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Abstract 

Background:  Ontologies are widely used throughout the biomedical domain. These ontologies formally represent 
the classes and relations assumed to exist within a domain. As scientific domains are deeply interlinked, so too are 
their representations. While individual ontologies can be tested for consistency and coherency using automated 
reasoning methods, systematically combining ontologies of multiple domains together may reveal previously hidden 
contradictions.

Methods:  We developed a method that tests for hidden unsatisfiabilities in an ontology that arise when combined 
with other ontologies. For this purpose, we combined sets of ontologies and use automated reasoning to determine 
whether unsatisfiable classes are present. In addition, we designed and implemented a novel algorithm that can 
determine justifications for contradictions across extremely large and complicated ontologies, and use these justifi-
cations to semi-automatically repair ontologies by identifying a small set of axioms that, when removed, result in a 
consistent and coherent set of ontologies.

Results:  We tested the mutual consistency of the OBO Foundry and the OBO ontologies and find that the combined 
OBO Foundry gives rise to at least 636 unsatisfiable classes, while the OBO ontologies give rise to more than 300,000 
unsatisfiable classes. We also applied our semi-automatic repair algorithm to each combination of OBO ontologies 
that resulted in unsatisfiable classes, finding that only 117 axioms could be removed to account for all cases of unsat-
isfiability across all OBO ontologies.

Conclusions:  We identified a large set of hidden unsatisfiability across a broad range of biomedical ontologies, and 
we find that this large set of unsatisfiable classes is the result of a relatively small amount of axiomatic disagreements. 
Our results show that hidden unsatisfiability is a serious problem in ontology interoperability; however, our results 
also provide a way towards more consistent ontologies by addressing the issues we identified.
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Background
Ontologies are used to describe and organise domain 
knowledge in the biomedical sciences. Ontologies use 
classes to characterise the kinds of things that exist within 
a domain as well as axioms that provide constraints for 
these classes and conditions that must be satisfied within 
the domain. Most ontologies in biology are domain-spe-
cific and focus on a single domain. Creating ontologies 
that reference and extend other biomedical ontologies is 
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common practice, as it promotes a unified understanding 
of the biomedical domain by defining terms and groups 
of terms in the context of their relationships with classes 
from related domains, and in the common context of 
higher level domains. Reusing the formalised knowledge 
from other domain ontologies also enables the reuse of 
expertise from ontology developers in other domains.

The majority of biomedical ontologies are now being 
developed in the Web Ontology Language (OWL) [1], a 
formal model-theoretic language based on description 
logics [2]. OWL ontologies enable the use of automated 
reasoners, which in turn enable the deductive inference 
of knowledge implied by the explicit assertions made in 
the ontologies. Furthermore, these inferences can be 
examined to determine whether an ontology’s classes are 
satisfiable, and whether an ontology is consistent. A class 
is satisfiable if it can have an instance, and is unsatisfiable 
if it contains a contradiction such that an instance of the 
class would force any model of the ontology to contain 
a logical contradiction; an ontology is inconsistent if it 
contains at least one instance of a logical contradiction. 
Unsatisfiable classes and inconsistencies arise most fre-
quently by violation of a disjointness axiom. For example, 
if an ontology contains an axiom asserting that a disease 
and a phenotype are disjoint, then any class that is a sub-
class of both disease and phenotype is unsatisfiable. An 
ontology which contains any instances of an unsatisfiable 
class is inconsistent, while an ontology which contains 
any unsatisfiable classes is termed incoherent.

Automated reasoners can also be used to generate 
explanations for an unsatisfiability. An explanation is a 
small set of axioms which are sufficient to reproduce the 
contradiction. An explanation can be used to diagnose 
the cause of the class becoming unsatisfiable.

The Open Biomedical Ontologies (OBO) Foundry is 
a collection of ontologies that use a shared set of design 
principles, and encourages re-use of terms amongst them 
[3]. The ontologies are built using the framework pro-
vided by common upper-level ontology, the Basic Formal 
Ontology (BFO) [4], and include many large and widely 
used domain ontologies describing areas such as chemi-
cal entities [5], phenotypes [6], and model organisms [7]. 
Using standard upper-level ontologies is intended to sup-
port consistency between multiple ontologies and knowl-
edge integration across domains [8].

From a technical perspective, OWL caters for the 
inclusion (i.e., import) of complete ontologies so that 
they can be reused and built upon. Importing an ontol-
ogy amounts to including all the entities and axioms of 
another ontology in the importing ontology. While this 
is a provision of simple modularity, it enables re-use of 
classes and axioms across ontologies, and it enables auto-
mated reasoners to detect joint consistency.

However, full import of an ontology is not always sen-
sible or feasible. Even when an ontology makes heavy 
use of the classes and axioms in another ontology, only 
a subset of the classes are likely to be relevant within 
another ontology.

For example, the Hypertension Ontology (HTN) [9] 
expands upon the hypertension classes in the Human 
Phenotype Ontology (HP) [6] and the Disease Ontology 
(DO) [10], but is not concerned with any terms in those 
ontologies besides those directly related to hyperten-
sion. To include all of the classes in HP and DO in 
HTN is vulnerable to potential issues resulting from 
the inclusion of irrelevant classes. Loading the ontology 
would take longer, in particular when imported ontolo-
gies are retrieved over the internet. Editing an ontology 
may become challenging when many classes from other 
ontologies are included on account of the large num-
ber of additional classes that must be loaded, classified, 
and possibly visualised. Overall, an ontology import-
ing a large number of other ontologies becomes more 
difficult to use with the relevant classes being hidden 
within the hierarchy of the imported ontologies.

In response to these technical challenges, the 
research community has investigated different mod-
els for ontology modularisation. Particularly, work has 
investigated locality-based module extraction [11], 
which can be used to improve reasoner-based query 
performance and support large-scale ontology develop-
ment and re-use [12].

The MIREOT (Minimum Information to Reference 
an External Ontology Term) guidelines were originally 
developed to support inclusion of classes from non-
OBO Foundry ontologies without needing to align to 
their axiomatisation, and has become a standard for 
term re-use and inclusion throughout the biomedical 
ontology community [13].

MIREOT relaxes the import of other ontologies 
through including all axioms and instead focuses on the 
reuse of individual classes from other ontologies. Par-
ticularly, the MIREOT guidelines stipulate that three 
pieces of information are necessary to “reference” an 
external ontology class: 

Source ontology	� The Internationalised Resource 
Identifier (IRI) of the ontology 
which contains the class being 
included.

Source class	� The IRI of the class to import, as 
defined in the external ontology.

Direct Superclass	� The IRI of the direct superclass of 
the imported class in the referenc-
ing ontology.
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Utilizing these three pieces of information, an external 
ontology class can be referenced. By including MIREOT 
definitions for each relevant external class, a module 
is formed within the imported ontology without fully 
importing any external ontologies. While this method 
allows ontologies to reuse classes in a scalable and effi-
cient manner, the inclusion of external classes without 
the context of the external ontology’s axioms means that 
contradictions may arise that cannot be detected using 
an automated reasoner that evaluates only the import-
ing ontology. This may lead ontology developers to build 
upon another class in a way that contradicts its origi-
nal definition. Furthermore, subsequent versions of the 
source ontology may re-axiomatise a subject class in 
a way which renders its use in the importing ontology 
incompatible with it.

Previous work has discussed in a general sense the 
kinds of conceptualisation mismatches that can occur 
in ontologies[14]. Another work axiomatised the Gene 
Ontology (GO) with respect to upper level ontolo-
gies, identifying large lets of conflicting ontologies, and 
detailing a basic semi-automated approach to resolving 
contradictions[15].

More recently, our prior analysis of the Experimen-
tal Factor Ontology (EFO) [16] showed that the use of 
MIREOT has the potential to cause inconsistency and 
unsatisfiabilities across the set of ontologies the EFO 
references [17]. While our previous work revealed prob-
lems with EFO, the extent and exact characterisation of 
this problem throughout the entire biomedical ontology 
ecosystem has not yet been explored. It is also unknown 
whether there are common roots to widespread unsatis-
fiabilities. More importantly, while identifying unsatisfi-
able classes and inconsistencies is important, it would be 
much more useful to resolve them, ideally automatically 
or semi-automatically. It is not clear whether the unsatis-
fiabilities can be automatically repaired.

We explore interoperability and hidden unsatisfiability 
throughout the OBO Foundry ontologies. To do this we 
extend the unMIREOT tool described by our previous 
work, and generalise it to reveal hidden contradictions 
in any combination of OWL ontologies, and identify the 
axioms involved [17]. This analysis reveals many cases of 
incoherency and inconsistency throughout the ontology 
ecosystem.

Based on the information revealed by our analysis, we 
present a novel algorithm that generates explanations for 
unsatisfiability, and uses these explanations to systemati-
cally identify a small list of axioms that can be removed 
from an ontology to repair all cases of unsatisfiability 
and generate a novel ontology that is both consistent and 
coherent. The list is formed by automatically evaluating 
explanations for unsatisfiable classes. We then use the 

algorithm to report on sources of the contradictions we 
found throughout the OBO ontologies, and the axioms 
that are most frequently involved.

Our method and tools allows detection of unsatisfi-
able classes and the systematic, semi-automatic repair 
of ontologies. Applying our approach will lead to higher 
quality ontologies maintaining consistency in the rapidly 
evolving web of knowledge that spans biology and bio-
medicine. All our results and software are freely avail-
able at https​://githu​b.com/bio-ontol​ogy-resea​rch-group​/
UNMIR​EOT.

Methods
Ontologies and ontology versions
All non-deprecated and obtainable OBO ontologies were 
downloaded using the permanent download links given 
by the OBO Foundry database at

http://obofo​undry​.org/regis​try/ontol​ogies​.yml. A total 
of 132 ontologies were obtained on 28/03/2018.

Our experiments concern two sets of ontologies 
described by this database. First, the OBO Foundry 
ontologies, which are judged as satisfying the OBO 
Foundry principles, and are therefore tightly integrated 
and also widely used across many domains. The second is 
the wider set of ontologies included in the OBO database. 
In the rest of this paper, we will refer to the core ontolo-
gies as the OBO Foundry ontologies, while the wider set 
of ontologies will be referred to as the OBO ontologies. 
There are 9 OBO Foundry ontologies considered in this 
work, and a further 123 OBO ontologies.

Implementation and experimental setup
For all experiments, we use the OWLAPI 5.1.4 [18]. 
To classify the ontologies and to retrieve unsatisfi-
ability explanations, we use the Elk reasoner version 
0.5.0-SNAPSHOT [19].

Elk supports the OWL 2 EL profile, a fragment of OWL 
that supports tractable (i.e., polynomial-time) reasoning, 
but lacks support for many logic operators. In particu-
lar, OWL 2 EL does not support the use of negation in 
class descriptions or use of the universal quantifier. The 
only type of axiom in OWL 2 EL that could result in an 
explicit contradiction is the disjointness axiom. In our 
previous investigation, we attempted to evaluate other 
reasoners for the purpose of identifying additional unsat-
isfiable classes, finding that either the reasoner did not 
finish, or only found a small amount of additional unsat-
isfiabilities. It is possible that a more expressive reasoner 
would reveal additional contradictions for ontology com-
binations with which the reasoner would finish, such as 
through evaluation of logical negation. Furthermore, the 
repeated use of satisfiability checking required by the 

https://github.com/bio-ontology-research-group/UNMIREOT
https://github.com/bio-ontology-research-group/UNMIREOT
http://obofoundry.org/registry/ontologies.yml
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unsatisfiability justification investigation necessitate a 
low running time.

We also used Protégé with Elk to examine some of the 
combined ontologies for particular cases of unsatisfi-
ability [20] that we give detailed explanations for in the 
results. Justifications were equivalent to those revealed by 
the tool.

Results
Combining ontologies and detecting inconsistencies
We created a tool to combine sets of ontologies. This 
works by loading all source ontologies with OWLAPI, 
creating a new meta-ontology, and copying all classes and 
axioms into it. This tool is also available via the unMIR-
EOT GitHub.

We combined all of the OBO Foundry ontologies into 
one meta-ontology. Figure  1 summarises the ontologies 
in this set. We did not include the ontologies referenced 
in the imports closures of the OBO Foundry ontologies, 
since in all cases these ontologies were included in the 
larger set of OBO ontologies, and therefore their com-
bined consistency would be evaluated later. Subsequently, 
we evaluated the combined ontology for unsatisfiability 
and its causes.

The 9 OBO Foundry ontologies combined consist of 
402,868 logical axioms and 207,105 named classes. The 
use of an automated reasoner on the combined OBO 
Foundry meta-ontology determined that 636 of these 
classes are unsatisfiable. Table  1 shows the number of 
unsatisfiable classes and the ontology to which they 
belong. The origin ontology of the classes was determined 
using the class IRI prefix. While each of these classes is 
unsatisfiable due to a different set of axioms, there may 
be a small set of axioms that are shared by several cases 
of unsatisfiability. We developed an algorithm to iden-
tify a small set of axioms that are sufficient to explain all 
unsatisfiable classes in an ontology; if this set of axioms is 
removed from an ontology, all cases of unsatisfiability are 
resolved. We apply this algorithm to the combined OBO 
Foundry ontologies in order to derive a coherent version, 
removing two axioms. The algorithm, and the axioms it 
removes, are described in detail in the Efficient ranking 
and repairing of axioms section.

We combine this coherent version of the OBO Foundry 
meta-ontology with each of the OBO ontologies individ-
ually, classifying the resulting merged ontology, using an 
automated reasoner to determine if there are any unsatis-
fiable classes; if we identify unsatisfiable classes we count 
their number. Out of all 132 ontologies that we use in this 
experiment, we revealed unsatisfiable classes in 50 ontol-
ogies. The 10 OBO ontologies with the most unsatisfiable 
classes are listed in Table 2. The total number of unsatisfi-
able classes across all OBO ontologies is 866,494 and the 
total number of unique unsatisfiable classes is 312,398. Of 
these, 8,893 are obsolete classes, which are intentionally 
unsatisfiable (and thus not considered an error). In addi-
tion, the Ontology of Vaccine Adverse Events (OVAE) 
[21], Food Ontology (FOODON) [22], Plant Trait Ontol-
ogy (TO) [23], Gazetteer (GAZ) [24], Porifera (PORO) 
[25], Plant Experimental Conditions Ontology (PECO) 
[23], Oral Health and Disease Ontology (OHD) [26], and 
Statistics Ontology (STATO) [27] became inconsistent.

Efficient ranking and repairing of axioms
Our algorithm for identifying the causes for unsatisfi-
ability in ontologies builds upon a black-box algorithm 

Table 1  Unsatisfiable class counts in OBO Foundry

Ontology Unsatisfiable 
class count

CHEBI 37

GO 565

OBI 34

Fig. 1  Ontologies included in the OBO Foundry

Table 2  The ten ontologies with  the  most unsatisfiable 
classes in  the  OBO ontologies, when  combined 
with  a  repaired version of  the  merged OBO Foundry 
ontology

Ontology name Unsatisfiable 
class count

Unified Phenotype Ontology (UPHENO) [44] 106,126

Monarch Disease Ontology (MONDO) [45] 97,619

Ontology for MIRNA Target (OMIT) [46] 63,015

Molecular Process Ontology (MOP) [47] 57,355

Name Reaction Ontology (RXNO) [48] 57,330

Human Phenotype Ontology (HP) [6] 46,075

Mammalian Phenotype Ontology (MP) [7] 43,806

Cell Ontology (CL) [49] 34,685

Ontology of Biological Attributes (OBA) [50] 26,523

Ontology of Adverse Events (OAE) [51] 20,566
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for computing a justification for one unsatisfiable class. 
A justification is a minimal set of axioms which explain 
why the class is unsatisfiable. The black-box algorithm 
we employ creates an empty ontology containing only 
the class that is unsatisfiable; it then adds new axioms 
from the original ontology to it, until the class becomes 
unsatisfiable. Axioms that are not necessary for the class 
to become unsatisfiable are then removed using a back-
wards stepwise approach, eventually producing a mini-
mal set of axioms that constitute a justification for the 
unsatisfiability of the class in the original ontology. Justi-
fication algorithms are usually used as debugging tools to 
direct ontology developers towards the causes of unsat-
isfiability. For this reason, they are often integrated into 
ontology development environments such as the Protégé 
software [28].

The naive algorithm, for finding a minimal set of jus-
tifications that can be removed to repair all cases of 
unsatisfiability, uses the black box algorithm to compute 
justifications for all unsatisfiable classes in the ontol-
ogy, and then removes the axiom that appears most fre-
quently in the set of all justifications. Subsequently, it 
then repeats this step until all cases of unsatisfiability are 
solved. This algorithm works well when manually investi-
gating a small number of unsatisfiable classes in relatively 
small ontologies (thousands of classes rather than tens or 
hundreds of thousands of classes).

In our evaluation of the OBO ontologies, we revealed 
a very large number of unsatisfiable classes across many 
ontologies, some of which are very large. In the most pro-
lific case, the Unified Phenotype Ontology (UPHENO) 
gives rise to 106,126 unsatisfiable classes, containing only 
133,480 classes in total. Such a large number of unsatis-
fiable classes makes the naive algorithm intractable. In 
the worst case, our black-box algorithm has to add all 
axioms from the ontology, and then remove all but one 
of these axioms in order to find a single justification for 
one class, leading to a time complexity of O(n ·m) where 
n is the number of axioms and m the number of unsatisfi-
able classes; since each step further involves computing 
satisfiability, which has cubic complexity in the num-
ber of classes (and relations) [19], it is obvious that the 
algorithm will not scale to large numbers of unsatisfiable 
classes.

We develop an improved algorithm for finding a small 
set of axioms to remove from an ontology to repair all 
cases of unsatisfiability by a consideration of the problem 
according to the hitting set problem.

In the theory of system diagnosis, we consider a series 
of conflict sets, each describing a conflicting set of system 
components—a subset of elements from a universal set 
of system components. A hitting set is one which inter-
sects every conflict set, and the hitting set problem is the 

problem of computing all the minimal hitting sets for the 
conflict sets [29].

The problem is useful in cases where repairing or 
removing all of the elements in a hitting set would repair 
a system. The hitting set problem is equivalent to the set 
cover problem [30], and both problems are known to be 
NP-complete through reduction to the boolean satisfi-
ability problem [31].

Our problem can be reduced to the hitting set problem, 
because an unsatisfiability justification can be considered 
as a conflicting set of axioms which can be resolved by 
removing one of its members from the ontology. To com-
pletely remove all axioms causing unsatisfiable classes in 
an ontology, all justifications must be resolved.

A hitting set of axioms to remove from the ontology 
to repair all axioms, therefore, must have a non-empty 
intersection with every unsatisfiability justification. The 
problem of finding all justifications for a single entail-
ment in an ontology has previously been reduced to the 
hitting set problem, and then solved using Reiter’s Hit-
ting Set Tree (HST) algorithm [32]. The problem we need 
to solve is similar, however we need to identify a hitting 
set of axioms that resolve all cases of unsatisfiability in 
the ontology instead of just the axioms that cause unsat-
isfiability of a single class.

We develop an algorithm that exploits the fact that 
classes transitively inherit unsatisfiability through sub-
class axioms; if C is unsatisfiable and the ontology 
contains D ⊑ C as an axiom, then D will also be unsatisfi-
able. Consequently, we prioritise resolving unsatisfiabili-
ties for classes that have the largest number of (asserted) 
subclasses in the ontology; when we resolve the cause of 
such a class becoming unsatisfiable, we also resolve the 
inherited causes of unsatisfiability for their subclasses 
without explicitly needing to generate a justification for 
them. In the worst case, this optimisation step will have 
no effect, because any class may have multiple causes of 
unsatisfiability independent from its parent class. If that 
is the case, the performance would be equivalent to the 
naive algorithm described above. However, commonly, if 
we assume that there are only a small number of overall 
causes of unsatisfiability in the ontology, we will reduce 
the number of justifications generated significantly.

Our algorithm is shown in Fig. 2. The algorithm takes 
an ontology O as input and determines the set of unsatis-
fiable classes in O, υ(O) ; the algorithm then removes from 
υ(O) all classes that have an asserted superclass in υ(O) . 
This step ensures that for each cluster of unsatisfiability, 
the most general class within the ontology taxonomy is 
examined first. The algorithm then selects the group of 
classes with the highest number of directly asserted sub-
classes, and either generates justifications for all of these 
classes or for a random sample of them if the number 
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of direct subclasses is above a threshold n. We selected 
a value of n = 25 manually, since it provides a relatively 
large sampling size for justification components, as well 
as providing a hard limit for explanations that must be 
obtained on every turn, thus limiting execution time. It 
is possible that different values of n, as well as random 
sampling of classes when the number of classes is above 
n, could affect the final list of axioms produced, depend-
ing on the structure of the ontology. The most frequently 
occurring axiom in these justifications is then removed, 
and the ontology is reclassified, to produce another set of 
unsatisfiable classes, upon which the process is repeated; 
the algorithm terminates when all unsatisfiable classes 
have been resolved.

In the selection step, our algorithm uses asserted sub-
classes instead of inferred subclasses because each unsat-
isfiable class may be affected by unwanted inferences, 
and is an inferred equivalent to owl:Nothing. It is possible 
that a class has more direct subclasses than another yet a 
fewer number of total subclasses; however, this effect is 
controlled by removing any classes with a superclass in 
the set of unsatisfiable classes υ(O) . Figure 3 describes an 
example of the selection process the algorithm uses.

Throughout execution of the algorithm, we record sta-
tistics on the set of classes that become satisfiable after 
the removal of each axiom. These statistics enable ontol-
ogy developers to identify problematic axioms that affect 
groups of ontologies, and manually resolve them.

Application to OBO foundry
We applied our algorithm first to the merged OBO 
Foundry ontology, finding that two axioms could be 
removed to solve all cases of unsatisfiability: 

1	 ‘realizable entity’ (BFO:0000017) 
SubClassOf: ‘specifically dependent 
continuant’ (BFO:0000020) with 599 classes 
repaired, and

2	 ‘molecular entity’ (CHEBI:23367) 
SubClassOf: ‘material entity’ 
(BFO:0000040) with 37 classes 
repaired.

These two axioms are members of the smallest set of axi-
oms that suffices to remove all unsatisfiabilities. We could 
also consider the unsatisfiable classes as a result of vio-
lating disjointness axioms; in particular, all the unsatis-
fiable classes are also subclasses of two or more classes 
that are asserted to be disjoint. The removal of each of 
the subclass axioms above solves multiple disjointness 
axiom violations. For the first axiom that contributes to 
the most unsatisfiable classes, the classes it accounts for 
each violate one or more of these three different disjoint-
ness axioms: 

1	 ‘independent continuant’ 
(BFO:0000004) DisjointWith: ‘spe-

Fig. 2  Algorithm for automatic diagnosis and repair of unsatisfiable classes in an ontology



Page 7 of 13Slater et al. BMC Med Inform Decis Mak 2020, 20(Suppl 10):311

cifically dependent continuant’ 
(BFO:0000020)

2	 DisjointClasses: ‘independent con-
tinuant’ (BFO:0000004), ‘specifically 
dependent continuant’ (BFO:0000020), 
‘generically dependent continuant’ 
(BFO:0000031)

3	 ‘continuant’ (BFO:0000002) Disjoint-
With: ‘occurrent’ (BFO:0000003)

The second case is affected by two disjointness axioms: 

1	 ‘independent continuant’ 
(BFO:0000004) DisjointWith: ‘spe-
cifically dependent continuant’ 
(BFO:0000020)

2	 DisjointClasses: ‘independent con-
tinuant’ (BFO:0000004), ‘specifically 

Fig. 3  Abstract example of the algorithm’s selection of unsatisfiable classes for justification. Each node represents an ontology class, connected 
by directed arrows indicating subclass relations. White classes are satisfiable, while red classes are unsatisfiable, and blue classes are unsatisfiable 
classes deselected for evaluation at this stage by the algorithm. In the first step, we have 7 candidate classes. This is reduced two only two in the 
second step, by removing all classes with parent classes from consideration. In the next step, the number of direct subclasses each remaining 
unsatisfiable class has are counted, and the maximal value is used. In this example, C has two direct subclasses, while B has only one. Therefore, we 
select C for examination. By solving the unsatisfiability of class C, we will also resolve the same cause of unsatisfiability for E, F, G, and H (although 
they may or may not have their own independent causes for unsatisfiability)
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dependent continuant’ (BFO:0000020), 
‘generically dependent continuant’ 
(BFO:0000031)

The two disjointness axioms shown for the second case 
are included in the three axioms shown for the first 
set, and the disjointness axiom between independ-
ent continuant and specifically depend-
ent continuant is a consequence of the others. 
In total, therefore, three disjointness axioms account 
for all cases of hidden unsatisfiability throughout the 
OBO Foundry ontologies. Removing the subclass axi-
oms removes fewer axioms and solves the cases of 
unsatisfiability because they prevent classes from vio-
lating multiple disjointness axioms. For example, in 
the case of removing the subclass relationship between 
molecular entity (CHEBI:22367) and mate-
rial entity (BFO:0000040), some subclasses 
of ‘molecular entity’ violate the first disjoint-
ness axiom and some violate the second. By remov-
ing the subclass axiom, however, molecular entities 
are no longer subclasses of the parent class of mate-
rial entity, independent continuant 
(BFO:0000004), for which two disjointness axioms 
are asserted.

Among the wider set of OBO ontologies we found 
that a set of only 117 axioms could be removed from 
ontologies to solve all unsatisfiability for all 866,494 
unsatisfiable classes. Of these, 51 involved a BFO class. 
Table 3 shows the top ten axioms ranked by the number 
of unique unsatisfiable classes they are responsible for 
repairing when removed, while the full set of axioms is 
available in the Github repository associated with this 
experiment.

Inconsistency analysis
Our experiments identify contradictions that lead to 
unsatisfiable classes in the OBO ontologies and highlight 
the axioms that can be removed to solve most cases of 
unsatisfiability. Our experiments further reveal which 
disjointness axioms are most frequently violated. How-
ever, merely removing the axioms does not necessarily 
resolve the underlying issues in how domain knowledge 
is modeled.

For example, although 599 unsatisfiable classes 
are repaired in OBO Foundry ontologies by remov-
ing the subclass axiom, ‘realizable entity’ 
(BFO:0000017) SubClassOf: ‘specifically 
dependent continuant’ (BFO:0000020), this 
does not entail that this axiom, or the disjointness axi-
oms it is related to, are themselves incorrect. Instead, the 
unsatisfiable classes arise through the different, mutually 
exclusive, uses of these classes by more specific axioms. 
In particular, 87 of these 599 classes are MAP kinase 
activity (GO:0004707) and its subclasses. The vio-
lated disjointness axiom is the fundamental BFO dis-
tinction between continuant (BFO:0000002) and 
occurrent (BFO:0000003). A continuant is some-
thing that is present as a whole at a time point and main-
tains its identity over time while an occurrent unfolds 
through time and has temporal parts [33]. They are often 
used in biomedical ontologies to refer to material entities 
and processes, respectively.

As shown in Fig.  4, MAP kinase activity is a 
subclass of continuant (indirectly through several 
other classes) by means of being a molecular func-
tion. It is also a subclass of part of some MAPK 
cascade, which is a subclass of intracellular 
signal transduction. This class stands in an 

Table 3  Top ten axioms accounting for the most hidden cases of unsatisfiability across OBO ontologies

Axiom Class count

‘processual entity’ (UBERON:0000000) DisjointWith: ‘anatomical entity’ (UBERON:0001062) 102,501

‘anatomical entity’ (UBERON:0001062) SubclassOf: ‘processual entity’ (UBERON:0000000) 63,349
miRNA_target_gene_primary_transcript (NCRO:0000001) SubclassOf: nc_primary_transcript 
(SO:0000483)

59,887

‘has role’ (RO:0000087) Range: role (BFO:0000023)) 57,438

‘processual entity’ (UBERON:0000000) SubClassOf: ‘occurrent’ (BFO:0000003) 41,770

‘continuant’ (BFO:0000002) DisjointWith: ‘occurrent’ (BFO:0000003) 31,943
‘connected anatomical structure’ (CARO:0000003) SubClassOf: ‘material anatomical entity’ 
(CARO:0000006)

31,639

‘independent continuant’ (BFO:0000004) DisjointWith: ‘specifically dependent continuant’ 
(BFO:0000020), ‘generically dependent continuant’ (BFO:0000031)

30203

‘realizable entity’ (BFO:0000017) SubClassOf: ‘specifically dependent continuant’ 
(BFO:0000020)

21,603

‘organ’ UBERON:0000062 SubClassOf: ‘has 2D boundary’ RO:0002002 some ‘anatomical surface’ 
(UBERON:0006984)

20,539
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occurs in relationship with intracellular. The 
object property occurs in contains a restriction of 
its domain, asserting that something that occurs in 
something else must be an occurrent. Consequently, 
MAPK cascade, a kind of intracellular sig-
nal transduction, is an occurrent.

Then, because MAP kinase activity is part 
of a MAPK cascade, it too is an occurrent. The 
reason for this is that the part of (BFO:0000050) 
relationship must be between two things of the same 
kind; its description states “two distinct things cannot 
be part of each other” which is enforced by assertions 
in the Relation Ontology (RO) that state occurrent 
is a subclass of part of only occurrent, and con-
tinuant is a subclass of part of only continu-
ant. This means that the reasoner infers from the 
assertion that MAP kinase activity is a part of 
MAPK cascade, that it too must be an occurrent.
Therefore, MAP kinase activity must be both a 
continuant and an occurrent, which is the source 
of its unsatisfiability.

In addition to the 87 classes that due to the axioms 
related to MAP kinase activity, all 599 unsat-
isfiable classes that can be removed by removing the 
‘realizable entity’ (BFO:0000017) SubCl-
assOf ‘specifically dependent continuant’ 

(BFO:0000020) axiom are subclasses of the class 
description:

•	 ‘molecular_function’ and ‘occurs in’ 
some ‘intracellular’

This is fundamentally the same cause of unsatisfiability as 
MAP kinase activity: that is they are subclasses 
of continuant via molecular_function, and 
occurrent via being something or a part of something 
that occurs in intracellular. There are actu-
ally 1306 total classes which are subclasses of ‘occurs 
in’ some ‘intracellular’, but 707 of these 
are not subclasses of continuant and are therefore not 
unsatisfiable.

These contradictions are not revealed by an automated 
reasoner used with the Gene Ontology alone, because the 
Gene Ontology imports occurs in (BFO:0000066) 
from the Relation Ontology using MIREOT, without 
the axioms of the Relation Ontology. Consequently, the 
axiom that asserts the domain of occurs in is not 
imported. The contradiction is revealed when the ontolo-
gies are combined and the imported class is extended 
with the restrictions declared in its original definition.

The long chain of inferences required to detect this 
unsatisfiability explains why it is easy for an ontology 
developer to assert a contradictory axiom, especially 
when the full set of axioms is not available to a reasoner 
during ontology development. The shared inheritance of 
continuant and occurrent are hidden behind several lay-
ers of subclass axioms and domain and range restrictions 
on object properties. Furthermore, colloquially, there 
may also be occasional confusion between parthood and 
participation in a process[34]. The problems could be 
fixed without any removal of axioms by using the par-
ticipates in (RO:0000056) or has partici-
pant (RO:0000057) relations instead of the part of 
relations in some axioms[35].

Indeed, many of the axioms that were highlighted for 
removal imply issues deriving from improper use of BFO. 
For example, in the OBO ontologies experiment, 57,438 
classes were made satisfiable by removing the restriction 
that the role a class has must be a kind of role.

All tools described in this paper, including those to 
obtain, merge, analyse, and repair ontologies, as well as 
the full results of the experiment, and tools to recreate 
the experiment, are available at https​://githu​b.com/bio-
ontol​ogy-resea​rch-group​/UNMIR​EOT.

Discussion
We have identified a high prevalence of hidden unsatis-
fiability throughout a major biomedical ontology eco-
system, the OBO ontologies. These ontologies include 

Fig. 4  MAP Kinase unsatisfiability in the OBO Foundry meta-ontology 
represented as a graph

https://github.com/bio-ontology-research-group/UNMIREOT
https://github.com/bio-ontology-research-group/UNMIREOT
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widely used ontologies that form a crucial part of the 
bioinformatics infrastructure. We also developed a 
novel algorithm that can diagnose incoherent ontolo-
gies by identifying a small set of axioms that resolve all 
cases of unsatisfiability. We demonstrated this across 
the OBO Foundry, and found that relatively few axi-
oms can be removed to resolve all unsatisfiable classes. 
Nevertheless, the fact that many of the axioms removed 
belong to BFO, the upper-level ontology that most OBO 
ontologies use as a foundation, indicates that this ontol-
ogy is not used consistently throughout all ontologies. 
Also of note is that several ontologies were inconsistent 
when combined with the set of OBO Foundry ontologies. 
These ontologies likely had similar problems to the other 
ontologies we examined, but actually included instances 
of the unsatisfiable classes—turning an incoherent ontol-
ogy into an inconsistent one. Our algorithm reveals that 
it suffices to remove or change 117 axioms to repair all 
issues we identified; while our algorithm can automati-
cally remove these axioms, the number of problematic 
axioms is small enough for them to be manually investi-
gated; this sets out a way forward towards a logically con-
sistent set of biomedical ontologies.

We extended our previous work, which examined one 
ontology for cases of hidden unsatisfiability caused by 
classes it referenced [17]. The tool can now be used to 
evaluate any ontology for hidden unsatisfiability, having 
been generalised such that it can combine and evaluate 
any group of arbitrary ontologies specified (in this case, 
those defined by the OBO registries). The other major 
extension to the work is in the novel algorithm allowing 
for the derivation of a small set of axioms accounting for 
all cases of unsatisfiability in very large ontologies, while 
the previous tool only counted unsatisfiable classes. The 
tool also includes scripts for automating hidden unsatisfi-
ability checking for groups of ontologies.

In the previous work, we discussed several limitations 
of the tool. Foremost, that it relied on the ontology being 
included in the AberOWL ontology repository. This is 
no longer the case, as the tool simply operates on down-
loaded files (or for the OBO experiment, downloads 
files directly from the links provided in the registry). It 
also mentioned that the unMIREOT step does not work 
transitively, however this limitation is not relevant in the 
context of the change to working with provided sets of 
ontologies to combine.

While our algorithm removes a small set of axioms 
to make an ontology coherent, it does not repair the 
root cause of the contradiction. In one case we showed 
that a large number of unsatisfiable classes in the Gene 
Ontology were caused by a mistaken use of a parthood 
relationship. This cause for unsatisfiability was complex, 
but would have been revealed by an automated reasoner 

had the axioms of MIREOT-ed classes been included. 
This indicates that the unconstrained use of MIREOT 
has introduced a new challenge for ontology interop-
erability, which must now be addressed. The question 
remains, however, of how best to balance the challenges 
of developing ontologies with the hardware resources 
and tools available, while at the same time maintaining 
consistency and interoperability between ontologies. Our 
results illustrate how the unMIREOT tool can be used to 
help ontology developers identify problematic axioms in 
their ontologies, and explore them to diagnose causes of 
contradiction.

While we have shown that there are large clusters of 
unsatisfiability across the OBO Foundry, it is unclear 
whether or to what extent these issues are affecting 
ontology-based analysis techniques. Incorrect inferences 
could affect the results of gene enrichment analysis, inter-
ontology phenotype mapping, semantic similarity tasks, 
or any analysis that relies on ontology axiomatisation. In 
the future, we intend to explore this by implementing a 
reference task that relies on multiple combined ontolo-
gies, and comparing the performance before and after 
repairing the unsatisfiable classes.

While cases of unsatisfiability can be repaired by the 
unMIREOT approach, it does not actually repair the root 
causes of disagreements. While examination of the out-
put can help to identify the root cause, this can still be 
a time consuming and complicated process. It is possible 
that algorithmic tools could be developed to aid ontology 
developers in identifying the most informative cause of 
the inconsistency, or instead to create a set of minimally 
destructive axioms to remove from the ontologies.

One approach to preventing contradictions from enter-
ing ontology releases in the future is the the use of full 
ontology inclusion and testing during the development 
process, as part of an integration testing process. It 
would be possible to incorporate the unMIREOT tool in 
such a workflow or ontology release tool [36]. The OBO 
ontologies use a shared central build system which can 
be configured to validate ontologies against scripts that 
check for problems. By using a powerful build server 
to combine ontologies with the ontologies they refer to 
and check for inconsistencies before release, developers 
would be able to continue to use MIREOT while ensuring 
continuing compatibility.

It is also possible that either the MIREOT or OBO 
guidelines should be revised, to include more informa-
tion in a class reference. Including more axioms related 
to referenced classes would allow for local consistency 
checking with an automated reasoner. Because many 
axioms are inherited, and restrictions are placed tran-
sitively, the axioms of an entire ontology or at least a 
derived module would need to be imported. This could 
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be recommended in the case of small, high-level ontolo-
gies such as BFO and RO, which should not cause per-
formance or space issues. Without actually including the 
ontology in the imports closure, however, it would not 
solve the problem of sourcing ontologies becoming out of 
date with the ontologies they reference.

Since the study described in this article was performed 
in 2018, we re-ran the OBO Foundry component of 
the experiment on updated ontologies downloaded on 
07/07/2020. We found that there remained 39 unsatisfi-
able classes in the OBO Foundry, accounted for by one 
axiom. Furthermore, we combined a repaired version 
of the updated OBO Foundry meta-ontology with the 
recently published Coronavirus Infectious Disease Ontol-
ogy (CIDO) [37]. The unMIREOT tool discovered 8,346 
unsatisfiable classes in this combination, accounted for 
by 7 axioms. These results are available on the unMIR-
EOT GitHub repository.

Conclusions
We identified a large set of hidden unsatisfiability across 
a broad range of biomedical ontologies, and we found 
that this large set of unsatisfiable classes is the result of a 
relatively small amount of axiomatic disagreements. Our 
results show that hidden unsatisfiability is a serious prob-
lem in ontology interoperability; however, our results 
also provide a way towards more consistent ontologies by 
addressing the issues we identified.
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