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Background: Breast cancer (BC) is themost commonmalignant tumour, and its

heterogeneity is one of its major characteristics. N6-methyladenosine (m6A),

N1-methyladenosine (m1A), alternative polyadenylation (APA), and adenosine-

to-inosine (A-to-I) RNA editing constitute the four most common adenosine-

associated RNA modifications and represent the most typical and critical forms

of epigenetic regulation contributing to the immunoinflammatory response,

tumorigenesis and tumour heterogeneity. However, the cross-talk and

potential combined profiles of these RNA-modified proteins (RMPs) in

multivariate prognostic patterns of BC remain unknown.

Methods: A total of 48 published RMPs were analysed and found to display

significant expression alterations and genomic mutation rates between tumour

and normal tissues in the TCGA-BRCA cohort. Data from 4188 BC patients with

clinical outcomes were downloaded from the Gene Expression Omnibus

(GEO), the Cancer Genome Atlas (TCGA), and the Molecular Taxonomy of

Breast Cancer International Consortium (METABRIC), normalized and merged

into one cohort. The prognostic value and interconnections of these RMPswere

also studied. The four prognosis-related genes (PRGs) with the greatest

prognostic value were then selected to construct diverse RMP-associated

prognostic models through univariate Cox (uniCox) regression analysis,

differential expression analysis, Least absolute shrinkage and selection
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operator (LASSO) regression and multivariate Cox (multiCox) regression.

Alterations in biological functional pathways, genomic mutations, immune

infiltrations, RNAss scores and drug sensitivities among different models, as

well as their prognostic value, were then explored.

Results: Utilizing a large number of samples and a comprehensive set of genes

contributing to adenosine-associated RNAmodification, our study revealed the

joint potential bio-functions and underlying features of these diverse RMPs and

provided effective models (PRG clusters, gene clusters and the risk model) for

predicting the clinical outcomes of BC. The individuals with higher risk scores

showed poor prognoses, cell cycle function enrichment, upregulation of

stemness scores, higher tumour mutation burdens (TMBs), immune

activation and specific drug resistance. This work highlights the significance

of comprehensively examining post-transcriptional RNA modification genes.

Conclusion: Here, we designed and verified an advanced forecasting model to

reveal the underlying links between BC and RMPs and precisely predict the

clinical outcomes of multivariate prognostic patterns for individuals.

KEYWORDS

RNA-modifying proteins, breast cancer, risk score, mutation burden, stemness score,
immune infiltration, drug sensitivity, prognosis

Background

In females, Breast cancer (BC) has overtaken lung cancer as

the most commonly diagnosed cancer and is showing continuous

acceleration, but with stagnated research progress (Sung et al.,

2021; Siegel et al., 2022). Epigenetic changes, defined as stable

alterations in transcription or translation without potential

modifications in the genetic sequence, play a crucial role in

both physiological and pathological processes (Taby and Issa,

2010). In the recent past, an accumulating number of

investigations have revealed that RNA modification is an

epigenetic regulatory mechanism of the expression of

tumorigenesis-related genes and the inflammatory response,

and targeting RNA modification enzymes represents a

promising anticancer therapy (Frye et al., 2018; Yankova

et al., 2021; Qiu et al., 2022). In BC, RMPs have been verified

to function in tumour progression and metastasis (Chang et al.,

2020).

More than 170 types of RNA modifications have been

detected in nature, are widespread among all nucleotides,

including A, U, C and G (Roundtree et al., 2017), and can be

divided into three specific modification groups: “writers”,

“erasers” and “readers” (Barbieri and Kouzarides, 2020).

Among them, adenosine most commonly shows alteration,

and diverse modifications with adenosine may compensate for

each other and form a competitive link (Xiang et al., 2018).

Therefore, to explore the underlying mechanism and links, we

focused on adenosine-related RNA modifications, including N6-

methyladenosine (m6A), N1-methyladenosine (m1A),

alternative polyadenylation (APA), and adenosine-to-inosine

(A-to-I) RNA editing.

We identified genes with these four types of RNA

modification from published articles. m6A is the most typical

epigenetic RNA modification type in the eukaryotic

transcriptome, affecting RNA metabolism in almost every

process, and is catalysed by the m6A “writers”, namely,

METTL3/14/15/16, CBLL1, ZC3H13, RBM15/15B,

KIAA1429 and WTAP; m6A “erasers”, namely, FTO and

ALKBH5; and m6A “readers”, namely, YTHDF1/2/3,

YTHDC1/2, ELAVL1, FMR1, HNRNPA2B1, HNRNPC,

IGF2BP1/2/3, LRPPRC, RBMX and EIF3A (Meyer et al., 2015;

Meyer and Jaffrey, 2017; Choe et al., 2018; Zaccara et al., 2019;

Jiang et al., 2021; Xu et al., 2021; Ye et al., 2021).

m1A is widely present at the internal sites of mRNA as a

form of posttranscriptional modification. m1A “writers”

include TRMT61 A/B, TRMT10C and TRMT6; m1A

“erasers” include ALKBH1/3 (Liu et al., 2016; Esteve-Puig

et al., 2021).

APA creates specific new 3’ ends on mRNAs and other RNA

polymerase II transcripts, which is widely present in all

eukaryotic species and is considered to be a mechanism for

the creation of protein isomers. APA “writers” include CPSF1/2/

3/4, CSTF1/2/3, CFI, PCF11, CLP1, NUDT21, and PABPN1

(Elkon et al., 2013; Tian and Manley, 2017).

RNA editing induces non-synonymous substitutions in

protein-coding sequences. A-to-I editing by the double-

stranded RNA-specific adenosine deaminase (ADAR) enzyme

is the most common type. A-to-I “writers” include ADAR,

ADARB1, and ADARB2 (Eisenberg and Levanon, 2018;

Ishizuka et al., 2019; Chen et al., 2021).

To fully understand the behaviour of these adenosine-related

RMPs, we obtained their mutation and expression profiles in BC
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and established a network to investigate the mechanisms

underlying neoplasm progression.

Studies have established a direct link between m6A and

dynamic chromatin modification and identified underlying

mechanisms for collaborative transcriptional interactions

between RNA modification and histone modification (Li et al.,

2020).

The underlying links between m6A and tumour immune

activation has already been described. Loss of the m6A

“writer” protein METTL3 disrupts T-cell homeostasis and

differentiation (Li et al., 2017). The loss of FTO overcomes

hypomethylation-induced immune escape, sensitizes

leukaemia cells to T-cell cytotoxicity, and plays a key role

in cancer stem cell self-renewal (Su et al., 2020). Deletion of

YTHDF1 enhances the CD8+ T-cell antitumor response and

elevates the benefit of PD-L1 checkpoint blockade (Han et al.,

2019). Since interferons are critical for inhibiting infectious

and malignant diseases, ADAR serves as a target for cancer

immunotherapy (Chung et al., 2018; Herbert, 2019; Liu et al.,

2019). Accordingly, how the regulatory network and

underlying links of RMPs influence tumour

immunoregulation should be further explored.

During tumour development, cells that dedifferentiate and

exhibit a stem cell-like phenotype have a higher degree of

malignancy. Through maintaining FOXM1 expression and

cell proliferation, ALKBH5 sustains tumorigenicity of stem-

like cells in glioblastoma (Zhang et al., 2017). This suggests the

potential role of RMPs in tumour cell proliferation and

dedifferentiation.

Our study included 4188 BC patients from the Gene

Expression Omnibus (GEO), the Cancer Genome Atlas

(TCGA), and the Molecular Taxonomy of Breast Cancer

International Consortium (METABRIC) databases in total.

We revealed the genes with the most distinctive predictive

value for RMPs, explored the associated genes, and

constructed a risk model which can be utilized to assess the

risk score of individuals. We discovered that diverse patterns of

adenosine-associated RNA modification were linked not only to

the infiltration of immune cells but also to the cell cycle, RNAss

score, drug resistance and, most significantly, patients’ clinical

outcome.

Materials and methods

Data acquisition and processing

From the GEO database (https://www.ncbi.nlm.nih.gov/

geo/), the METABRIC database (http://www.cbioportal.org/)

and TCGA database (https://portal.gdc.cancer.gov/), we

obtained the transcriptome data and overall survival (OS)

data of BC patients retrospectively. 4188 BC patients with a

follow-up time >30 days were selected for our analysis,

including samples from seven GEO datasets (GSE131769,

GSE162228, GSE20685, GSE20713, GSE24450, GSE42568,

and GSE48391, n = 1,193), the METABRIC database (n =

1,904) and TCGA database (n = 1,091). All data were

normalized with log2 transformation of fragments per

kilobase of exon per million mapped fragments (FPKM)

values and subsequently merged into one dataset with the

“ComBat” algorithm of the SVA Package. Half of the

4188 BC patients were randomly assigned to a training

cohort (n = 2,094), the remaining cases were defined as the

testing cohort (n = 2,094), and the entire dataset was used to

generate internal validation cohorts. GSE3494 (n = 234) from

the GEO dataset was chosen as an external validation cohort.

The RNA expression profiles of BC tissues (n = 1,109) and

normal breast tissues (n = 113), somatic mutation data, somatic

copy number variation (CNV) data and stemness score data

were all obtained from TCGA database. The clinicopathological

information, including age, tumour side, therapy, histology

subtype, lymph node state, RFS status and cause of death,

was gained from the METABRIC database.

Unsupervised clustering and gene set
variation analysis of prognosis-related
gene clusters

The correlation between RMPs and OS was analysed by

univariate Cox regression (uniCox), and survival status was

displayed with a Kaplan–Meier (K-M) curve using the

“survminer” and “survival” R packages with an optimal cut-

off value. RMPs with p < 0.001 were considered prognostic, and

we named them prognosis-related genes (PRGs), which included

YTHDF1, EIF3A, PCF11 and CBLL1. An unsupervised

clustering algorithm was then applied to the 4188 BC patients

based on the expression levels of 4 PRGs to build PRG clusters.

The R package “conensusClusterPlus” was utilized with

1,000 repetitions during the above steps. Principal component

analysis (PCA) was performed to visualize the independence of

each cluster.

Selection of differentially expressed genes
with prognostic value and construction of
gene clusters

To identify PRG-related genes that were differentially

expressed among subgroups, we used the empirical

Bayesian function of the R package “limma” and selected

23 differentially expressed genes (DEGs) among three

subgroups. Then, uniCox regression analysis was used and

screened out 19 genes from DEGs for further analysis (p <
0.05). We named these 19 genes prognosis-related

differentially expressed genes (PRDEGs), which were both
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differentially expressed and prognostic among diverse

subgroups. The gene clusters were constructed based on the

expression levels of 19 PRDEGs by the unsupervised clustering

algorithm mentioned above.

Construction of the risk model

As mentioned above, we randomly divided the 4188 BC

patients into a training group and a testing group. Least absolute

shrinkage and selection operator (LASSO) analysis and

multivariate Cox regression (multiCox) analysis implemented

by the “glmnet” R package were applied to the patients in the

training group to construct the risk model. All BC patients were

then divided into two groups (low-risk group and high-risk

group) according to the median value of the risk score. OS

was compared between the high-risk and low-risk groups with

K-M analysis. Receiver operating characteristic (ROC) analysis

was performed using the “timeROC” R package to estimate the

forecasting capability.

Gene set enrichment analysis of diverse
risk groups

First, the R package “limma” was applied between the high-

risk and low-risk groups, and 45 upregulated and

69 downregulated DEGs in the high-risk group were

subsequently selected with criteria of |logFC| > 1 and

adjusted p value < 0.05. To reveal diverse patterns of RMPs

through biological processes, Gene Ontology (GO) and Kyoto

Encyclopedia of Genes and Genomes (KEGG) analyses were

performed using the R package “clusterProfiler” (Yu et al.,

2012).

Immune infiltration and tumour
microenvironment analysis

The single-sample gene set enrichment analysis (ssGSEA)

method of in the R package “GSVA” was used to calculate the

infiltration degree according to the expression levels of

28 published immune cell gene sets (Bindea et al., 2013;

Hänzelmann et al., 2013). Estimation of STromal and

Immune cells in Malignant Tumour tissues using

Expression data (ESTIMATE) was applied to determine the

components of stromal cells and immune cells according to

the gene expression characteristics of tumour samples

(Yoshihara et al., 2013). CIBERSORT was used to infer cell

composition based on the expression profiles. This

deconvolution algorithm was used to calculate the relative

proportions of 22 immune cells in each patient with BC

(Newman et al., 2015; Becht et al., 2016).

Estimation of tumour mutation burden,
stemness correlation and drug sensitivity

The “MutSigCV” algorithm was applied to screen

20 oncogenes with higher mutation frequencies than the

background frequency. The R package “maftools” was applied

to display the mutation landscape of the top altered oncogenes in

the TCGA-BRCA cohort by waterfall plots (Mayakonda et al.,

2018). The R package “pRRophetic” was used to predict the

sensitivity of diverse risk groups by calculating the semi-

inhibitory concentration (IC50) of commonly used drugs

(Geeleher et al., 2014). In addition, we utilized the CellMiner

database (https://discover.nci.nih.gov/cellminer/home.do) to

analyse the drug sensitivity relevance between model-

constructed genes and common antineoplastic drugs

(Shankavaram et al., 2009). Spearman correlation analysis was

applied to visualize the correlation between the risk score and the

RNA-based stemness scores (RNAss).

Clinicopathological stratification of the
risk score

BC patients in the METABRIC cohort were assigned to

subclasses based on the following diverse characteristics.

According to the median risk score, cases in each clinical

subgroup were assigned to the low-risk or high-risk

group. Survival curves of the high-risk group and low-risk

group in the subgroups were compared using the log-rank test

and K-M analysis.

Statistical analysis

All statistical analyses were performed using R software and

its packages (version 4.1.2). Bilateral p < 0.05 was considered

significant.

Results

The Landscape of RMPs with adenosine
in BC

An overview of our workflow is outlined in Figure 1A. To

obtain a fully picture of the expression and mutation patterns of

RMPs associated with adenosine, we summarized 48 reported

RMPs associated with adenosine modification, including 10 m6A

“writers”, 2 m6A “erasers”, 15 m6A “readers”, 4 m1A “writers”,

2 m1A “erasers”, 12 APA “writers” and 3 A-to-I “writers”, and

listed them in Supplementary Table S1.

Non-silent somatic mutations were detected among RMPs to

identify whether they were associated with genetic alterations. Of
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FIGURE 1
The Landscape of RMPs with adenosine in BC. (A) Workflow of the study. (B) 110 of 986 samples with breast cancer experienced genetic
mutations of 48 RMPs, with a frequency of 11.16%. Each cohort represents an individual sample. The upper bar graph represents TMB; the number on
the right side shows the mutation frequency in each RMP. The right bar graph shows the proportion of each mutation type for each BMP. The lower
bar graph shows the fraction of transitions in each individual. (C) A circular diagram presenting the positions of CNV gains or losses of RMPs on
23 chromosomes. Red indicates CNV gained, and blue indicates CNV lost. (D) Barplots showing quantified CNV gains and losses of each RMP. (E)

(Continued )
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FIGURE 1
Expression levels of RMPs compared between BC and normal samples presented with barplots. Red represents tumours, and blue represents
normal tissues. The asterisks represented the statistical p value (*p < 0.05; **p < 0.01; ***p < 0.001). (F) The intercorrelation and survival connections
of RMPs. The colour of the right half of the circle represents its survival association, the colour of the left half represents the type of RMP, and the size
of the circle represents the uniCox p value. (G) K-M curve showing the OS and survival probabilities of the four PGRs in the cohort of 4188 BC
patients with the best cut-off value.

FIGURE 2
PRG clusters and gene clusters associated with four PRGs. (A) PCA of the PRG clusters. (B) Heatmap showing the expression profiles of four
PRGs in the PRG clusters. (C) K-M survival curves of PRG clusters based on 4188 BC patients. Blue/red/green represent PRG clusters A/B/C. (D)
Boxplots showing immune cell infiltration in each PRG cluster by ssGSEA. *p < 0.05; **p < 0.01; ***p < 0.001. (E) Heatmap showing the expression
profiles of 19 PRDEGs among gene clusters. (F) A Venn diagram showing DEGs. (G)Consensus matrix displaying twomajor gene clusters based
on PRDEGs. (H) K-M survival curves of gene clusters (n = 4,188). (I) Expression profiles of RMPs in variant gene clusters.
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the 986 BC samples in TCGA-BRCA, 110 (11.16%) samples had

mutations of RMPs, most of which were missense mutations. As

depicted in Figure 1B, KIAA1429 exhibited the highest mutation

frequency in BC samples, followed by PCF11 and ZC3H13. On

the contrary, YTHDF2 and CLP1 did not exhibit any mutations.

Then, we examined the somatic CNVs of these RMPs. We

found extensive CNV gains in ADAR, CPSF1, IGF2BP1 and

YTHDF1. Loss of copy numbers was observed in RBM15B and

YTHDF2 (Figure 1D). A circular diagram was created to illustrate

the locations of these RMPs on the 23 chromosomes (Figure 1C).

BC samples were paired with normal breast tissue samples to

compare mRNA expression levels of RMPs. 39 RMPs were found

in the TCGA-BRCA cohort, and most of them were abundant in

the tumour samples (Figure 1E).

To demonstrate the links between these RMPs and the

outcomes of BC patients, the clinical and transcriptome data

of 4188 BC patients were enrolled in this study to reveal the

relationships between RMPs and tumorigenesis. The results

suggested that there were strong correlations between different

types of RMPs and that positive correlations are more common

than negative ones. Notably, YTHDF1, CBLL1, PCF11, and

EIF3A were most related to survival, with a uniCox p value <
0.001 (Figure 1F). The results of uniCox for RMPs are displayed

(Supplementary Table S2). Patients with higher expression level

of YTHDF1 had worse prognoses, and those with higher

expression of CBLL, PCF11, and EIF3A had better clinical

outcomes (Figure 1G). These four genes were defined as

PRGs, and other RMPs associated with survival were also

noted (Supplementary Figure S1).

PRG clusters and gene clusters associated
with four RMPs

Utilizing the consensus clustering analysis, 4188 BC patients

were then assigned into three subgroups. A total of three PRG

clusters were identified, with 1,718 patients in PRG cluster A,

1,084 patients in PRG cluster B, and 1,386 patients in PRG cluster

C. PCA confirmed an intergroup distribution among the three

subgroups (Figure 2A).

The heatmap was depicted to reveal expression levels of four

PRGs in these three PRG clusters. CBLL1, EIF3A, and PCF11 were

markedly overexpressed in cluster A patients, while YTHDF1 was

expressed at higher levels in cluster B patients (Figure 2B).

The survival analysis of PRG clusters suggested that patients

in cluster A had a much more prominent survival advantage than

those in cluster B, and the advantage for patients in cluster C was

somewhere in between, which was consistent with the expression

levels and the prognostic trends of the four PRGs (Figure 2C).

To understand biological processes in diverse RNA

modification patterns, the “GSVA” R package was utilized to

conduct gene set variation analysis (GSVA). PRG cluster B was

markedly enriched in metabolic pathways such as ribosome, fatty

acid metabolism, valine leucine and isoleucine degradation, and

propanoate metabolism compared to PRG cluster A

(Supplementary Figure S2).

Many studies have mentioned a potential link between

infiltrating immune cells and RNA modification (Barbieri and

Kouzarides, 2020). To investigate the functional role of RMPs in

immune infiltration, ssGSEA was applied to the PRG clusters and

revealed a strong connection between PRG clusters and immune

cells (Figure 2D).

The identified PRG clusters could effectively distinguish the

clinical outcome of BC patients; however, the PRG-related genes,

therapeutic effect and underlying reasons were still unclear. To

identify the genes potentially related to the PRG clusters,

overlapping DEGs among the 3 PRG clusters were then

selected. We obtained 23 PRG-related DEGs and displayed

them with a Venn diagram (Figure 2F).

UniCox analysis was performed and identified 19 prognosis-

related DEGs. According to the expression levels of these

19 PRDEGs, we divided the patients into two subgroups: gene

cluster A and gene cluster B (Figure 2G).

In the entire transcriptome, the heatmap showed significant

inherent differences between the gene clusters (Figure 2E). K-M

curves showed significant alterations in survival outcomes

between the two gene subtypes. Gene cluster A presented a

clear survival advantage, while gene cluster B had a higher

risk of death (Figure 2H). The expression levels of RMPs in

gene clusters were examined, which revealed substantial

discrepancies in RMPs and suggested an underlying

correlation. Notably, YTHDF1 showed a higher expression

level in gene cluster B, while PCF11 and EIF3A were more

highly expressed in gene cluster A (Figure 2I).

Construction of the risk model

To accurately forecast the survival status of individuals, we

designed a risk model. The BC patients in the training group were

used for the following model construction procedure.

Nineteen PRDEGs were engaged in the iterative LASSO

algorithm (Figures 7A,B). Next, multiCox analysis was applied to

construct the risk model. Ultimately, risk scores were calculated by

multiplying the expression values of five chosen genes with their

regression coefficients. The formula was as follows: risk score =

(expression level of UBE2C × 0.096)—(expression level of

CX3CR1 × 0.077)—(expression level of IFT74 ×

0.141)—(expression level of FABP4 × 0.033) + (expression level

of CALML5 × 0.023). We then evaluated the risk score of each

patient in the training and testing groups, which is listed in

Supplementary Table S3. The hazard ratio from uniCox and the

coefficients of the 5 model-constructed genes are listed (Figure 3D).

We compared the risk scores in diverse PRG clusters and gene

clusters. It was revealed that PRG cluster B and gene cluster B, which

had poor survival, had higher risk scores (Figures 3A,B).
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FIGURE 3
Construction of the risk model. (A) Risk scores of diverse PRG clusters. (B) Risk scores of diverse gene clusters. (C) Heatmap showing the
expression profiles of 5 model-constructed genes in the risk groups. (D) Table listing the coefficient and HR of each model-constructed gene. (E)
RMP expression levels in risk groups presented with boxplots. (F) K-M curves of 5 model-constructed genes. (G) GO functional enrichment analysis
of upregulated DEGs (left) and downregulated DEGs (right) in the high-risk group. (H) KEGG analysis results of upregulated DEGs (left) and
downregulated DEGs (right) in the high-risk group.
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FIGURE 4
The relationship between tumourmutation burden, immune infiltration and risk score. (A) K-Mplots of high- and low-TMB groups of the TCGA-
BRCA cohort. (B) Boxplots showing the relative connection of the risk score and TMB. (C)Correlation scatter plot presenting the relationships among
gene clusters, risk scores, and TMB. (D) Waterfall plots showing TMB for the low-risk group. (E) Waterfall plots showing TMB for the high-risk
group. (F) Immune cell proportions in diverse risk groups shown with boxplots. (G) Violin plots for stromal score, immune score and ESTIMATE
score in different risk groups.
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We separate the 4188 BC patients into high- and low-risk

groups based on the median cut-off value of the developed risk

score. The heatmap showed differential expression of model-

constructing genes between the high-risk and low-risk groups

among the 4188 BC patients, where UBE2C and CALML5 were

distinctly upregulated in the high-risk group, and CX3CR1, IFT74,

and FABP4 showed the opposite trend (Figure 3C). The training

group and testing group showed the same condition (Figure 7C).

The K–Mplot of the fivemodel-constructing genes showed that

with higher expression levels of UBE2C and CALML5, patients had

worse survival probabilities, while with higher expression of the

other three genes, patients had better outcomes (Figure 3F).

The links between the risk groups and expression profiles of

RMPs is presented. We observed that YTHDF1 presented a

significant expression increase in the high-risk group, while

CBLL1, EIF3A, and PCF11 performed downregulation. The

expression profiles of ADAR, CLP1, CPSF1/3/4, CSTF1/2/3,

ELAVL1, IGF2BP1/2/3, LRPPRC, PABPN1, RBM15, RBM15B,

TRMT6, and YTHDF2/3 were markedly positively correlated

with the patient’s risk score and most of them were associated

with a poor clinical outcome (Figure 3E).

To uncover the potential biological characteristics between

the two groups, we searched for DEGs and carried out

enrichment analyses. Analysis of DEGs enhanced in the high-

risk group revealed enrichment of GO functions such as cell

division, mitotic cell cycle process and cell cycle, which indicated

that the potential mechanism underlying poor survival may be

linked to cell proliferation (Figure 3G). In the KEGG analysis, we

also observed proliferation pathways enriched among DEGs

elevated in the group with a higher average risk score. A

higher risk score may be also associated with poor sensitivity

to platinum-based drug therapy, since IL-17 and Th17 cells are

both related to inflammation-related tumour development. We

observed that the IL-17 signalling pathway and Th17-cell

differentiation pathway were enriched in the upregulated and

downregulated groups, respectively, which suggested an

indispensable role of the immune and inflammatory systems

in tumour development with the adenosine-RNA-modification-

derived risk model (Figure 3H).

The relationship between tumour
mutation burden, immune infiltration and
risk score

We then analysed the underlying links between the risk score

and tumour mutation burden (TMB) with the TCGA-BRCA

database. K–M plots depicted that with lower TMBs, BC patients

exhibited a distinct survival advantage, while the others had worse

clinical outcomes (Figure 4A). The TMB landscape among the top

20 most common mutations suggested that with higher risk scores,

BC patients had a more extensive TMB (Figures 4D,E). The risk

score was positively correlated with TMB (Figures 4B,C).

Through previous analysis, we found that Th17 and IL-17

may be associated with the potential bio-mechanism of risk

models, and several RMPs were documented to be linked to

immunotherapy resistance. To learn whether the risk score could

predict immunotherapy response of BC patients, we analysed the

immune cells infiltration profiles by ssGSEA. Most immune cells

were upregulated in the high-risk groups (Figure 4F). Immune

cell infiltration (immune score) was also evaluated by the

ESTIMATE algorithm, and the immune score was obtained,

which was consistent with the results of ssGSEA. The tumour

microenvironment (TME) score of each case was evaluated, and

the stromal score, immune score and ESTIMATE score were

determined. The stromal score and ESTIMATE score were both

decreased in the high-risk group (Figure 4G). By CIBERSORT,

we analysed the correlations of immune cells with the risk score

and risk model-building genes, it was depicted that CX3CR1 were

strongly positive correlated with M2 macrophages but the trend

was opposite to that of M1 macrophages and UBE2C showed the

opposite (Figure 5A). There was a significant positive correlation

between inhibitory immune cell Tregs and risk, but at the same

time M1 macrophages were significantly upregulated,

accompanied by downregulation of M2 macrophages

(Figure 5B).

Prognostic value and clinical translation of
the risk model

To better learn the correlation of risk scores with prognosis

and drug therapy, the following analysis was performed. The

K-M analysis showed that patients in low-risk group had evident

advantages of survival, while high-risk patients had poor clinical

outcomes (Figure 6A). The K-M analysis results for the training

and testing groups are also displayed (Figure 7D). Furthermore,

we applied the timeROC method to estimate the AUC values for

predicting OS (Figure 7E). The relevance between clinical

outcomes and risk scores of patients is also displayed

(Figure 6B), and the results for the training and testing

groups are also shown (Figure 7F). GSE3494 was chosen as an

external cohort for feasibility verification, and there was an

apparent discrepancy in clinical outcomes, with the high-risk

group having worse outcomes (Figure 6F). All the above results

indicate that the risk model is stable and can precisely predict the

clinical outcome of patients.

To visualize the relationship between risk scores and diverse

clusters, we displayed the relationships among PRG clusters,

gene clusters, risk groups and the survival outcome of patients

with a Sankey diagram (Figure 6D). Rapidly developed tumour

cells can lose differentiation phenotypes and exhibit stem-cell-

like characteristics (Batlle and Clevers, 2017). RNAss scores

based on mRNA expression were utilized to measure the

correlation between tumour stemness and the risk score

(Figure 6C).
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Next, to determine the effectiveness of the risk score for

predicting drug treatment response in BC patients, we estimated

the IC50 values of the most common drugs. We found that patients

in the high-risk groupmight be more sensitive toM-phase cell cycle

drugs, including docetaxel, paclitaxel and vinblastine, but resistant

to the cell cycle-nonspecific drug doxorubicin, the S-phase-specific

drugs cytarabine and gemcitabine and the G2-phase-specific drug

bleomycin (Figure 6E).

According to diverse clinicopathological factors (age of

diagnosis, tumour side, surgical type, radiotherapy,

chemotherapy, hormonotherapy, histology type, lymph node

state, RFS status, and reason for death), BC patients from the

METABRIC database were divided into different cohorts. The

risk model presented excellent prediction performance. In

particular, there was a distinct difference in the survival

outcomes of patients with recurrence, and no diversity was

found in patients without recurrence. Similarly, the survival

curve of patients who died of disease was changed, but there

was no such alteration for patients who died for other reasons

(Figure 8).

Discussion

Epigenetic transcriptomics focusing on RNA modification,

an unexplored field, has been gradually explored with the

FIGURE 5
The immune cell infiltration connections associated with model-constructed genes and risk scores. (A) A heatmap demonstrating the
relationship between model-constructing genes and immune cell infiltration. (B) Correlation scatter plots showing the relationship between risk
scores and immune cell infiltration.
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continuous development of sequencing technology. The majority

of studies focused on only one specific single form of RNA

modification mode, and there is increasing evidence that RMPs

play an indispensable role in tumorigenesis and interact with

each other; nevertheless, the interrelationships of multiple forms

of RMPs are still not completely understood (Zhang et al., 2016;

Zhao et al., 2017). Here, we ultimately revealed a landscape of

transcriptional and genetic alterations of adenosine-related

RNA-regulatory enzymes of m6A, m1A, APA, as well as

A-to-I and discussed their potential connections, expression

patterns and prognostic values in BC.

To obtain a brief understanding, we depicted the connections

among RMPs, and most of them were associated with tumour

mutation burdens and patient outcomes and showed differential

expression levels between BC tumours and normal tissues. The

RMPs upregulated in tumours or showing a positive correlation

with poor outcomes usually gained more CNVs, such as ADAR,

CPSF1, IGF2BP1, and YTHDF1.

We then chose the four most prognostic genes, YTHDF1,

EIF3A, PCF11, and CBLL1, according to the survival analysis

results and named them PRGs. Three PRG clusters and two

gene clusters based on PRGs and PRDEGs were then identified

in 4188 BC patients and found to predict the patients’

outcomes in diverse clusters. To more accurately anticipate

the prognosis of individuals, a risk model was constructed to

forecast prognostic risk scores of BC patients. The patients

with higher risk were identified as having higher expression

levels of UBE2C, and CALML5 and lower expression levels of

CX3CR1, IFT74, and FABP4. UBE2C encodes a E2 ubiquitin-

conjugating enzyme, which was found to be a prognostic

factor in BC with poor survival in previous studies (Psyrri

et al., 2012). Studies have shown that CALML5 ubiquitination

is involved in the tumorigenesis of the BC (Debald et al.,

2013).

We explored RMP expression patterns between risk

groups and connected specific RMPs with BC outcomes.

YTHDF1 was highly expressed in high-risk group patients,

while EIF3A, PCF11, and CBLL1 showed higher expression

levels in low-risk group patients. BC patients with higher risk

scores had a worse prognosis. We also confirmed the

prognostic value of the risk model by assessing outcomes in

BC patients with different clinicopathological features.

To explore the underlying mechanisms, functional

enrichment analysis was performed, suggesting that cell

FIGURE 6
Prognostic value and clinical translation of the risk model. (A) K-M curves of risk groups in the merged BC cohort. (B) Correlation scatter plots
showing the relationship between clinical outcomes and risk scores. (C) The relationship between tumour cell stemness and risk score. (D) A Sankey
map demonstrating the relationship between clinical outcomes and diverse subgroups (PRG clusters, gene clusters, and risk groups). (E) Boxplots
showing the IC50 values of common anti-tumour drugs. (F) K-M plots of BC patients in GSE3494.
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FIGURE 7
(A) LASSO regression analysis reducing variants. (B) Coefficients of model-constructed genes obtained by LASSO. (C) Heatmap of the
expression profiles of model-constructed genes in the training group (left) and testing group (right). (D) K-M curves of patients in the training group
(left) and testing group (right). (E) AUC time-dependent ROC curves for OS in all patients (left), training group patients (middle) and testing group
patients (right). (F) Correlation scatter plots show the relationship between clinical outcomes and risk scores in the training group (left) and
testing group (right).
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FIGURE 8
Survival analysis of risk scores based on diverse clinicopathological characteristics of 1130 BC patients from METABRIC database.
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proliferation-related functions such as cell division, cell cycle,

chromosome segregation and mitotic nuclear division were

stronger in the high-risk group. We then visualized the

potential therapeutic effects of diverse RMP-related risk

patterns in BC. Similarly, the high-risk group was

associated with resistance to the cell cycle-nonspecific drug

doxorubicin and the S- or G2-phase cell cycle-specific drugs

cytarabine, gemcitabine and bleomycin but with sensitivity to

M-phase cell cycle-specific drugs. It has been reported that

YTHDF1, which was upregulated in the high-risk group,

promotes S-phase entry, DNA replication and DNA damage

repair (Sun et al., 2022). EIF3A regulates the expression

profiles of proteins that contribute to DNA repair, which in

turn is involved in response to anti-cancer drugs (Yin et al.,

2011). UBE2C can directly override the spindle assembly

checkpoint inhibition of APC (Reddy et al., 2007; Meyer

and Rape, 2011). These literature reports prove the

reliability of our conjecture.

The abundance of TMBs was markedly difference between

the two risk groups, and the high-risk group was associated with a

higher TMB. The results of RNAss analysis indicated a close

relationship between the risk score model and tumour cell

stemness, which was reported previously (Du et al., 2021).

The difference in the degree of immune cells infiltration is

also indisputable. In patients with a higher risk score, we

observed higher levels of infiltration in Tregs and MDSCs,

which contribute to immune suppression (Wood et al., 2012).

This suggested that patients in the high-risk group showed higher

infiltration of immune suppressor cells. CX3CR1 was reported to

be a marker of T cell differentiation, which indicated a predictive

correlate of response to immune checkpoint inhibitor therapy,

and CX3CR1 + inhibitory macrophages were negatively

correlated with T-cell expansion (Bassez et al., 2021;

Yamauchi et al., 2021). Since the exact mechanism is still

unclear, the connections in immune cell infiltration should be

further analysed.

This study is one of the few to combine four RNA

modification types with breast cancer and predict patient

outcome, which opens up a whole new way of model

prediction and clinical evaluation. However, there are still

limitations. While the mechanisms behind RNA modification

are still not well understood, the association between RNA

modifications and cancer diversity needs further exploration

and further investigation. And we must admit genetic testing

continues to be an invasive method that imposes a financial

burden and risk on patients. Therefore, more economical and

convenient detection methods need to be further explored.

Conclusion

A systematic and comprehensive landscape of four types

of adenosine-related RMPs in BC was constructed, revealing

expression profiles, tumour mutation burden, immune cell

infiltration and connections with BC survival outcomes. We

constructed a risk model and evaluated several aspects,

including genomic mutation, immune relativity and

therapeutic responses. The model presented effective

performance in predicting an individual’s clinical outcome

in relation to BC. This work highlights the clinical

importance of cross-talk between diverse types of RNA

modification with a large number of cases and presented a

predictive model which contributes to the improvement of

prediction and treatment patterns. However, simpler and

more economical methods of precise diagnosis still need to

be discovered.
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