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Abstract: A systematic review on electroencephalographic (EEG)-based feature extraction strategies
to diagnosis and therapy of attention deficit hyperactivity disorder (ADHD) in children is presented.
The analysis is realized at an executive function level to improve the research of neurocorrelates
of heterogeneous disorders such as ADHD. The Quality Assessment Tool for Quantitative Studies
(QATQS) and field-weighted citation impact metric (Scopus) were used to assess the methodological
rigor of the studies and their impact on the scientific community, respectively. One hundred and
one articles, concerning the diagnostics and therapy of ADHD children aged from 8 to 14, were
collected. Event-related potential components were mainly exploited for executive functions related
to the cluster inhibition, whereas band power spectral density is the most considered EEG feature for
executive functions related to the cluster working memory. This review identifies the most used (also
by rigorous and relevant articles) EEG signal processing strategies for executive function assessment
in ADHD.

Keywords: ADHD; executive function; ERP; P300; children

1. Introduction

Attention deficit hyperactivity disorder (ADHD) is a neurodevelopmental disorder
characterized by inattention and/or hyperactivity–impulsivity. According to the fifth
edition of the Diagnostic Statistical Manual of Mental Disorders (DSM-5), inattention
and/or hyperactivity–impulsivity symptoms must be present before age 12, in two or
more contests, such as school and home. Impairment contributes to academic, professional,
or social dysfunction. These symptoms must be present for at least 6 months and do
not occur exclusively during schizophrenia or another psychotic disorder and must not
be better explained by another mental disorder (mood disorder, anxiety disorder, disso-
ciative disorder, and personality disorder). The DSM-5 lists nine symptoms related to
inattention and hyperactivity–impulsivity, respectively. If the subject exhibits at least 6 of
the 9 symptoms of inattention, predominantly inattentive type (ADHD-I) is diagnosed;
predominantly hyperactive–impulsive type (ADHD-PH) includes at least 6 of the 9 symp-
toms of hyperactivity–impulsivity; the combined type (ADHD-C) involves inattention and
hyperactivity–impulsivity symptoms [1].
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The diagnostic criteria of DSM V are based on subjective assessments of perceived
behavior. There is no mention of the use of biomarkers. Nonetheless, for 75 years, the EEG
has been used for the study of ADHD [2]. EEG is recognized in the literature as one
of the main candidates to provide support for the diagnosis and treatment of ADHD
on a biological basis [3]. The first studies based on EEG and ADHD hypothesized a
hypoarousal condition [4] of the subjects revealed by a polarisation of the EEG signal
power at low frequencies. This hypothesis was confirmed by the U.S. Food and Drug
Administration, which authorised the use of a device based on the ratio between power
at high and low frequencies for diagnostic purposes [5]. Subsequently, further studies
have not always confirmed the statistical significance of this electroencephalographic
phenomenon in ADHD. Further approaches are therefore being considered for the study of
such a heterogeneous phenomenon. For example, inattentive sub-types are characterized
by deficits in stimuli processing speed. Therefore, ERPs assessment is particularly useful.
The main advantage of ERPs is that they are able to capture the evolution of brain activity
following a specific event with high temporal accuracy and thus can be used to detect
sensory processing deficits [3].

In the literature, numerous studies consider the use of EEG both for diagnostics [3]
and therapy [6]. To date, however, generalizable electroencephalographic patterns of
ADHD have not yet been identified. According to [3], there can be no generally valid
electroencephalographic features for an extremely heterogeneous phenomenon such as
ADHD. DSM 5, compared with DSM 4, has increased the articulation of ADHD into sub-
types. In doing so, it has also indicated a direction to go in to achieve a greater EEG-based
understanding of the disorder. Anchoring EEG features to elementary cognitive functions
allows the heterogeneity of ADHD-related disorders to be mapped more effectively. The
correspondence between the ADHD subtype and the impairment of one or more EFs is dis-
cussed in [7]. In fact, EFs are elementary constructs that can be combined into more complex
systems. The EEG features of the different executive functions can also be combined for a
more targeted assessment of the different ADHD subtypes [8]. Executive functions (EF) are
a set of neurocognitive processes involved in goal-oriented problem-solving [9]. According
to Miyake et al., the basic EFs are inhibition, working memory, and flexibility [10]. In partic-
ular, inhibition is linked to the activation of networks involving bilateral frontal, upper
right temporal occipital gyrus, and lower left, right thalamic structures and midbrain [11].
Working memory involves the dorsolateral prefrontal cortex [12], while flexibility relates to
the prefrontal and posterior parietal cortex [10]. The combination of basic EF gives rise to
higher-order EFs, i.e., reasoning, problem-solving, and planning [13–15]. In the early 2000s,
Baddeley proposed the sub-articulation of the basic EFs in components (sub-functions) [16].
In particular, as an example, working memory is divided into (i) phonological loop; (ii) vi-
suospatial sketchpad; and (iii) episodic buffer. However, a few years later, Friedman and
Miyake (2004) did not consider this distinction. In recent years, an emerging trend has
focused on analyzing executive sub-functions. Stahl et al. (2014) focused on two sub-EFs of
inhibition, namely, interference inhibition and inhibiting prepotent responses. Rey-Mermet et al.
(2017) also demonstrated how a two-component inhibition model best explained the data
observed in young and older adults. A further articulation of the inhibition sub-functions
was proposed by Diamond et al., in 2013. They broke down the response inhibition into
continuous response and response to temptations, and they broke down interference inhibition
into selective attention and cognitive inhibition.

Feature extraction is a pillar step of digital signal processing and can be summarized
in (i) choosing a suitable analysis domain (e.g., time, frequency, and space); (ii) eventually,
focusing on a portion of the domain (sub-domain); and (iii) applying proper mathematical
functions to obtain synthetic and highly informative values of the input signals. Sometimes
features extracted in this way undergo further transformation and/or calibration to improve
the detection or classification process [17,18]. Currently, the relationship between EFs and
EEG features is not uniquely defined. Moreover, many studies examine the EEG signal of
the ADHD subject without clarifying which particular EF is being investigated. In other
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studies, the investigated EF is related to non-specific EEG features (i.e., those already
associated with other EFs in the literature).

This review aims to improve the EEG-based approaches to the ADHD by focusing
on the EEG feature of EFs. The EEG can offer a multivariate approach to the study of
a heterogeneous syndrome such as ADHD, by measuring executive functions and sub-
functions. Consequently, as far as EEG-based studies associating ADHD with EFs deficit
are concerned, the key points of the research are reported below:

• Identifing EFs evaluated in EEG-based ADHD studies and their resolution level among
high order-, basic-, sub-, and components of sub-EFs;

• Counting the articles that studied each specific relationship between an EEG feature
and an EF;

• Reporting wether the relationships between EEG features and EFs are statistically
relevant or not;

• Analyzing the methodological rigor of the articles and their impact within the reference
scientific community.

The review is structured as follows: in Section 2, the procedures for the selection and
analysis of the articles are presented. Section 3 reports the results of the quantitative and
qualitative analysis. Finally, the results are discussed in Section 4.

2. Methods

The method consists of two steps: (i) the article selection process (Figure 1) and (ii) the
article analysis (Figure 2). The article analysis identifies the relationship between EEG
features and EFs and evaluates the rigor and scientific impact of the studies.

2.1. Article Selection Process

In this Section, the inclusion and exclusion criteria, and the database search, are presented.

2.1.1. Inclusion and Exclusion Criteria

The present study was carried out in compliance with the PRISMA recommenda-
tions [19] (including the Kitchenham’s guide [20]). All the articles were selected according
to the following inclusion/exclusion criteria:

• The age of the experimental sample: only articles recruiting six fourteen-year-old
participants were included; the choice of the age range of the experimental sample
was due to (i) the maturation of basic EFs; (ii) the stimulation of higher order EFs in
the school environment; (iii) the greater understanding and adherence to the various
tasks; and (iv) the better exclusion of other pathologies diagnosable from the age of six.

• The participants’ conditions during EEG signal recording: studies focused on resting
state were excluded. Indeed, EFs selective activation requires specific task execution;

• Comorbidities: articles with the concurrent presence of other pathologies in partici-
pants were excluded to avoid these sources of interference on the EEG signals;

• Drug therapy: articles with participants under pharmacological treatment were ex-
cluded. Nevertheless, articles were included in case of the interruption of drug
assumption at least six months before the execution of the experimental sessions. Arti-
cles were excluded if information about pharmacological therapy was not specified.

• The type of article: journal and conference articles were included, while reviews,
commentaries, and editorials were excluded because they do not report directly on
field studies.
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Figure 1. PRISMA-flow of the articles selection process.
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Figure 2. The flow-chart of the article analysis. Each article is subjected to two types of analysis in
parallel: (i) the analysis to extract relationships between EEG features and executive functions (in
orange) and (ii) the analysis to assess the rigor and scientific impact of the study (in blue).

2.1.2. Database Searches

A flow diagram representation of the database search is shown in Figure 1. The identifi-
cation, the screening, the eligibility, and the inclusion phases are reported. The articles were
collected from Pubmed, Scopus, and IEEEXplore databases by using the query “ADHD
AND EEG AND NOT Adult”. Only English results published from January 1996 to March
2021 were considered. An initial search led to 1390 articles: 689 from Pubmed, 74 from IEE-
EXplore, and 637 from Scopus, and 867 articles were the output of the identification phase,
after removing duplicates. The full-text abstracts were analyzed in the screening phase,
and 474 articles were excluded based on the selection criteria reported in Section 2.1.1. In
the eligibility phase, the full text of the remaining 393 articles was screened according to
the aforementioned criteria. At the end of the process, 101 articles were included: 86 from
Scopus and 15 from PubMed.

2.2. Article Analysis Procedure

In this Section, the procedures for the executive function identification, the EEG feature
identification, and the assessment of the methodological rigor and scientific impact of the
articles are presented.

2.2.1. Executive Function Identification

Each article was labeled by the main focused EFs. When the authors did not specify
the EFs under investigation, the links between the EFs and the articles were based on
the performed experimental test. In the literature and clinical practice, several tests are
administered to assess the impairments of EFs. Nevertheless, an exclusive link between a
test and an EF cannot be guaranteed [21,22]. However, for each test, prevalent activated
EFs can be assumed in many cases [13]. Below, a description of the EFs and the main tests
used for their evaluation is reported.

In ADHD studies, researchers are mainly interested in basic and sub-EF levels [8].
Inhibition is defined as the ability “to control one’s behavior, thoughts, and/or emotions
to override a strong internal predisposition or external lure, and instead do what’s more
appropriate or needed” [13]. This function is usually tested in an oddball framework [13].
The two components of inhibition, i.e., interference and response, are defined, respectively,
as the ability to “filter out irrelevant information in the environment” and “ inhibit inap-
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propriate but prepotent responses”, respectively [23]. Paradigms implemented to test these
components include tasks in which subjects must ignore irrelevant stimuli [24] and inhibit
prepotent response inclinations [25,26].

The working memory keeps in mind information during the execution of complex
tasks [16]. This function is assessed by asking the participants to recall information pre-
viously received through multi-sensorial channels [27]. Working memory resources are
separated into verbal and visuospatial constructs based on the type of information held
in memory [28]. Namely, the phonological loop deals with the phonetic and phonological
therapy ensuring the time properties preservation. At the same time, the visuospatial
sketchpad maintains and processes the visual-spatial information and can generate mental
images. The paradigms use auditory or visual contents to test these components [29,30].
Finally, cognitive flexibility represents a creative and adaptive mindset to rapid circum-
stance variations. In the experimental setup, the subject is required to shift among different
cognitive schemes in response to a dynamic task [31]. Links among EFs and some of the
main used tests are shown in Table 1.

The proposed method to identify links among EFs and articles is articulated in
mutually-exclusive successive steps as follows: (i) standard tests are implemented: there-
fore, articles are labeled based on the test-related EFs; (ii) the article employed custom tests,
but the authors clarified the investigated Efs: therefore, articles are labeled based on the
declared EFs; (iii) custom tests are used, and the authors did not declare to focus on specific
EFs: therefore, articles are tagged based on EFs related to the most similar standard test.

Table 1. FE investigated mainly in children with ADHD and the main tests for their analysis.

Basic Executive Function Sub-Executive Function Main Related Test

Inhibition Response Inhibition Go/No Go Task [24]
Interference Inhibition Flanker Test [26]

Cognitive Flexibility - Wisconsin Card Sorting Task [31]

Working Memory Verbal Working Memory N-Back Task [29]
Visual Spatial Working Memory Corsi Block Test [30]

2.2.2. EEG Features Identification

Once the EFs mainly investigated for each article are identified, the individuation of
the link between EEG features and EFs is almost automatic. All the features collected from
the articles are organized according to a multi-level pattern (Figure 3). The first level is the
domain of definition: spatio-time, spatio-frequency, or spatio-time-frequency domain. In all
cases, the spatial domain can be considered once the distributed mode of recording the EEG
signal is given: it is acquired in a specific scalp region depending on the chosen headset.

At this level, the signal is treated by referring to peculiar pre-processing (averaging)
or transformation (Fourier, Welch, and so on). As far as the second level is concerned,
the sub-domains are adopted, namely, the time sub-domains and the bands (alpha, beta,
theta, and so on). Finally, in third level, the identification of the features is completed by
means of a synthetic value extracted after a specific operation (mean, peak, power spectral
density, and so on).

In the case of articles focused on therapy, only the features subjected to experimental
validation are considered.
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Figure 3. EEG features classification pattern.

2.2.3. Assessment of the Methodological Rigor and Scientific Impact of the Articles

The quality of the collected articles was evaluated according to the PRISMA
guidelines [32,33]. Namely, the Quality Assessment Tool for Quantitative Studies (QATQS) [34],
a method created by researchers from Canada’s Efficient Public Health Practice Project
(EPHPP), was used.

All the studies were classified according to the six components of QATQS: (1) se-
lection bias, (2) study design, (3) confounders, (4) blinding, (5) data collection meth-
ods, and (6) withdrawal and dropouts. These components embed the criteria indicated
in the Cochrane Collaboration and PRISMA declaration guidelines relating to the bias
issues [19,35].

The blinding method was strictly developed in the framework of therapy effectiveness
assessment, and, therefore, the blinding component was not considered for diagnostic
articles.

The quality of each paper was assessed by assigning a score from 1 (high) to 3 (low) to
each component. Firstly, the score was assigned by the sixth author of this review. Then,
the evaluation was made by the fifth author. In case of disagreement, all the authors
discussed and sought convergence.

After evaluating the rating of the components, the global rating was calculated for
each article. Therefore, if no components scored 3, the article was labeled as strong; if only
one component scored 3, the article was labeled as moderate; and finally, if more than one
component scored 3, it was labeled as weak.

Finally, a further analysis based on Scopus’s field-weighted citation impact metric was
conducted to highlight the impact of the articles on the reference scientific community. The
field-weighted citation impact metric is useful to benchmark regardless of differences in
disciplinary profile, age, and publication type composition, and it provides a useful way to
evaluate the article’s citation performance. A value grater than 1 means that the article is
more cited than the average of articles published in the same year and in the same field of
interest. For example, 1.21 means 21% more cited than expected.
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3. Results

In Table 2 EFs, EEG features, quality assessment output, and field-weighted citation
impact are reported for each article. As far as quality assessment output is concerned,
the normalised QATQS score (the smaller the score, the higher the quality of the article),
the quality label (weak, strong, or moderate), the size of the experimental sample (N),
and the use of other bio-markers (beside the EEG signal) are reported. In Section 3.1,
the relationship between EEG features and EFs is focused on, while in Section 3.2, quality
results are detailed.

Table 2. List of articles and related executive functions. EEG features and quality scores. FWCI:
field-weighted citation impact; N: the size of the experimental sample; LZC: Lempel–Ziv Complexity;
EEGVR: electroencephalogram valid rate; MSE: multi-scale entropy; SCP: slow cortical potentials;
TBR: theta–beta ratio; TAR: theta–alpha ratio; TBAR: theta–beta–alpha ratio; SMR: sensomotor
rhythm; WPLI: weighted phase lag tndex; ERN: error-related negativity; FD: fractal dimension;
BP: bereitschaftspotential; LRP: lateralised readiness potential; CNV: contingent negative variation;
ERP: event-related potential; PSD: power spectral density; MI: modulation index; CI: consistency
index; ERD: event-related desynchronization; ERS: event-related synchronization; and ITC: inter-trial
coherence. See the Appendix for more information about some of the EEG features considered. ERP
components are evaluated in terms of amplitude or latency. n.a.: not available.

Articles Authors Executive
Functions EEG-Features Quality Assessment FWCI

Computer-based inhibitory
control training in children
with Attention-
Deficit/Hyperactivity
Disorder (ADHD): evidence
for behavioral and neural
impact [36]

Meyer, K.N.; Santillana, R.;
Miller, B.; Clapp, W.; Way,
M.; Bridgman-Goines, K.;
Sheridan, M.A.

inhibition ERP-N2

Global QATQS
Rating: moderate
(score = 1.67); No
additional
bio-markers; N = 40

0.41

Executive dysfunction in
medication-naïve children
with ADHD: a multi-modal
fNIRS and EEG study [37]

Kaga, Y.; Ueda, R.; Tanaka,
M.; Kita, Y.; Suzuki, K.;
Okumura, Y.; Egashira, Y.;
Shirakawa, Y.; Mitsuhashi,
S.; Kitamura, Y.; et al.

inhibition ERP-N2,
ERP-P3

Global QATQS
Rating: moderate
(score = 1.60);
Additional
bio-markers; N = 20

0.93

Effect of combined
neurofeedback and
game-based cognitive
training on the treatment of
ADHD: a randomized
controlled study [38]

Rajabi, S.; Pakize, A.;
Moradi, N.

working
memory

PSD-TBR,
PSD-SMR

Global QATQS
Rating: strong
(score = 1.67); No
additional
bio-markers; N = 32

0.58

Individualized
neurofeedback training may
help achieve long-term
improvement of working
memory in children with
ADHD [39]

Dobrakowski, P.; Łebecka,
G.

working
memory

PSD-Beta,
PSD-Theta

Global QATQS
Rating: strong
(score = 1.83); No
additional
bio-markers; N = 48

4.17

Increased mirror overflow
movements in ADHD are
associated with altered EEG
alpha/beta band
desynchronization [40]

McAuliffe, D.; Hirabayashi,
K.; Adamek, J.H.; Luo, Y.;
Crocetti, D.; Pillai, A.S.;
Zhao, Y.; Crone, N.E.;
Mostofsky, S.H.; Ewen, J.B.

inhibition PSD-Alpha,
PSD-Beta

Global QATQS
Rating: strong
(score = 2.00); No
additional
bio-markers; N = 50

0.77

Event-related potentials
(ERPs) and other EEG based
methods for extracting
biomarkers of brain
dysfunction: examples from
pediatric attention
deficit/hyperactivity
disorder (ADHD) [41]

Ogrim, G.; Kropotov, J.D. inhibition ERP

Global QATQS
Rating: strong
(score = 2.20); No
additional
bio-markers; N = 128

0.00
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Table 2. Cont.

Articles Authors Executive
Functions EEG-Features Quality Assessment FWCI

Alpha modulation during
working memory encoding
predicts neurocognitive
impairment in ADHD [42]

Lenartowicz, A.; Truong, H.;
Salgari, G.C.; Bilder, R.M.;
McGough, J.; McCracken,
J.T.; Loo, S.K.

working
memory

PSD-alpha,
PSD-Theta,
ERP-P2

Global QATQS
Rating: moderate
(score = 1.40); No
additional
bio-markers; N = 119

2.24

Bereitschaftspotential and
lateralized readiness
potential in children with
attention deficit
hyperactivity disorder:
altered motor system
activation and effects of
methylphenidate [43]

Jarczok, T.A.; Haase, R.;
Bluschke, A.; Thiemann, U.;
Bender, S.

inhibition LRP, BP

Global QATQS
Rating: moderate
(score = 1.67);
Additional
bio-markers; N = 33

0.55

Oscillatory neural networks
underlying resting-state,
attentional control and social
cognition task conditions in
children with ASD, ADHD
and ASD+ ADHD [44]

Shephard, E.; Tye, C.;
Ashwood, K.L.; Azadi, B.;
Johnson, M.H.; Charman, T.;
Asherson, P.; McLoughlin,
G.; Bolton, P.F.

inhibition,
working
memory

CNV

Global QATQS
Rating: moderate
(score = 1.40); No
additional
bio-markers; N = 92

0.41

Evidence for an altered
architecture and a
hierarchical modulation of
inhibitory control processes
in ADHD [45]

Chmielewski, W.; Bluschke,
A.; Bodmer, B.; Wolff, N.;
Roessner, V.; Beste, C.

inhibition ERP-P3,
ERP-N2

Global QATQS
Rating: moderate
(score = 1.40);
Additional
bio-markers; N = 50

0.80

Diagnosis of attention deficit
hyperactivity disorder with
combined time and
frequency features [46]

Altınkaynak, M.; Dolu, N.;
Güven, A.; Pektaş, F.;
Özmen, S.; Demirci, E.;
İzzetoğlu, M.

inhibition ERP-P3

Global QATQS
Rating: moderate
(score = 1.80);
Additional
bio-markers; N = 46

0.76

Lateral prefrontal theta
oscillations reflect proactive
cognitive control
impairment in males with
attention deficit
hyperactivity disorder [47]

Zamorano, F.; Kausel, L.;
Albornoz, C.; Lavin, C.;
Figueroa-Vargas, A.; Stecher,
X.; Aragón-Caqueo, D.;
Carrasco, X.; Aboitiz, F.;
Billeke, P.

inhibition ERP-P3

Global QATQS
Rating: strong
(score = 2.00); No
additional
bio-markers; N = 54

0.42

Refining the picture of
reduced alerting responses
in ADHD–A single-trial
analysis of event-related
potentials [48]

Heinrich, H.; Busch, K.;
Studer, P.; Erbe, K.; Moll,
G.H.; Kratz, O.

inhibition ERP-P3

Global QATQS
Rating: strong
(score = 2.20); No
additional
bio-markers; N = 43

0.21

A brain–computer interface
based attention training
program for treating
attention deficit
hyperactivity disorder [49]

Lim, C.G.; Lee, T.S.; Guan,
C.; Fung, D.S.S.; Zhao, Y.;
Teng, S.S.W.; Zhang, H.;
Krishnan, K.R.R.

inhibition PSD-sum of
all bands

Global QATQS
Rating: strong
(score = 1.80); No
additional
bio-markers; N = 20

1.21

Frontal alpha asymmetry
predicts inhibitory
processing in youth with
attention
deficit/hyperactivity
disorder [50]

Ellis, A.J.; Kinzel, C.; Salgari,
G.C.; Loo, S.K. inhibition ERP

Global QATQS
Rating: moderate
(score = 1.80); No
additional
bio-markers; N = 50

0.58

Different cortical source
activation patterns in
children with attention
deficit hyperactivity disorder
during a time reproduction
task [51]

Khoshnoud, S.; Shamsi, M.;
Nazari, M.A.; Makeig, S.

working
memory,
inhibition

CNV, ERP-P3,
ERP-P5

Global QATQS
Rating: strong
(score = 2.00); No
additional
bio-markers; N = 34

1.21
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Table 2. Cont.

Articles Authors Executive
Functions EEG-Features Quality Assessment FWCI

On the efficiency of
individualized theta/beta
ratio neurofeedback
combined with forehead
EMG training in ADHD
children [52]

Bazanova, O.M.; Auer, T.;
Sapina, E.A. inhibition PSD-beta,

PSD-theta

Global QATQS
Rating: strong
(score = 2.00);
Additional
bio-markers; N = 117

1.64

Complexity analysis of brain
activity in attention-
deficit/hyperactivity
disorder: a multiscale
entropy analysis [53]

Chenxi, L.; Chen, Y.; Li, Y.;
Wang, J.; Liu, T. inhibition

PSD-beta,
PSD-theta,
PSD-alpha,
PSD-beta,
PSD-delta,
MSE

Global QATQS
Rating: strong
(score = 2.40); No
additional
bio-markers; N = 26

0.78

A randomized controlled
trial into the effects of
neurofeedback,
methylphenidate,
and physical activity on EEG
power spectra in children
with ADHD [54]

Janssen, T.W.; Bink, M.;
Geladé, K.; van Mourik, R.;
Maras, A.; Oosterlaan, J.

inhibition PSD-TBR

Global QATQS
Rating: moderate
(score = 1.67); No
additional
bio-markers; N = 112

2.75

Effect of EEG biofeedback on
cognitive flexibility in
children with attention
deficit hyperactivity disorder
with and without
epilepsy [55]

Bakhtadze, S.; Beridze, M.;
Geladze, N.;
Khachapuridze, N.;
Bornstein, N.

flexibility
PSD-SMR,
PSD-beta,
PSD-gamma

Global QATQS
Rating: strong
(score = 2.17); No
additional
bio-markers; N = 69

0.76

Electroencephalogram
complexity analysis in
children with attention-
deficit/hyperactivity
disorder during a visual
cognitive task [56]

Zarafshan, H.; Khaleghi, A.;
Mohammadi, M.R.; Moeini,
M.; Malmir, N.

working
memory LZC

Global QATQS
Rating: strong
(score = 2.20); No
additional
bio-markers; N = 64

0.58

Electroencephalogram valid
rate in simple reaction time
task as an easy index of
children’s attention
functions [57]

Liao, Y.C.; Guo, N.W.; Lei,
S.H.; Fang, J.H.; Chen, J.J.;
Su, B.Y.; Chen, S.J.; Tsai, H.F.

inhibition EEGVR

Global QATQS
Rating: strong
(score = 2.20); No
additional
bio-markers; N = 50

0.17

Development and evaluation
of an interactive
electroencephalogram-
based neurofeedback system
for training attention and
attention defects in
children [58]

Israsena, P.; Hemrungrojn,
S.; Sukwattanasinit, N.;
Maes, M.

reasoning PSD-beta/a,
lpha ratio

Global QATQS
Rating: strong
(score = 2.60); No
additional
bio-markers; N = 28

0.11

Use of EEG beta-1 power
and theta/beta ratio over
Broca’s area to confirm
diagnosis of attention
deficit/hyperactivity
disorder in children [59]

Sangal, R.B.; Sangal, J.M. inhibition
PSD-beta,
PSD-theta,
PSD-TBR

Global QATQS
Rating: strong
(score = 1.83); No
additional
bio-markers; N = 86

0.68

Neurofeedback,
pharmacological treatment
and behavioral therapy in
hyperactivity: multilevel
analysis of treatment
effects on
electroencephalography [60]

Moreno-García, I.;
Delgado-Pardo, G.; De Rey,
C.C.V.; Meneres-Sancho, S.;
Servera-Barceló, M.

inhibition.
working
memory

PSD-beta,
PSD-theta

Global QATQS
Rating: strong
(score = 2.00); No
additional
bio-markers; N = 57

1.06
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Articles Authors Executive
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Neurofeedback training
intervention for enhancing
working memory function in
attention deficit and
hyperactivity disorder
(ADHD) Chinese
students [61]

Wang, Z. working
memory PSD-alpha

Global QATQS
Rating: strong
(score = 2.33); No
additional
bio-markers; N = 24

0.77

EEG differences in
ADHD-combined type
during baseline and
cognitive tasks [62]

Swartwood, J.N.;
Swartwood, M.O.; Lubar,
J.F.; Timmermann, D.L.

working
memory,
inhibition,
planning,
problem
solving

PSD-beta,
PSD-alpha,
PSD-theta,
PSD-delta

Global QATQS
Rating: strong
(score = 2.33); No
additional
bio-markers; N = 56

0.39

Children with ADHD shown
different alpha, beta and
SMR EEG bands during
habil motor tasks with high
attention demand [63]

Silva, V.F.d.; Calomeni,
M.R.; Borges, C.J.; Militão,
A.G.; Freire, I.d.A.; Simões,
K.M.; Arêas, N.T.; Silva,
P.B.d.; Cabral, P.U.L.;
Valentim-Silva, J.R.

flexibility
PSD-beta,
PSD-alpha,
PSD-SMR

Global QATQS
Rating: strong
(score = 2.67); No
additional
bio-markers; N = 14

0.00

Frequency bands in seeing
and remembering:
comparing ADHD and
typically developing
children [64]

Fabio, R.A.; Tindara, C.;
Nasrin, M.; Antonio, G.;
Gagliano, A.; Gabriella, M.

working
memory

PSD-beta,
PSD-alpha,
PSD-theta

Global QATQS
Rating: strong
(score = 2.20);
Additional
bio-markers; N = 46

3.25

Decision support algorithm
for diagnosis of
ADHD using
electroencephalograms [65]

Abibullaev, B.; An, J. working
memory

PSD-alpha,
PSD-theta,
PSD-theta,
PSD-
theta/alpha
ratio,
PSD-TBR,
PSD-relative
delta,
PSD-relative
beta

Global QATQS
Rating: strong
(score = 2.40); No
additional
bio-markers; N = 10

0.89

Dynamic changes in
quantitative
electroencephalogram
during continuous
performance test in children
with attention-
deficit/hyperactivity
disorder [66]

Nazari, M.A.; Wallois, F.;
Aarabi, A.; Berquin, P.

working
memory

PSD-relative
beta,
PSD-relative
alpha,
PSD-relative
theta,
PSD-relative
delta,
PSD-relative
TBR

Global QATQS
Rating: strong
(score = 2.17); No
additional
bio-markers; N = 32

1.26

Designing a brain-computer
interface device for
neurofeedback using virtual
environments [67]

Yan, N.; Wang, J.; Liu, M.;
Zong, L.; Jiao, Y.; Yue, J.; Lv,
Y.; Yang, Q.; Lan, H.; Liu, Z.

working
memory

PSD-relative
TBR,
PSD-relative
SMR

Global QATQS
Rating: strong
(score = 3.00); No
additional
bio-markers; N = 12

0.27

Changes in cognitive evoked
potentials during non
pharmacological treatment
in children with attention
deficit/hyperactivity
disorder [68]

Bakhtadze, S.; Dzhanelidze,
M.; Khachapuridze, N. inhibition

PSD-relative
TBR,
PSD-relative
SMR,
PSD-alpha

Global QATQS
Rating: strong
(score = 2.33); No
additional
bio-markers; N = 93

0.51
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EEG spectral analysis of
attention in ADHD:
implications for
neurofeedback training? [69]

Heinrich, H.; Busch, K.;
Studer, P.; Erbe, K.; Moll,
G.H.; Kratz, O.

inhibition
PSD-alpha,
PSD-beta,
PSD-theta

Global QATQS
Rating: strong
(score = 2.17); No
additional
bio-markers; N = 43

1.79

The effects of individual
upper alpha neurofeedback
in ADHD: an open-label
pilot study [70]

Escolano, C.; Navarro-Gil,
M.; Garcia-Campayo, J.;
Congedo, M.; Minguez, J.

inhibition PSD-alpha

Global QATQS
Rating: strong
(score = 2.50); No
additional
bio-markers; N = 17

1.20

A proposed multisite
double-blind randomized
clinical trial of
neurofeedback for ADHD:
need, rationale,
and strategy [71]

Kerson, C.; Group, C.N.
inhibition,
working
memory

PSD-TBR

Global QATQS
Rating: strong
(score = 2.33); No
additional
bio-markers; N = 180

2.41

Functional disconnection of
frontal cortex and visual
cortex in attention-
deficit/hyperactivity
disorder [72]

Mazaheri, A.;
Coffey-Corina, S.; Mangun,
G.R.; Bekker, E.M.; Berry,
A.S.; Corbett, B.A.

inhibition PSD-alpha,
PSD- theta

Global QATQS
Rating: strong
(score = 2.50); No
additional
bio-markers; N = 25

2.29

Quantative EEG during
baseline and various
cognitive tasks in children
with attention
deficit/hyperactivity
disorder [73]

Bakhtadze, S.; Janelidze, M.
inhibition,
working
memory

PSD-alpha,
PSD-delta

Global QATQS
Rating: strong
(score = 2.33); No
additional
bio-markers; N = 32

0.26

Frontal theta/beta ratio
changes during TOVA in
Egyptian ADHD
children [74].

Halawa, I.F.; El Sayed, B.B.;
Amin, O.R.; Meguid, N.A.;
Kader, A.A.A.

inhibition PSD-TBR

Global QATQS
Rating: strong
(score = 2.20); No
additional
bio-markers; N = 104

0.21

Desynchronization of
theta-phase
gamma-amplitude coupling
during a mental arithmetic
task in children with
attention
deficit/hyperactivity
disorder [75]

Kim, J.W.; Kim, B.N.; Lee, J.;
Na, C.; Kee, B.S.; Min, K.J.;
Han, D.H.; Kim, J.I.; Lee,
Y.S.

working
memory

PSD-alpha-
PSD-delta,
PSD- theta,
PSD- synchro-
nization index
(SI))-theta-
gamma

Global QATQS
Rating: strong
(score = 1.80); No
additional
bio-markers; N = 97

0.66

Near-infrared spectroscopy
(NIRS) neurofeedback as a
treatment for children with
attention deficit
hyperactivity disorder
(ADHD)—a pilot study [76]

Marx, A.M.; Ehlis, A.C.;
Furdea, A.; Holtmann, M.;
Banaschewski, T.; Brandeis,
D.; Rothenberger, A.;
Gevensleben, H.; Freitag,
C.M.; Fuchsenberger,
Y.; et al.

inhibition,
flexibility SCP

Global QATQS
Rating: strong
(score = 2.17);
Additional
bio-markers; N = 27

2.73

Children with ADHD show
impairments in multiple
stages of information
processing in a Stroop task:
an ERP study [77]

Kóbor, A.; Takács, Á.; Bryce,
D.; Szucs, D.; Honbolygó, F.;
Nagy, P.; Csépe, V.

inhibition

ERP-N1,
ERP-P1,
ERP-N450,
LRP, SCP

Global QATQS
Rating: strong
(score = 2.00);
Additional
bio-markers; N = 24

0.61



Sensors 2022, 22, 4934 13 of 37

Table 2. Cont.

Articles Authors Executive
Functions EEG-Features Quality Assessment FWCI

Increased reaction time
variability in
attention-deficit
hyperactivity disorder as a
response-related
phenomenon: evidence from
single-trial event-related
potentials [78]

Saville, C.W.; Feige, B.;
Kluckert, C.; Bender, S.;
Biscaldi, M.; Berger, A.;
Fleischhaker, C.;
Henighausen, K.; Klein, C.

working
memory LRP, ERP-P3

Global QATQS
Rating: strong
(score = 2.00); No
additional
bio-markers; N = 45

2.70

Small-world brain functional
networks in children with
attention-
deficit/hyperactivity
disorder revealed by EEG
synchrony [79]

Liu, T.; Chen, Y.; Lin, P.;
Wang, J. inhibition

cluster
coefficient C,
and character-
istic path
length
L-alpha, beta,
theta, delta

Global QATQS
Rating: strong
(score = 2.40); No
additional
bio-markers; N = 26

1.56

Electroencephalography
correlates of spatial working
memory deficits in attention-
deficit/hyperactivity
disorder: vigilance,
encoding,
and maintenance [80]

Lenartowicz, A.; Delorme,
A.; Walshaw, P.D.; Cho, A.L.;
Bilder, R.M.; McGough, J.J.;
McCracken, J.T.; Makeig, S.;
Loo, S.K.

working
memory

ERP-P2,
PSD-TBR

Global QATQS
Rating: strong
(score = 2.00); No
additional
bio-markers; N = 99

2.66

First clinical trial of
tomographic neurofeedback
in attention-
deficit/hyperactivity
disorder: evaluation of
voluntary cortical
control [81]

Liechti, M.D.; Maurizio, S.;
Heinrich, H.; Jäncke, L.;
Meier, L.; Steinhausen,
H.C.;Walitza, S.; Drechsler,
R.; Brandeis, D.

inhibition SCP

Global QATQS
Rating: strong
(score = 2.00); No
additional
bio-markers; N = 13

2.12

Visual sensory processing
deficit in the occipital region
in children with attention-
deficit/hyperactivity
disorder as revealed by
event-related potentials
during cued continuous
performance test [82]

Nazari, M.; Berquin, P.;
Missonnier, P.; Aarabi, A.;
Debatisse, D.; De Broca, A.;
Wallois, F.

inhibition ERP-N2,
ERP-P1

Global QATQS
Rating: strong
(score = 2.50); No
additional
bio-markers; N = 30

0.72

Do children with ADHD
and/or PDD-NOS differ in
reactivity of alpha/theta
ERD/ERS to manipulations
of cognitive load and
stimulus relevance? [83]

Gomarus, H.K.; Wijers, A.A.;
Minderaa, R.B.; Althaus, M.

working
memory,
inhibition

ERS, ERD

Global QATQS
Rating: strong
(score = 2.17); No
additional
bio-markers; N = 60

0.09

Slow cortical potential
neurofeedback in attention
deficit hyperactivity
disorder: is there
neurophysiological evidence
for specific effects? [84]

Doehnert, M.; Brandeis, D.;
Straub, M.; Steinhausen,
H.C.; Drechsler, R.

inhibition CNV

Global QATQS
Rating: strong
(score = 2.50); No
additional
bio-markers; N = 26

2.13

Longitudinal change of ERP
during cued continuous
performance test in child
with attention-
deficit/hyperactivity
disorder [85]

Okazaki, S.; Ozaki, H.;
Maekawa, H.; Futakami, S. inhibition

ERP-P3,
ERP-N2,
ERP-P2

Global QATQS
Rating: strong
(score = 2.50); No
additional
bio-markers; N = 1

0.00
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Exogenous orienting of
visual-spatial attention in
ADHD children [86]

Ortega, R.; López, V.;
Carrasco, X.; Anllo-Vento,
L.; Aboitiz, F.

inhibition

ERP-N1,
ERP-P3,
ERP-P2,
ERP-CNV

Global QATQS
Rating: strong
(score = 2.17); No
additional
bio-markers; N = 60

0.92

EEG classification of ADHD
and normal children using
non-linear features and
neural network [87]

Mohammadi, M.R.;
Khaleghi, A.; Nasrabadi,
A.M.; Rafieivand, S.; Begol,
M.; Zarafshan, H.

working
memory ApEn, LE, FD

Global QATQS
Rating: strong
(score = 2.17); No
additional
bio-markers; N = 60

3.06

Diagnose ADHD disorder in
children using convolutional
neural network based on
continuous mental task
EEG [88]

Moghaddari, M.; Lighvan,
M.Z.; Danishvar, S.

working
memory

Amplitude of
alpha, theta,
beta+low
gamma
frequency
bands

Global QATQS
Rating: strong
(score = 2.50); No
additional
bio-markers; N = 61

0.64

Combining functional
near-infrared spectroscopy
and EEG measurements for
the diagnosis of
attention-deficit
hyperactivity disorder [89]

Güven, A.; Altınkaynak, M.;
Dolu, N.; İzzetoğlu, M.;
Pektaş, F.; Özmen, S.;
Demirci, E.; Batbat, T.

inhibition ERP-P3, LZC,
FD

Global QATQS
Rating: weak
(score = 1.60);
Additional
bio-markers; N = 44

1.20

Methodology proposal of
ADHD classification of
children based on cross
recurrence plots [90]

Aceves-Fernandez, M. working
memory

Recurrence
rate,
Determinism,
Entropy,
Laminarity,
Trapping
Time, Trend

Global QATQS
Rating: strong
(score = 2.20); No
additional
bio-markers; N = 121

0.00

Improved neuronal
regulation in ADHD: an
application of 15 sessions of
photic-driven EEG
neurotherapy [91]

Patrick, G.J. inhibition PSD-theta,
PSD-SMR

Global QATQS
Rating: strong
(score = 2.67); No
additional
bio-markers; N = 25

0.57

Quantitative EEG differences
in a nonclinical sample of
children with ADHD and
undifferentiated ADD [92]

M. A. Nazari, F. Wallois, A.
Aarabi, P. Berquin, inhibition

ERP-N1,
ERP-P1,
ERP-P3

Global QATQS
Rating: strong
(score = 2.00); No
additional
bio-markers; N = 32

4.16

Neuroelectric mapping
reveals precursor of stop
failures in children with
attention deficits [93]

Brandeis, D.; van Leeuwen,
T.H.; Rubia, K.; Vitacco, D.;
Steger, J.; Pascual-Marqui,
R.D.; Steinhausen, H.C.

inhibition

ERP-N1,
ERP-P1,
ERP-P2,
ERP-P460,
ERP-P550,
ERP-P640

Global QATQS
Rating: strong
(score = 2.00); No
additional
bio-markers; N = 15

3.76

Electroencephalographic and
psychometric differences
between boys with and
without attention-
deficit/hyperactivity
disorder (ADHD): a pilot
study [94]

Cox, D.J.; Kovatchev, B.P.;
Morris, J.B.; Phillips, C.;
Hill, R.J.; Merkel, L.

inhibition
PSD-theta,
PSD-alpha,
PSD-theta

Global QATQS
Rating: strong
(score = 2.33); No
additional
bio-markers; N = 8

1.06

Audio-visual entrainment
program as a treatment for
behavior disorders in a
school setting [95]

Joyce, M.; Siever, D. inhibition

PSD-
alpha,PSD-
beta,
PSD-SMR

Global QATQS
Rating: strong
(score = 2.67); No
additional
bio-markers; N = 34

0.21
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EEG biofeedback training
and attention-
deficit/hyperactivity
disorder in an elementary
school setting [96]

Carmody, D.P.; Radvanski,
D.C.; Wadhwani, S.; Sabo,
M.J.; Vergara, L.

inhibition
PSD-beta,
PSD-delta,
PSD-SMR

Global QATQS
Rating: strong
(score = 2.67); No
additional
bio-markers; N = 16

0.00

A psychophysiological
marker of attention
deficit/hyperactivity
disorder (ADHD)—defining
the EEG consistency
index [97]

Kovatchev, B.; Cox, D.; Hill,
R.; Reeve, R.; Robeva, R.;
Loboschefski, T.

inhibition CI

Global QATQS
Rating: strong
(score = 2.20); No
additional
bio-markers; N = 35

0.61

A potential
electroencephalography and
cognitive biosignature for
the child behavior
checklist–dysregulation
profile [98]

McGough, J.J.; McCracken,
J.T.; Cho, A.L.; Castelo, E.;
Sturm, A.; Cowen, J.;
Piacentini, J.; Loo, S.K.

inhibition

PSD-alpha,
PSD-beta,
PSD-theta,
PSD-delta

Global QATQS
Rating: strong
(score = 2.00); No
additional
bio-markers; N = 2

0.36

The effects of neurofeedback
training on concentration in
children with attention
deficit/hyperactivity
disorder [99]

Kim, S.K.; Yoo, E.Y.; Lee, J.S.;
Jung, M.Y.; Park, S.H.; Park,
J.H.

inhibition
EEG
concentration
index

Global QATQS
Rating: strong
(score = 2.83); No
additional
bio-markers; N = 3

0.31

EEG dynamics of a go/nogo
task in children with
ADHD [100]

Baijot, S.; Cevallos, C.;
Zarka, D.; Leroy, A.; Slama,
H.; Colin, C.; Deconinck, N.;
Dan, B.; Cheron, G.

inhibition ERP, ITC

Global QATQS
Rating: strong
(score = 2.00); No
additional
bio-markers; N = 14

0.68

Electroencephalographic
activity before and after
cognitive effort in children
with attention
deficit/hyperactivity
disorder [101]

Buyck, I.; Wiersema, J.R. working
memory

PSD-alpha,
PSD-beta,
PSD-theta,
PSD-TBR

Global QATQS
Rating: strong
(score = 2.33); No
additional
bio-markers; N = 43

0.48

A randomized controlled
trial of a brain-computer
interface based attention
training program for
ADHD [102]

Lim, C.G.; Poh, X.W.W.;
Fung, S.S.D.; Guan, C.;
Bautista, D.; Cheung, Y.B.;
Zhang, H.; Yeo, S.N.;
Krishnan, R.; Lee,
T.S.Buchmann, J.; Gierow,
W.; Reis, O.; Haessler, F.

inhibition
PSD-alpha,
PSD-beta,
PSD-theta,

Global QATQS
Rating: strong
(score = 2.17); No
additional
bio-markers; N = 172

1.27

Intelligence moderates
impulsivity and attention in
ADHD children: an ERP
study using a go/nogo
paradigm [103]

Buchmann, J.; Gierow, W.;
Reis, O.; Haessler, F. inhibition ERP-P3

Global QATQS
Rating: strong
(score = 2.40); No
additional
bio-markers; N = 15

0.90

Motor cortical inhibition in
ADHD: modulation of the
transcranial magnetic
stimulation-evoked N100 in
a response control task [104]

D’Agati, E.; Hoegl, T.;
Dippel, G.; Curatolo, P.;
Bender, S.; Kratz, O.; Moll,
G.H.; Heinrich, H.

inhibition ERP-N1

Global QATQS
Rating: strong
(score = 2.17); No
additional
bio-markers; N = 37

0.85

ERP correlates of selective
attention and working
memory 654 capacities in
children with ADHD and/or
PDD-NOS [105]

Gomarus, H.K.; Wijers, A.A.;
Minderaa, R.B.; Althaus, M.

inhibition,
working
memory

ERP

Global QATQS
Rating: moderate
(score = 1.60); No
additional
bio-markers; N = 60

0.59
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Error and feedback
processing in children with
ADHD and children with
autistic spectrum disorder:
an EEG event-related
potential study [106]

Groen, Y.; Wijers, A.A.;
Mulder, L.J.; Waggeveld, B.;
Minderaa, R.B.; Althaus, M.

working
memory

ERP-P3,
ERP-P2,
ERP-Pe

Global QATQS
Rating: moderate
(score = 2.00); No
additional
bio-markers; N = 72

2.33

Changes in EEG
spectrograms, event-related
potentials, and event-related
desynchronization induced
by relative beta training in
ADHD children [107]

Kropotov, J.D.;
Grin-Yatsenko, V.A.;
Ponomarev, V.A.; Chutko,
L.S.; Yakovenko, E.A.;
Nikishena, I.S.

inhibition PSD-relative
beta

Global QATQS
Rating: strong
(score = 2.50); No
additional
bio-markers; N = 86

0.43

Functional connectivity of
frontal cortex in healthy and
ADHD children reflected in
EEG coherence [108]

Murias, M.; Swanson, J.M.;
Srinivasan, R.

working
memory

PSD,
Coherence
Power

Global QATQS
Rating: strong
(score = 2.33); No
additional
bio-markers; N = 63

1.46

Case study: improvements
in IQ score and maintenance
of gains following EEG
biofeedback with mildly
developmentally delayed
twins [109]

Fleischman, M.J.; Othmer, S. inhibition PSD-SMR

Global QATQS
Rating: strong
(score = 2.50); No
additional
bio-markers; N = 2

0.00

A controlled study of the
effectiveness of EEG
biofeedback training on
children with attention
deficit hyperactivity
disorder [110]

Zhonggui, X.; Shuhua, S.;
Haiqing, X.

working
memory,
inhibition

PSD-SMR,
PSD-theta

Global QATQS
Rating: strong
(score = 2.50); No
additional
bio-markers; N = 60

0.10

ERPs correlates of EEG
relative beta training in
ADHD children [111]

Kropotov, J.D.;
Grin-Yatsenko, V.A.;
Ponomarev, V.A.; Chutko,
L.S.; Yakoveuhua,E.A.;
Nikishena, I.S.

inhibition
ERP-N1,
ERP-P2, late
ERP

Global QATQS
Rating: strong
(score = 2.00); No
additional
bio-markers; N = 86

1.14

Event-related potentials in
attention-
deficit/hyperactivity
disorder of the
predominantly inattentive
type: an investigation of
EEG-defined subtypes [112]

Brown, C.R.; Clarke, A.R.;
Barry, R.J.; McCarthy, R.;
Selikowitz, M.; Magee, C.

inhibition

ERP-N2,
ERP-P3,
ERP-N1,
ERP-P1,
ERP-P2

Global QATQS
Rating: moderate
(score = 1.80);
Additional
bio-markers; N = 81

0.17

Lateralized modulation of
posterior alpha oscillations
in children [113]

Vollebregt, M.A.; Zumer,
J.M.; Ter Huurne, N.;
Castricum, J.; Buitelaar, J.K.;
Jensen, O.

inhibition MI-alpha

Global QATQS
Rating: moderate
(score = 1.80);
Additional
bio-markers; N = 21

0.49

Posterior alpha oscillations
reflect attentional problems
in boys with attention deficit
hyperactivity disorder [114]

Vollebregt, M.A.; Zumer,
J.M.; Ter Huurne, N.;
Buitelaar, J.K.; Jensen, O.

inhibition MI-alpha

Global QATQS
Rating: moderate
(score = 1.40);
Additional
bio-markers; N = 26

1.04

Intact stimulus–response
conflict processing in
ADHD—multilevel evidence
and theoretical
implications [115]

Bluschke, A.; Mückschel,
M.; Roessner, V.; Beste, C. inhibition

ERP-N1,
ERP-P3,
ERP-N2,
ERP-P1

Global QATQS
Rating: strong
(score = 2.00); No
additional
bio-markers; N = 69

0.36
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Topographical analyses of
attention disorders of
childhood [116]

DeFrance, J.; Smith, S.;
Schweitzer, F.; Ginsberg, L.;
Sands, S.

inhibition

PSD-beta,
PSD-alpha,
PSD-theta,
ERP-P3,
ERP-P2,
ERP-P5

Global QATQS
Rating: strong
(score = 1.80);
Additional
bio-markers; N = 71

0.53

Varying required effort
during interference control
in children with AD/HD:
task performance and
ERPs [117]

Johnstone, S.J.; Watt, A.J.;
Dimoska, A. inhibition

ERP-N2,
ERP-P3,
ERP-P4

Global QATQS
Rating: weak
(score = 1.20);
Additional
bio-markers; N = 52

0.69

Response inhibition and
interference control in
children with AD/HD: a
visual ERP
investigation [118]

Johnstone, S.J.; Barry, R.J.;
Markovska, V.; Dimoska, A.;
Clarke, A.R.

inhibition

ERP-N1,
ERP-N2,
ERP-P3,
ERP-P2

Global QATQS
Rating: strong
(score = 1.83);
Additional
bio-markers; N = 40

1.58

A comparative study on the
neurophysiological
mechanisms underlying
effects of methylphenidate
and neurofeedback on
inhibitory control in
attention deficit
hyperactivity disorder [119]

Bluschke, A.; Friedrich, J.;
Schreiter, M.L.; Roessner, V.;
Beste, C.

inhibition

ERP-N1,
ERP-N2,
ERP-P3,
ERP-P2

Global QATQS
Rating: strong
(score = 2.00); No
additional
bio-markers; N = 20

1.30

A pilot study of combined
working memory and
inhibition training for
children with AD/HD [120]

Johnstone, S.J.; Roodenrys,
S.; Phillips, E.;Watt, A.J.;
Mantz, S.

inhibition,
working
memory

ERP-N1,
ERP-N2,
ERP-P3

Global QATQS
Rating: weak
(score = 1.17);
Additional
bio-markers; N = 40

1.91

Abnormal alpha modulation
in response to human eye
gaze predicts inattention
severity in children with
ADHD [121]

Guo, J.; Luo, X.; Wang, E.;
Li, B.; Chang, Q.; Sun, L.;
Song, Y.

inhibition ERP

Global QATQS
Rating: moderate
(score = 1.60); No
additional
bio-markers; N = 108

0.13

Aiding diagnosis of
childhood attention-
deficit/hyperactivity
disorder of the inattentive
presentation: discriminant
function analysis of
multi-domain measures
including EEG [122]

Johnstone, S.J.; Parrish, L.;
Jiang, H.; Zhang, D.W.;
Williams, V.; Li, S.

inhibition

PSD-alpha,
PSD-beta,
PSD-theta,
PSD-delta,
PSD-TBR

Global QATQS
Rating: strong
(score = 2.00); No
additional
bio-markers; N = 214

0.00

Behavioural and ERP indices
of response inhibition during
a stop-signal task in children
with two subtypes of
attention-deficit
hyperactivity Disorder [123]

Johnstone, S.J.; Barry, R.J.;
Clarke, A.R. inhibition

ERP-N1,
ERP-N2,
ERP-P3,
ERP-P2

Global QATQS
Rating: moderate
(score = 1.80); No
additional
bio-markers; N = 38

0.79

Virtual reality therapy in
prolonging attention spans
for ADHD [124]

Sushmitha, S.; Devi, B.T.;
Mahesh, V.; Geethanjali, B.;
Kumar, K.A.; Pavithran, P.

inhibition,
planning

PSD-alpha,
PSD-beta,
PSD-theta,
PSD-delta,
PSD-TBR

Global QATQS
Rating: strong
(score = 2.33);
Additional
bio-markers; N = 20

0.00
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Table 2. Cont.

Articles Authors Executive
Functions EEG-Features Quality Assessment FWCI

Quantifying brain activity
state: EEG analysis of
background music in a
serious game on attention of
children [125]

Soysal, Ö.M.; Kiran, F.;
Chen, J.

inhibition,
planning

PSD-alpha,
PSD-beta

Global QATQS
Rating: strong
(score = 2.50); No
additional
bio-markers; N = 6

0.79

Source-based multifractal
detrended fluctuation
analysis for discrimination
of ADHD children in a time
reproduction paradigm [126]

Khoshnoud, S.; Nazari,
M.A.; Shamsi, M. inhibition ERP-P3- mul-

tifractality

Global QATQS
Rating: moderate
(score = 2.00);
Additional
bio-markers; N = 34

0.00

Virtual classroom: an ADHD
assessment and diagnosis
system based on virtual
reality [127]

Tan, Y.; Zhu, D.; Gao, H.;
Lin, T.W.; Wu, H.K.; Yeh,
S.C.; Hsu, T.Y.

working
memory

PSD-TBR,
PSD-alpha,
PSD-beta,
PSD-theta,
PSD-deta

Global QATQS
Rating: weak
(score = 1.20);
Additional
bio-markers; N = 100

1.45

Acquisition and analysis of
cognitive evoked potentials
using an emotiv headset for
ADHD evaluation in
children [128]

Mercado-Aguirre, I.M.;
Gutiérrez-Ruiz, K.;
Contreras-Ortiz, S.H.

working
memory ERP-P3

Global QATQS
Rating: strong
(score = 2.83); No
additional
bio-markers; N = 19

0.50

Personalized features for
attention detection in
children with attention
deficit hyperactivity
disorder [129]

Fahimi, F.; Guan, C.;
Goh,W.B.; Ang, K.K.; Lim,
C.G.; Lee, T.S.

inhibition
PSD,
PSD-TAR,
PSD-TBAR

Global QATQS
Rating: strong
(score = 2.33); No
additional
bio-markers; N = 120

1.19

Identification of ADHD
cognitive pattern
disturbances using EEG and
wavelets Analysis [130]

Gabriel, R.; Spindola, M.M.;
Mesquita, A.; Neto, A.Z.

inhibition,
working
memory

Morlet
Wavelet
Transform -
delta, theta,
alpha,
and beta-
power
spectrum and
amplitude

Global QATQS
Rating: strong
(score = 2.20); No
additional
bio-markers; N = 19

0.00

Neurofeedback based
attention training for
children with ADHD [131]

Chen, C.L.; Tang, Y.W.;
Zhang, N.Q.; Shin, J.

inhibition,
working
memory

PSD-alpha,
PSD-beta,
PSD-theta,
PSD-deta

Global QATQS
Rating: strong
(score = 2.50);
Additional
bio-markers; N = 10

n.a.

Influence of a BCI
neurofeedback videogame in
children with ADHD.
Quantifying the brain
activity through an EEG
signal processing dedicated
toolbox [132]

Blandón, D.Z.; Muñoz, J.E.;
Lopez, D.S.; Gallo, O.H. inhibition

PSD-alpha,
PSD-beta,
PSD-delta,
PSD-gamma,
PSD-TBR

Global QATQS
Rating: strong
(score = 2.83); No
additional
bio-markers; N = 9

2.64

Neurofeedback treatment
experimental study for adhd
by using the brain–computer
interface neurofeedback
system [133]

Liu, T.; Wang, J.; Chen, Y.;
Wang, R.; Song, M. inhibition

PSD-beta,
PSD-theta,
PSD-TBR,
PSD- SMR

Global QATQS
Rating: moderate
(score = 1.83);
Additional
bio-markers; N = 22

2.63

Analysis of attention deficit
hyperactivity disorder in
EEG using wavelet
transform and self
organizing maps [134]

Lee, S.H.; Abibullaev, B.;
Kang, W.S.; Shin, Y.; An, J.

working
memory

Wavelet
Transform-
alpha, theta,
beta power
spectrum

Global QATQS
Rating: strong
(score = 2.60); No
additional
bio-markers; N = 39

1.09
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Table 2. Cont.

Articles Authors Executive
Functions EEG-Features Quality Assessment FWCI

Classification of ADHD and
non-ADHD using AR
models [135]

Marcano, J.L.L.; Bell, M.A.;
Beex, A.L. inhibition PSD-TBR

Global QATQS
Rating: weak
(score = 3.00); No
additional
bio-markers; N = 4

1.19

Deep learning based on
event-related EEG
differentiates children with
ADHD from healthy
controls [136]

Vahid, A.; Bluschke, A.;
Roessner, V.; Stober, S.;
Beste, C.

inhibition ERP-P3

Global QATQS
Rating: strong
(score = 1.20);
Additional
bio-markers; N = 28

3.44

3.1. Executive Functions and EEG Features

As far as the investigation level of EFs focused by the articles is concerned, the sub-EFs
level is predominant (68 articles), followed by that of basic EFs (31 articles), and, lastly,
that of high-order EFs (5 articles). In particular, as the sub-function level is concerned,
interference inhibition is absolutely the most investigated (47 articles), with about twice as
many articles on response inhibition (26 articles) and visual-spatial memory (17 articles).
There are very few studies on verbal working memory (3 articles). Considering basic EFs,
working memory and inhibition (16 and 13 articles, respectively) are investigated more than
flexibility (3 articles). As far as high-level FEs are concerned, only planning is considered
more than once (four articles) (Figure 4).

Figure 4. Number of articles per executive function considering the level of details in analysis of
executive functions.

Considering that sub-functions are an articulation of basic EFs, 64 of the articles
investigate the cluster inhibition (inhibition and its sub-functions) and the 30% the cluster
working memory (working memory and its sub-functions). The relationship between EF
clusters and EEG features was analyzed starting from their domains of definition. In
particular, the feature was defined effective when it assumed different levels (with statistical
relevance) in the group with ADHD (target group) compared to the control group (or to
the pre-treatment condition if the comparison is made within the same group). Otherwise,
the feature is defined as not effective.

The features related to the cluster inhibition are extracted at 52% in the time domain,
at 45% in the frequency domain, and at 2% in the time-frequency domain. In the time
domain, 13 articles consider the amplitude of P3 (See the Appendix A for details) and
9 amplitude of N1 (See the Appendix A for details) (Figure 5). In the frequency domain,
15%, 17%, and 18% analyzed the power spectrum density in alpha, beta, and theta bands,
respectively (Figure 6). The WM-cluster features are mainly proposed by referring to the
frequency domain (71%) (Figure 7), 28% of articles focus on time domain (Figure 8), and only
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1% focus on time-frequency domain. In the frequency domain, the most considered features
are the power spectrum density in alpha (16%), beta (14%), and theta (7%) bands. In the
time domain, 20% of the articles considered the P3 amplitude.

As far as sub-functions are concerned, the interference inhibition features are mainly
extracted from the frequency domain (65%). In particular, almost half of the articles evaluate
the power spectrum density in alpha, beta, and theta bands (Figure 9). For response
inhibition, the time domain is the most investigated (73%), with particular attention paid to
the N1 and N2 (See the Appendix A for details) amplitudes (Figure 10). Most of the articles
concerning the visuospatial WM features are centred on frequency domain (66%), but no
clear trends emerged (Figure 11). As aforementioned, only three articles focus on verbal
WM; therefore, any statistic on the features would be inconsistent.

Figure 5. Articles focusing on the relationship between EFs from cluster inhibition and EEG fea-
tures from time domain. P300 amplitude is the feature most studied: 12 articles verified (effective)
the relationship, and 3 articles did not (not effective). LZC: Lempel–Ziv complexity; EEGVR: elec-
troencephalogram valid rate. MSE: multi-scale entropy. SCP: slow cortical potentials; and ERP:
event-related potential.

Figure 6. Articles focusing on the relationship between EFs from cluster inhibition and EEG features
from frequency domain. Theta-band power is the feature most studied: 15 articles verified (effective)
the relationship, and 6 articles did not (not effective). MI: modulation index. SMR: senso-motor
rhythm.
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Figure 7. Articles focusing on the relationship between EFs from cluster working memory and EEG
features from frequency domain. Theta-band power is the feature most studied: five articles verified
(effective) the relationship. TBR: theta–beta ratio; SMR: senso-motor rhythm.

Figure 8. Articles focusing on the relationship between EFs from cluster working memory and EEG
features from time domain. P300 amplitude is the feature most studied: four articles verified (effective)
the relationship, and 1 article did not (was not effective). fd: fractal dimension; ApEn: Approximate
Entropy; LRP: lateralised readiness potential; LE: Lyapunov Exponent ; ERN: error-related negativity;
and Pe: error positivity.
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Figure 9. Articles focusing on the relationship between interference inhibition and EEG features from
frequency domain. Theta-band power is the feature most studied: 10 articles verified (effective) the
relationship, and 2 articles did not (not effective). TBR: theta-beta ratio; MI: modulation index; SMR:
senso-motor rhythm; and CI: EEG consistency index.

Figure 10. Articles focusing on the relationship between response inhibition and EEG features from
time domain. P300 and N100 amplitudes are the features most studied. As far as P300 is concerned,
three articles verified (effective) the relationship, and three articles did not (not effective), while all
six articles considered verified the effectiveness of N100. ERP: event-related potential; SCP: slow
cortical potentials.
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Figure 11. Articles focusing on the relationship between visuo-spatial working memory and EEG
features from frequency domain. Theta-band power is the feature most studied: five articles verified
(effective) the relationship, and one article did not (not effective). TBR: theta–beta ratio; SMR: senso-
motor rhythm.

3.2. Quality Assessment Output

The analysis results were carried out separately on the diagnostic and therapeutic
articles due to the different numbers of QATQS components considered for the two type
of articles, as stated in Section 2.2.3. Articles on diagnostics were grouped into 4 strong,
14 moderate, and 29 weak, following the application of the above criteria, as shown in
Figure 12. Regarding the articles on therapy, 1 strong, 4 moderate, and 49 weak articles
arose, as shown in Figure 13.

Figure 12. Global rating of articles on diagnostics.
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Figure 13. Global Rating of articles on therapy.

Moreover, each component was analyzed to evaluate some relevant trends. Regarding
articles on therapy, (i) 72% of authors included a control group in addition to the target one,
(ii) 9% performed a double-blinded study, (iii) 2% supported the subjective data acquired
through the administration of questionnaires or with the quantitative data from other
biosignal sensors besides the EEG, and (iv) 9% comprehensively described the causes of
the withdrawal and dropouts.

Regarding articles on diagnostics, (i) 92% of authors included a control group in
addition to the target one, (ii) 10% supported the subjective data acquired through the
administration of questionnaires or with quantitative data from other biosignal sensors
besides the EEG, and (iii) 23% comprehensively described the causes of the withdrawal
and dropouts. Therefore, even if the most of the studies considered a control group,
the prevalence of a weak score emerged due to the partial respect for the other components
proposed by the QATQS.

4. Discussion

ADHD has been investigated at a higher level of detail in the last decades: firstly,
from a clinical point of view, DSM-V identified ADHD sub-types (2013); secondly, from a
scientific point of view, impaired EFs in ADHD have been studied at the level of sub-
components since the early 2000s. The review results confirmed that ADHD analysis is
increasingly converging on the study of the sub-EFs. Indeed, the majority of articles (65%)
analyzed the sub-components of inhibition and working memory. Only 30% evaluated
the basic EFs, while 5% dwelled on high-order EFs (i.e., reasoning, planning, and problem
solving). In particular, the interference inhibition and visual-spatial working memory are
the mainly studied sub-functions of inhibition and working memory basic EFs, respectively.
A poorly studied sub-function is the verbal working memory.

Concerning cluster inhibition , studies are mainly centred on the EEG features extracted
from time domain (53%) with respect to the frequency domain (45%) and the time-frequency
domain (2%). In particular, the most investigated time-domain features are the ERP com-
ponents. Several authors studied the P3 and N1 amplitudes during inhibition tasks in
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ADHD subjects and controls; 13 vs. 4 and 9 vs. 2 articles found a significant statistical
difference for P3 and N1 amplitudes, respectively. As stated in Section 2.2.3, in the case
of features from the frequency domain, the focus was on the power spectral density in
the alpha, beta, and theta bands. These studies almost agreed to identify a higher alpha
and beta activity in the ADHD group than in the controls group during inhibition tasks.
Conversely, concerning the power spectral density in the theta bands, six articles among 21
did not confirm this EEG feature effective in discriminating or treating ADHD patients. As
far as inhibition sub-functions are concerned, a slight link was found between interference
inhibition and spectral density in alpha, beta, and theta bands. Among articles concern-
ing cluster inhibition, ERP components were not focused only on studies on interference
inhibition. The last consideration may be due to the fact that more articles on therapy fell
into this category than ones on diagnostics. Indeed, ERP components are rarely used in
neurofeedback due to the high latency required for their computation. In fact, by restricting
the analysis to articles on diagnostics, a prevalence in considering the amplitude of the P3
component emerged.

Working memory (WM) is another EF mainly considered in ADHD. The WM-related
features were evaluated at 28% in the time domain, 71% in the frequency domain, and 1%
in the time-frequency domain. A trend emerged in the frequency domain between work-
ing memory and power spectral density in alpha (9 articles), beta (8 articles), and theta
(11 articles) bands. Studies on working memory sub-functions focused mainly on the
visuospatial component and investigated frequency EEG features, but no significant trends
prevailed. The results showed that identifying clear relationships between EFs and EEG
features is still challenging. However, within some fragmentation, ERP components were
particularly studied. In particular, P3 amplitude emerged as the most focused EEG feature
for the diagnostics and therapy of ADHD.

So in summary, power spectral density in alpha, beta, and theta bands are the most
attentioned EEG features concerning interference inhibition. Instead, N1 and N2 amplitude
are the most used features with regard to response inhibition. Visuospatial working memory
is mainly linked to alpha and theta band power spectral density. On the other hand, studies
on cognitive flexibility and verbal working memory are few and poorly convergent.

The quality of articles was analyzed to reinforce the emerged quantitative trends.
The quality evaluation was conducted according to QATQS’ guidelines. The therapeutic
articles on diagnostics were classified separately because the blinding component was
only analyzed for the articles on therapy, as explained in Section 2.2.3. The application of
QATQS criteria to the articles on diagnostics led to the identification of 9% strong articles,
30% moderate articles, and 61% weak articles, whereas it was apparent from the analysis of
the articles on therapy that 2% of the articles had a strong score, 7% had a moderate score,
and 91% reported a weak score. Within the moderate scoring categories, articles showing
high scores on at least half of the components of the QATQS were identified as higher quality
articles, along with articles with strong scores. In total, there are 15 higher-quality articles;
20% studied the working memory and 80% analyzed inhibition and/or its sub-functions.

As reported in Figures 14 and 15, the articles focused on inhibition confirmed the
effectiveness of the ERP components for diagnostics and therapy of ADHD patients. Finally,
a further analysis based on Scopus’s Field-Weighted Citation Impact metric was conducted.
Specifically, a comparison was performed focusing on the five best performing articles
according to the Scopus metric (Table 3) and the five articles found to be of higher quality
with the application of the QATQS (Table 4). In both the cases, the comparison between the
two scores, namely, Scopus and QATQS, was realized.
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Figure 14. EEG features for inhibition’s sub-function emerged from highest quality articles.

Figure 15. EEG features for inhibition emerged from highest quality articles.

Table 3. The five top scored articles according to the field-weighted citation impact metric by Scopus
(the higher, the best). For each article, the normalized QATQS Score is also reported (the lower,
the better). The normalized QATQS Score is computed as the ratio between the global quality score of
the article and the number of quality components considered. FWCI: field-weighted citation impact.

Article FWCI Normalized QATQS Score
Range [0.00–4.17]; Median = 0.77 Range [1.17–3.00]; Median = 2.17

[39] 4.17 1.83
[92] 4.16 2.00
[93] 3.66 2.00

[136] 3.44 1.20
[64] 3.25 2.20
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Table 4. The five top scored articles according to the normalized QATQS Score. For each article, the
field-weighted citation impact metric by Scopus is also reported (the higher, the best). The normalized
QATQS score is computed as the ratio between the global quality score of the article and the number
of quality components considered (the lower, the better). FWCI: field-weighted citation impact.

Article Normalized QATQS Score FWCI
Range [1.17–3.00]; Median = 2.17 Range [0.00–4.17]; Median = 0.77

[120] 1.17 1.91
[127] 1.20 1.45
[136] 1.20 3.44
[117] 1.20 0.69
[89] 1.60 1.20

In Table 3, the articles were sorted according to the field-weighted citation impact.
The table includes the top five articles with the associated standardized QAQTS score.

The normalized QATQS score is computed as the ratio between the global quality score
of the article and the number of quality components considered. Analyzing the five articles
with the highest FWCI, only 20% of the articles report a higher quality score than the quality
score median. In Table 4, the articles were sorted according to the normalized QAQTS.
In particular, the five articles with the highest score are reported with the corresponding
FWCI obtained. From the analysis of these articles, it emerged that 80% of the articles report
a higher FWCI than the FWCI median. Finally, only one article appears in both tables,
as shown in Tables 3 and 4. However, the results obtained by means of the two metrics
appear to be compatible. Indeed, four of the five articles performed better according to one
criterion scored higher than the median value with respect to the other criterion.

Articles with higher scores according to the two metrics confirmed the results of the
quantitative analysis. As far as the article that scored 4.17 according to Scopus parameters
(highest score), visuospatial working memory is the investigated executive function. The au-
thors identified power spectral density in theta and beta bands as the most representative
features for diagnostics and therapy. The highest QATQS scored article (1.17 scored) con-
sidered both inhibition and working memory and highlighted the role of ERP components
(in particular, N1, N2, and P3 latencies). Finally, the only article, highly scored according to
both the metrics is focused on interference inhibition and the related EEG features are P1,
P2, and N1 amplitudes. These last considerations also confirmed the centrality of the ERP
components in the diagnostics and therapy of ADHD based on inhibition and the role of
power spectral density for the visuospatial working memory, which already emerged from
the quantitative study. This review encourages further investigation into the use of EEG in
the diagnosis and therapy of ADHD based on EFs assessment.

5. Conclusions

A systematic review of feature extraction strategies in electroencephalographic (EEG)
studies concerning the diagnosis and therapy of attention deficit hyperactivity disorder
(ADHD) in children is presented. The analysis was realized at the executive function level
to manage the effort of finding neurocorrelates of an heterogeneous disorders such as
ADHD. One hundred and one articles, concerning the diagnostics and therapy of ADHD
children aged 8 to 14, were collected. Each article was subjected to two types of analysis
in parallel: (i) the analysis to extract relationships between EEG features and executive
functions and (ii) the analysis to assess the rigor and scientific impact of the study (quality
analysis). Event-related potential components resulted mainly exploited for executive
functions related to the cluster inhibition, whereas band power spectral density is the most
considered EEG feature for executive functions related to the cluster working memory. The
quality analysis confirmed the quantitative results regarding the significance of the band
power spectral density and event-related potential components for the analysis of executive
functions in ADHD. This review identifies the most promising EEG features for the study
of executive functions in ADHD. Anchoring EEG features to elementary cognitive functions
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allows the heterogeneity of ADHD-related disorders to be electroencephalographically
analyzed more effectively.
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Appendix A. Most Used EEG Features in EF Analysis

Appendix A.1. Event-Related Potential

Event-related potential (ERP) waveforms are composed of a sequence of positive
and negative voltage deflections, defined as ERP components. Most ERP components
are named by a letter and a number. In particular, the letter refers to the positivity (P) or
negativity (N) of the wave’s amplitude, while the number indicates either the latency in
milliseconds or the component’s ordinal position in the waveform.

Some of the main ERP components are shown in Figure A1 and are summarized in
the following sections.

Figure A1. ERP waveform.

Appendix A.1.1. N1

The N1 or N100 component of ERP is a negative-going peak, the first substantial peak
in the waveform, and often occurs between 90 and 200 msec after a stimulus is presented.

Appendix A.1.2. N2

The N2 or N200 ERP component is the second negative peak and occurs 200 ms after
the stimulus.
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Appendix A.1.3. P2

P2 or P200 ERP component is the second positive peak and occurs around 100–250 msec
after the stimulus.

Appendix A.1.4. P3

The P3 or P300 ERP component is the third positive peak and has a quite variable
latency. Particularly, the peak of the P300 component may occur between 250 ms and
700 ms.

Appendix A.1.5. N400

It is the fourth negative peak and peaks around 400 milliseconds post-stimulus onset.

Appendix A.1.6. P600

P600 is characterized as a positive-going deflection with an onset around 500–600 mil-
liseconds after the stimulus and lasts several hundred milliseconds.

Appendix A.1.7. Error-Related Negativity

Error-related negativity (ERN) is a negative component of the ERP occurring after
a wrong answer during sensorimotor tasks. The peak of these components is around
150 msec after response onset.

Appendix A.1.8. Contingent Negative Variation

The contingent negative variation (CNV) is the negative portion of the wave between
the presentation of the warning and imperative stimuli.

Appendix A.1.9. Lateralised Readiness Potential

The lateralised readiness potential (LRP) is an event-related potential associated with
preparing of motor activity in contralateral motor areas.

Appendix A.1.10. Bereitschaftspotential

The bereitschaftspotential (BP) is an event-related potential reflecting cortical activity
associated with the initiation and preparation of voluntary motor actions. BP is a slow
negative EEG-shift starting about 1 s before the onset of a self-paced movement.

Appendix A.2. Slow Cortical Potential

Slow cortical potentials (SCPs) are negative deviations in electrical activity that last
from several hundred milliseconds to several seconds. SCPs can be induced by the subject
himself or activated by external factors.

Appendix A.3. Fractal Dimension

Fractal dimension (FD) is a measure of the complexity of a time series. Different
complexity estimators such as Higuchi, Katz, box-counting, and Petrosian are used to
calculate FD. In particular, according to Higuchi’s algorithm, FD is computed as follows.
Given a one-dimensional EEG discrete time series x = {x1, . . . xN} and the scale factor k,
a new time series yk

j is calculated as

yk
j = {x(m), x(m + k), x(m + 2k), . . . , x(m + [

N −m
k

]k)}
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for m = 1, 2, 3, . . . , k, where [.] indicates the integer part of the series. The length Lk
m is

computed for yk
j as

Lk
m =

∑ |y(m + ik)− y(m + (i− 1)k|(N − 1)

[ (N−m)
k ]k

where N is the number of samples. FD is calculated as the total average length, L(k), for k1
to kmax.

Appendix A.4. Power Spectral Density/Relative Power Spectral Density

The power spectral density (PSD) represents the power distribution of EEG series in
the frequency domain. The power spectral density (PSD) of the EEG signal can be calculated
into six EEG sub-bands: delta (0.5–4 Hz), theta (4–7 Hz), low alpha (8–10 Hz), high alpha
(10–12 Hz), beta (13–30 Hz), and gamma (30–40 Hz)). Welch’s, FFT, and Burg’s methods
are the three most generally used algorithms for PSD computation within a frequency
band in EEG. The relative PSD is the ratio of the PSD to one frequency band and the total
frequency signal.

Appendix A.5. Modulation Index

The alpha modulation index (MI) is calculated as the difference between the alpha
power of each electrode’s right-cued trials and left-cued trials.

This subtraction was then normalized by dividing by half of the sum of these values:

MI =
(αle f tcuedtrials − αrightcuedtrials)

( 1
2 αle f tcuedtrials + αrightcuedtrials)

Appendix A.6. Consistency Index

The first step to obtain the EEG consistency index (CI) consists in calculating discrete
spectra for all EEG channels. Then, for each EEG band and channel, the power change
distances (PCD) between two contiguous tasks are calculated and filtered to remove changes
below a ’noise threshold’. This threshold works as follows: the PCDs that are larger by
an absolute value than the threshold are marked by 1 or −1 depending on their direction,
whereas all PCDs below threshold are marked by zero. This filtering transforms the PCD
into a sequence of 1, 0, and −1 that indicates whether a significant power change was
observed for each EEG band and channel while the person shifted from one task to another.
Finally, filtered PCD below and above the treshold value are summed. The EEG consistency
index (CI) is defined as

CI = 100|1
2
( ∑

belowcuto f f
δi − ∑

abovecuto f f
δj)|%

where δi, δj= −1,0,1

Appendix A.7. Asymmetry Index

The asymmetry index (AI) of alpha ERD definition is

AI =
Alpha(RightHemisphere)− Alpha(Le f tHemisphere)
Alpha(RightHemisphere) + Alpha(Le f tHemisphere)

Appendix A.8. Multiscale Entropy

The multiscale entropy (MSE) method has been used to quantify the complexity of
signal by calculating the sample entropy (SampEn) over multiple time scales, which was
realized by the coarse-grained procedure [137]. Given a one-dimensional EEG discrete time
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series x = {x1, . . . xN} and the scale factor τ, the time series is calculated into consecutive
and nonoverlapping time series yτ

j as

yτ
j =

1
τ

jτ

∑
i=(j−1)τ+1

xi; 1 ≤ j ≤ N
τ

It then calculates the SampEn of each series yτ
j as

SampEn(m, r, N) = − ln
Cm+1

Cm ;

Cm = numbero f pairs(i, j), i 6= j; |ym
i − ym

j | < r

where |ym
i − xm

y | denotes the distance between vectors ym
i and ym

j , m is the dimension of
vectors ym

i and ym
j , r is the tolerable distance between the two vectors, and N represents the

time series length.

Appendix A.9. Lempel–Ziv Complexity

Lempel–Ziv complexity (LZC) is a popular measure for characterizing the complexity
of biomedical signals [138]. To compute the LZC, the oscillations of a time series have to be
transformed into a binary sequence. The simplest approach is to convert the time series
x(k), k = 1, . . . n into a 0–1 sequence by comparison with a threshold Td, as follows:

s(i) =

{
1 if x(i) < Td

0 if x(i) ≥ Td

A good choice for Td is the median value of the signal in each electrode because it
is robust to outliers [139]. Then, a complexity counter, c(n), is increased by one unit each
time a new subsequence of successive characters is found in the scanning process of the p
sequence. Finally, normalized LZC is defined by

CLZ =
log2 nc(n)

n

Appendix A.10. EEG Valid Rate

The EEG valid rate (EEGVR) is the ratio of artifact-free EEG epochs divided by to-
tal epochs.

Appendix A.11. WPLI

The weighted phase-lag index (WPLI) is a measure of phase-synchronization. It is
defined as

Φ =
|E{J(X)}|
E{J(X)}

where J(X) denotes the imaginary component of the cross-spectrum.

Appendix A.12. Theta Beta Ratio

The theta beta ratio (TBR) is the ratio between the power spectral density in theta band
and the power spectra density in beta band.

Appendix A.13. Sensorimotor Rhythms

Sensorimotor rhythms (SMR) are brain signals associated with motor activities, e.g., limb
movements. They consist of EEG oscillations measurable in the µ and β bands, typically
corresponding to the 8 Hz to 13 Hz and 13 Hz to 30 Hz ranges.
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Appendix A.14. The EEG Concentration Index

The EEG concentration index is defined as the sum of the sensory motor rhythm and
the beta/theta wave ratio.
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