.

Conclusion: Together, our results demonstrated that decreased integration of the right

middle frontal gyrus (orbital part) might be a convergent neuropathological basis for
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both psychological ED and LPE. In addition, patients with ED also exhibited decreased

integration in the whole WM brain network, which was not found in patients with LPE.

Therefore, altered integration of the whole brain network might be the divergent structural

connectivity patterns for psychological ED and LPE.

Keywords: erectile dysfunction, premature ejaculation, diffusion tensor imaging, graph theory analysis, structural

connectivity

INTRODUCTION

Male sexual behavior is divided into five stages: sexual desire,
sexual arousal/erection, sexual intercourse, ejaculation, and
orgasm (1, 2). In humans, penile erection and ejaculation can
occur during masturbation, copulation, or sleep, even in some
non-sexually relevant context (3, 4). It is possible that certain
brain regions may contribute to the occurrence of erection
and ejaculation in different contexts (5). Previous studies have
demonstrated that erection and ejaculation are considered two
distinct phases of male sexual behavior, which are controlled
by the peripheral and central nervous systems (6–9). Erectile
dysfunction (ED) and premature ejaculation (PE) are the two
most common sexual dysfunctions with many little-known links,
which have a negative impact on the physical and psychosocial
health and quality of sexual intercourse for both men and their
female partners (10, 11). Approximately, 5–20% of men suffer
from moderate-to-severe ED including psychological ED (12)
and 20–30% of men report experiencing PE including lifelong PE
(LPE) at some point in their lives (13, 14). However, the diagnosis
of both the psychological ED and LPE is usually based onmedical
and sexual history and validated questionnaires assessing the
level of ED and PE (15).

The links between certain brain areas and erection have been
indirectly evidenced by the proerectile effects of apomorphine
in the treatment of some patients suffering from cerebral
dopamine deficiency (16, 17). Furthermore, more attention
was paid to understanding how brain regions modulate the
process of ejaculation with the use of selective serotonin
reuptake inhibitors in delaying ejaculation (18). The central
neuropathological mechanisms of male sexual dysfunction
recently received significant attention with the development
of MRI, a non-invasive imaging technique, for displaying the
structure and function of the brain (5, 19). Diffusion tensor
imaging (DTI), one of the most used neuroimaging methods,
can identify structural connections and explore changes in
the white matter (WM) microstructure in vivo (20). Graph
theory, a mathematical analysis method, quantifies the whole
brain as a graph consisting of nodes linked by edges (21, 22).
Graph analysis has revealed that the human brain network
exhibits small-world network patterns, which have a balance
between high segregation (measured by clustering coefficient)
and integration (measured by characteristic path length) (23, 24).
The function of the prefrontal cortex in emotion, cognition,
and motivation has been mostly studied in domains other than
sexual behavior (25). The role of the prefrontal cortex, especially
the lateral prefrontal cortex, may be associated with the sexual
arousal in response to sexual stimuli and may be involved in

processing the sexual character of stimuli (26, 27). In addition,
the activation of the orbitofrontal cortex, one component of
the central inhibitory network, may be involved in the central
control of ejaculation (28). Both patients with psychological ED
(29) and LPE (30) showed impaired functional and structural
connectivity in the brain in previous MRI studies. The altered
brain regions were mainly located in the frontal cortex including
the orbital prefrontal region and subcortical areas, especially the
amygdala. However, convergent and divergent brainmechanisms
underlying psychological ED and LPE remain poorly understood.

In this study, we used DTI data and the graph theory
approach to investigate the convergent and divergent structural
connectivity patterns of the brain network between patients
with psychological ED and LPE. Based on previous studies,
we hypothesized that psychological ED and LPE-related
differences (mainly in the prefrontal cortex) would occur in the
patterns of structural connectivity in the brain. We sought to
determine whether WM networks would show (1) abnormal
topological organization (small-world patterns) in patients with
psychological ED and LPE; (2) similarities and differences in the
patterns of structural connectivity (nodal clustering coefficient
and characteristic path length of the prefrontal cortex) between
these two groups.

MATERIALS AND METHODS

Participants
A total of 28 patients with psychological ED and 28 patients
with LPE were recruited from the Department of Urology, the
Affiliated Jianhu Hospital of Nantong University, Jianhu People’s
Hospital. In addition, 28 well-matched healthy controls (HCs)
were recruited by advertisement. All the participants underwent
medical and sexual history taking and physical examination.

Diagnostic criteria: (1) ED: patients with ED met the
Diagnostic and Statistical Manual of Mental Disorders-Fifth
Edition (DSM-V) (31) criteria (failure to obtain and maintain
an erection sufficient for sexual activity or decreased erectile
turgidity on 75% of sexual occasions and lasting for at least
6 months), (2) LPE: patients with LPE met the International
Society for Sexual Medicine (ISSM) criteria (32) for LPE [(i) a
short ejaculatory latency; (ii) a lack of perceived self-efficacy or
control about the timing of ejaculation; and (iii) distress and
interpersonal difficulty (related to the ejaculatory dysfunction)].

Evaluation tools: (1) psychological ED: scores of international
index of erectile function (IIEF-5) (33, 34) ≤21, scores
of premature ejaculation diagnostic tool (PEDT) (35, 36)
<11, normal nocturnal erection and normal erection during

Frontiers in Neurology | www.frontiersin.org 2 February 2022 | Volume 13 | Article 804207

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Zhang et al. Structural Connectivity Between ED and PE

masturbation reported by themselves. (2) LPE: PEDT scores ≥
11, IIEF-5 scores > 21, and intravaginal ejaculation latency time
(IELT) < 1min since the first experience of sexual intercourse.

The inclusion criteria for HCs were a total score of IIEF-5
> 21, PEDT < 11, and IELT > 3min. The inclusion criteria
for all participants: (1) right-handed; (2) aged from 20 to 45
years old; (3) drug washout period (any treatment influences
sexual function) >2 weeks; (4) frequency of sexual activity >4
times/week; (5) in a stable relationship with the same, non-
pregnant, sexually active female partner for at least 6 months.
Exclusion criteria for all participants were: (1) genital deformities
including short frenulum evaluated by physical examination
and other sexual dysfunction, such as hypoactive sexual desire
disorder, anejaculation, and retrograde ejaculation; (2) head
trauma, loss of consciousness, psychiatric diseases including
depression, and anxiety evaluated by self-rating depression and
anxiety scales/neurological diseases and other serious physical
diseases, namely, hypertension, diabetes, coronary heart disease,
liver and kidney diseases, tumor, etc.; (3) alcohol or drug abuse;
and (4) any contraindications for MRI scanning.

Our study was approved by the Ethical Committee of the
Affiliated Jianhu Hospital of Nantong University, Jianhu People’s
Hospital. Written informed consent was obtained from all
participants before the study. The demographic and clinical
information for all participants were presented in Table 1.

Magnetic Resonance Imaging Data
Acquisition and Processing
Magnetic resonance imaging data were acquired using a 3.0
Tesla GE scanner (GE Company, America). T1-weighted images
were acquired with the following parameters: repetition time
(TR) = 8.5ms, echo time (TE) = 3.2ms, matrix size = 256 ×

256, and slice thickness = 1mm. DTI data were acquired with
the following parameters: TR = 8,724ms, TE = 81.4ms, slice
thickness= 2mm, 64 diffusion directions with b= 1,000 s/mm2,
and an additional b0 image. Participants were instructed to close
their eyes and stay awake during the MRI data acquisition.

TABLE 1 | Demographic and clinical data.

Variables Psychological ED

(n = 28)

LPE

(n = 28)

HCs

(n = 28)

P

Age (years) 32.82 ± 2.23 30.29 ± 4.13 31.39 ± 6.72 0.13

Education level

(years)

14.86 ± 1.96 14.54 ± 2.62 14.57 ± 1.60 0.40

IIEF-5 scores 10.86 ± 3.66 22.61 ± 0.69 22.71 ± 0.76 0.000015a

PEDT scores 3.96 ± 2.01 14.64 ± 3.53 3.68 ± 1.79 <0.0001b

IELT (seconds) 366.43 ± 117.51 30.68 ± 18.56 405.00 ± 98.83 <0.0001c

ED, erectile dysfunction; LPE, lifelong premature ejaculation; HCs, healthy controls; IELT,

intravaginal ejaculation latency time; PEDT, premature ejaculation diagnostic tool.
aSignificant differences were found in psychological ED when compared with LPE

and HCs.
b,cSignificant differences were found in LPE when compared with psychological ED and

HCs. Multiple and two independent samples non-parametric tests were conducted to

explore the differences of demographic and clinical data among the three groups. P <

0.05 was considered as statistically significant.

MRI data processing was implemented using the FMRIB
Diffusion Toolbox (FDT) in FMRIB’s Software Library (37). The
data processing procedure was as follows: (1) brain extraction;
(2) corrections for head motion artifacts and eddy current
distortions in the DTI dataset by registering the diffusion-
weighted images to the b0 images; (3) diffusion tensor estimation
by the Stejskal and Tanner equation (38); (4) calculation of
fractional anisotropy (FA) (the extent of directionality of water
diffusion can be expressed as FA, which is a measure reflecting
the directional organization of WM in the brain) of each voxel
and FA maps describing the distribution of WM fiber tracts in
the whole brain; (5) reconstruction of WM pathways using fiber
assignment by continuous tracking (FACT) algorithm.

In this study, the parcellation process was performed in the
native space. First, the T1-weighted images of each subject were
co-registered to their corresponding b0 images in the DTI space.
Second, the coregistered T1-weighted images were normalized
to the International Consortium of Brain Mapping 152 T1
template in the Montreal Neurological Institute (MNI) space.
Lastly, the inverse transformations were applied to warp the
automated anatomical labeling template from the MNI space
to the DTI native space (39). In addition, the tractography was
terminated if the turned an angle >50◦ or FA value of a reached
voxel <0.2.

Brain Network Construction and Analysis
The WM brain networks were constructed as described
in previous studies (40, 41). Nodes (brain regions) and
edges (structural connectivity/WM fiber tracts) are the two
fundamental elements of a network (structural/WM brain
network) (42). To define the nodes, the entire cerebral cortex
was divided into 90 cortical and subcortical regions (45 regions
in each hemisphere). To define the edges, a threshold of
3 fiber streamlines was selected and the mean FA value
of the fiber connected two brain regions was defined as
the weight of the edge between these regions. Finally, FA-
weighted 90 × 90 WM brain networks of all the subjects
were constructed.

The small-world measures include the clustering coefficient
(Cp) (a measure of segregation; local information transformation
capacity), characteristic path length (Lp) (a measure of
integration; global information transformation capacity) of
the network, their corresponding normalized Cp (γ ) and Lp (λ),
and small-worldness (σ ) (the balance between local segregation
and global integration) (42). These measures were calculated to
evaluate the information integration and segregation of the whole
brain network using the Brain Connectivity Toolbox. In addition,
the nodal parameters, namely, nodal clustering coefficient (Ci)
and characteristic path length (Li) were calculated to explore the
integration and segregation of the brain regions in the network.

Statistical Analysis
Statistical analyses were performed by IBM SPSS statistics
(version 20) for Windows (IBM Corporation, Armonk, New
York, USA). Multiple and two independent samples non-
parametric tests were conducted to explore the differences of
demographic and clinical data among the three groups (P <

Frontiers in Neurology | www.frontiersin.org 3 February 2022 | Volume 13 | Article 804207

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Zhang et al. Structural Connectivity Between ED and PE

0.05). Then ANOVA was employed to identify group differences
in the graph metrics of both network (P < 0.05) and node (P <

0.01). In addition, false discovery rate (FDR) correction (number
of tests = 90 (brain regions); Pi < 0.05 × i/90; P1 ≤ P2 ≤

P3. . .≤ Pi; i = 1, 2, 3. . . 90) was applied to account for multiple
comparisons of nodal parameters calculations.

RESULTS

Global Network Properties
Small-world properties were demonstrated in both the patients
and HCs (γ >> 1; λ ≈ 1; σ >> 1). However, patients with
psychological ED, relative to patients with LPE and HCs, showed
significant increases in the average characteristic path length Lp
of the brain network. No significant differences were found in
the average characteristic path length Lp of the brain network
between patients with LPE and HCs. Concerning other small-
world measures (Cp; γ ; λ; σ ), no significant differences were
found among the three groups (Figure 1 and Table 2).

Regional Nodal Characteristics
Among the three groups, we found that the regions with
significant group effects of nodal characteristic path length (Li)

were mainly distributed in the frontal and subcortical regions
(Figure 2, Table 3). However, only the right middle frontal

TABLE 2 | Differences of small-world measures in the white matter brain

networks.

Network

metrics

Psychological

ED

(n = 28)

LPE

(n = 28)

HCs

(n = 28)

F P

Clustering

coefficient (Cp)

0.13 ± 0.019 0.14 ± 0.018 0.14 ± 0.020 1.29 0.28

Characteristic

path length (Lp)

9.54 ± 1.32 8.95 ± 0.72 8.85 ± 1.05 3.51 0.035a

Normalized

Cp (γ )

4.61 ± 0.50 4.59 ± 0.61 4.57 ± 0.49 0.027 0.97

Normalized

Lp (λ)

1.22 ± 0.034 1.21 ± 0.062 1.19 ± 0.044 1.62 0.20

Small-worldness

(σ )

3.79 ± 0.38 3.81 ± 0.48 3.83 ± 0.33 0.079 0.92

ED, erectile dysfunction; LPE, lifelong premature ejaculation; HCs, healthy controls.
aSignificant differences were found in psychological ED when compared with LPE and

HCs. One-way ANOVA was performed among three groups and two-sample t-test was

performed as post-hoc tests. P < 0.05 was considered as statistically significant.

FIGURE 1 | Differences of small-world measures among three groups. ED, erectile dysfunction; LPE, lifelong premature ejaculation; HCs, healthy controls. *Significant

differences between two groups detected by two-sample t-test. P < 0.05 was considered as statistically significant.
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FIGURE 2 | Brain areas showing abnormal segregation and integration among the three groups. Color bar: F-values detected by one-way ANOVA test. P < 0.01 was

considered as statistically significant.

TABLE 3 | Differences of nodal segregative and integrative parameters in the

white matter brain networks.

Nodal metrics Psychological

ED

(n = 28)

LPE

(n = 28)

HCs

(n = 28)

F P

Nodal clustering coefficient (Ci)

Left middle

frontal gyrus

(orbital part)

0.14 ± 0.066 0.19 ± 0.077 0.20 ± 0.062 5.47 0.0059

Nodal characteristic path length (Li)

Left superior

frontal gyrus

(orbital part)

9.49 ± 1.81 8.28 ± 1.32 8.11 ± 1.44 6.67 0.0021

Right middle

frontal gyrus

(orbital part)

11.15 ± 1.98 9.60 ± 0.94 8.73 ± 0.70 23.73<0.0001a

Left olfactory

cortex

10.12 ± 1.89 9.14 ± 2.52 8.43 ± 1.11 5.47 0.0059

Right

hippocampus

8.89 ± 1.92 7.87 ± 1.02 7.82 ± 1.22 4.94 0.0094

Left

parahippocampal

gyrus

10.77 ± 1.90 10.20 ± 1.06 9.46 ± 1.33 5.63 0.0051

Left putamen 8.01 ± 1.11 7.33 ± 0.91 7.13 ± 1.00 5.79 0.0044

Right thalamus 8.66 ± 1.45 7.87 ± 0.65 7.78 ± 1.03 5.48 0.0059

ED, erectile dysfunction; LPE, lifelong premature ejaculation; HCs, healthy controls.
aSignificant differences were found between all groups. One-way ANOVA was performed

among the three groups and two-sample t-test was performed as post-hoc tests. P <

0.01 was considered as statistically significant.

gyrus (orbital part) showed significant group differences after
FDR correction (Figure 3, Table 3). Compared to HCs, both
patients with psychological ED and LPE exhibited increased
nodal characteristic path length (Li) in the right middle frontal
gyrus (orbital part). Moreover, patients with psychological ED
showed increased nodal characteristic path length in the right
middle frontal gyrus (orbital part) when compared with patients
with LPE.

DISCUSSION

In this study, we evaluated the architecture of WM networks
in patients with ED (psychological ED characterized by normal
nocturnal erection and normal erection during masturbation)
and LPE, which presented similar small-world organization.
However, patients with psychological ED exhibited increased
characteristic path length Lp when compared with patients with
LPE. Moreover, significantly increased nodal characteristic path
length (Li) was found in patients with psychological ED and
LPE compared with HCs, mainly located in the right middle
frontal gyrus (orbital part). For patients with psychological
ED, a significant decline of Li was found in the right middle
frontal gyrus (orbital part) when compared with patients with
LPE. These findings improved our understanding of convergent
and divergent neuropathological mechanisms in the brain WM
network level between psychological ED and LPE.

Previous studies showed that ED and PE were strongly
correlated with psychological factors (e.g., alexithymia)
and these patients were lack of emotional awareness and
shared the same difficulty in identifying and communicating
emotions (i.e., alexithymia) (43–45). The brain functional and
structural imaging results demonstrated that the development of
alexithymia might be caused by the altered connectivity among
the superior frontal gyrus, inferior temporal gyrus, anterior
cingulate gyrus, and insula (46, 47). In addition, an increasing
body of neuroimaging evidence has identified structural brain
abnormalities in psychogenic and venous ED, and LPE, mainly
in the prefrontal cortex, limbic system, and subcortical areas
(48–51). Previous studies have revealed impaired WM in the
prefrontal cortex of patients with psychological ED and LPE
(52, 53). In addition, ED owing to psychological factors and
patients with PE having depressive symptoms had altered
topological characteristics in the prefrontal regions of the
WM brain network (29, 54). Regarding the global topological
organization, the small world is one of the major organizational
principles of the human brain (24). We found a conserved
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FIGURE 3 | Differences of nodal segregative and integrative parameters among the three groups. pED, psychological erectile dysfunction; LPE, lifelong premature

ejaculation; HCs, healthy controls. *Significant differences between two groups detected by two-sample t-test. P < 0.01 was considered as statistically significant.

small-world architecture in both patients with psychological ED
and LPE, and in HCs, which was consistent with previous studies
(52, 55). This demonstrated that the human brain had evolved
into a complex but efficient interconnected system, which was
capable of parallel information processing with high efficiency
at a low cost (24). However, patients with psychological ED
exhibited significantly increased characteristic path length Lp
of the brain network when compared with both patients with
LPE and HCs. The average characteristic path length Lp of the
brain network represents the averaged ability of information
transformation between regions in the whole brain. Therefore,
this finding of increased Lp might suggest that the information
transfer between brain regions became more difficult with higher
wiring cost (the lower ability of the brain to globally integrate
information) in patients with psychological ED.

Regarding the nodal topological properties, significant
increased nodal characteristic path length (Li) was discovered in
both patients with psychological ED and LPE, mainly located in
the right middle frontal gyrus (orbital part). The measure of Li
represents the ability of information transfer from one region
to other regions in the whole brain (42). Increased Li reflected
the disruption of brain regions’ structural connection, which
suggested decreased parallel information transfer between distant
brain regions. The prefrontal cortex is the most complex and

highly evolved neocortex region, which accepts different afferent
nerve fibers from other brain areas (56, 57). The prefrontal cortex
was thought to play a central role in the pathophysiology of male
sexual dysfunctions in previous functional and structural MRI
studies (5, 58, 59).

The middle frontal gyrus has been found to be involved
functionally in cognition and emotional regulation (60, 61). The
middle frontal gyrus (orbital part), a region of the orbitofrontal
cortex is implicated with the inhibitory control of the human
brain (62, 63). Previous studies demonstrated that the process
of ejaculation was associated with decreased activity in this
area (64–66). The orbitofrontal cortex was thought to modulate
the activity of the amygdala, which showed increased activity
in patients with PE (48, 67). The PE-related abnormalities of
function and structure were observed in the frontal regions,
namely, the orbital frontal cortex, superior frontal gyrus (medial),
middle frontal gyrus (orbital part), inferior frontal gyrus
(orbital part), and cingulate gyrus (49, 59, 64, 65, 68). These
findings suggested that patients with PE had an abnormal brain
control network, which might contribute to the reduced central
control of rapid ejaculation (28). Therefore, decreased ability of
information integration in the middle frontal gyrus (orbital part)
might contribute to the reduced inhibition of ejaculatory reflex in
patients with PE. The increased nodal characteristic path length
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(Li) of the right middle frontal gyrus (orbital part) might be
involved in the psychopathology and pathophysiology of rapid
ejaculation in patients with LPE.

The middle frontal gyrus is also an important part of
the lateral prefrontal cortex, which has been found to be
actively involved in maintaining the representation of sexual
information in working memory (5, 27). Previous studies showed
that the lateral prefrontal cortex had a critical role in male
sexual arousal and sexual behavior (27, 69). The middle frontal
gyrus (orbital part) is a core region of the central executive
network in the brain, which is primarily implicated in cognitive
control, response inhibition, and attention (60, 70). The previous
study demonstrated that patients with minor changes (fewer
subregions) of the lateral prefrontal cortex exhibited inhibition
in behavior while patients with superior abnormalities (more
subregions) of this region had both aberrant sexual inhibition and
insufficient cognition and attention to sexual targets (27, 71). This
finding illustrated that superior increased nodal characteristic
path length (Li) of the right middle frontal gyrus (orbital
part) might be an important neural pathological feature of
psychological ED, which was different from PE. Therefore,
we speculated that the WM brain network of psychological
ED was more sensitive than that of patients with LPE and
psychological ED had severely impaired integration in the
brain than LPE. Both ED and PE, especially psychological
ED and LPE might be related to impaired structural brain
connectivity. For these patients, more targeted treatments to
improve brain functional and structural connectivity should
be considered.

There were several limitations in this study. First, this
was a cross-sectional study, which could not find the causal
relationships between abnormal measures of WM network and
male sexual dysfunction. Second, the sample size of this study
was relatively small and future longitudinal studies with large
sample sizes were of particular interest in this regard. Third, the
lack of standardized sexual evaluation was another limitation,
especially the methods used to distinguish psychological sexual
dysfunction and organic sexual dysfunction. Finally, patients
with psychological ED included in this study were considered to
be suffered from psychogenic factors, which might be also related
to the altered brain connectivity. Therefore, the relationships
between psychological ED and psychogenic factors should be
further explored.

CONCLUSION

In conclusion, the results of this study demonstrated that the
brain WM network of both patients with psychological ED and
LPE had small-world organization. However, decreased global
integration of the brain was found in patients with psychological
ED, which was the divergent structural connectivity patterns
in the brain network level between psychological ED and
LPE. Moreover, the right middle frontal gyrus (orbital part)
exhibited more remarkably decreased integration in patients
with psychological ED when compared with patients with LPE.
This study provided another perspective for understanding
the convergent and divergent neuropathological mechanisms
between psychological ED and LPE.
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