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Abstract: The increased mobility requirements of modern lifestyles put more stress on existing traffic
infrastructure, which causes reduced traffic flow, especially in peak traffic hours. This calls for
new and advanced solutions in traffic flow regulation and management. One approach towards
optimisation is a transition from static to dynamic traffic light intervals, especially in spots where
pedestrian crossing cause stops in road traffic flow. In this paper, we propose a smart pedestrian
traffic light triggering mechanism that uses a Frequency-modulated continuous-wave (FMCW) radar
for pedestrian detection. Compared to, for example, camera-surveillance systems, radars have
advantages in the ability to reliably detect pedestrians in low-visibility conditions and in maintaining
privacy. Objects within a radar’s detection range are represented in a point cloud structure, in which
pedestrians form clusters where they lose all identifiable features. Pedestrian detection and tracking
are completed with a group tracking (GTRACK) algorithm that we modified to run on an external
processor and not integrated into the used FMCW radar itself. The proposed prototype has been
tested in multiple scenarios, where we focused on removing the call button from a conventional
pedestrian traffic light. The prototype responded correctly in practically all cases by triggering the
change in traffic signalization only when pedestrians were standing in the pavement area directly in
front of the zebra crossing.

Keywords: FMCW radar; smart traffic light; smart cities; smart mobility; traffic flow optimisation;
point cloud; group tracking

1. Introduction

The demands and expectations of transportation infrastructure users and the com-
plexity of traffic regulation and control in modern cities are driving the need to include
novel, advanced solutions into traffic flow optimisation and management [1–3]. All urban
traffic optimisation and management depends on the feedback signal from sensors, while
video-surveillance systems, coupled with autonomous artificial intelligence (AI)-driven
decision algorithms, are being actively pursued [4,5], various solutions based on different
sensors [6] are commonly applied for different categories of traffic participants.

Common examples, albeit for vehicles, are induction loop systems [7], which detect
the disturbance of the loop’s own magnetic field by the presence of the vehicle’s metallic
construction. Induction loop systems generally require a lengthy and complicated installa-
tion procedure, as pavement cutting is necessary for the installation [6,7]. For pedestrians,
which are the focus of this paper, technologies that are seeing increasingly widespread use
are the already mentioned video-surveillance traffic systems. These allow for the simultane-
ous and accurate traffic monitoring of several different traffic areas used by different traffic
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participants, and can also be quickly and accurately modified [6]. In general, this type of
system is very cost-effective, especially in highly specialised cases, such as distinguishing
between different traffic participants.

Despite the relatively simple installation, video-surveillance traffic systems still require
frequent maintenance and lens cleaning. However, the main shortcoming of these systems is
unreliable operation in low-visibility conditions, and novel approaches are being developed
to handle such problems automatically [8]. Unreliable operation situations mainly occur
during the night and in low-visibility weather conditions such as fog, rain and snow. Some
video-surveillance traffic systems are even susceptible to incorrectly recognising shadows
as traffic participants [6,9]. Furthermore, using cameras in public spaces brings up the
question of privacy, primarily when these systems are used to monitor pedestrians [10,11].
To mitigate the privacy concerns caused by video surveillance, various techniques for
privacy preservation have been developed [12–14], which is less than ideal because of the
additional post-processing.

Radars share many advantages with video-surveillance traffic systems. They are
just as capable of recognising various traffic participants and require similar installation
procedures [7]. In contrast, radars are simpler to maintain; are not sensitive to reduced-
visibility conditions; cannot invade privacy by design; and can very accurately determine
the position, speed and direction of traffic participants within the field of view [15]. Differ-
ent radars are already being used in ground traffic control, with the most common type
being Continuous-Wave Doppler radar, which is generally only used for collecting speed
data [6]. For other purposes, such as for measuring range or as a volume counting device,
the Continuous-Wave Doppler radar is not accurate enough and not a suitable choice,
as its signal lacks marking on a time axis [16]. Along with the Doppler-type radar, the
second type of radar that is often used in ground traffic control is the Frequency-modulated
continuous-wave (FMCW) radar, mainly used as a presence detector [7].

Contribution of This Paper

In this paper, we demonstrate a proof-of-concept FMCW radar as an advanced form
of pedestrian traffic light triggering mechanism. The proposed system uses a low-cost
off-the-shelf FMCW radar as a kerbside detector which enables adaptive pedestrian cross-
ing solutions with the support of multiple object tracking techniques. Figure 1 shows
the suggested placement of a crosswalk radar with highlighted areas of interest, where
pedestrians are detected. Our proposed solution relies on the group tracking GTRACK
algorithm [17], which is used for multiple object tracking. The algorithm was modified
to run on an external processor and can be further modified to work universally with
similar FMCW radars. Additionally, we prepared a visualisation tool that shows tracked
pedestrians in real time.

The first part of this paper describes a brief overview of existing technological solu-
tions for human or pedestrian observation, detection and tracking. It also examines the
shortcomings of these solutions and what kind of radar technology would serve as the
best choice as an alternative to existing solutions. A short explanation of how FMCW
radars work, an overview of the radar that we used and an explanation of how pedestrians
are detected and tracked from radar measurements will be covered in this paper. The
experimental process for evaluating the system’s performance, along with the experimen-
tal results, is described in the third part of this paper, which is followed by discussion
and conclusions.
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Figure 1. Crosswalk radar, placed in intersection, scanning for pedestrians with intention to cross the
street. The observation area is marked with red rectangles.

2. Related Work
2.1. Pedestrian Detection

Various sensors and techniques are currently being explored for detecting pedestrians
among traffic participants. Pedestrian detection with computer vision technology remains
an active research area and has improved significantly in recent years [18,19]. Automated
pedestrian detection in traffic mainly relies on deep learning methods, which have shown
consistently reliable operation [19].

Still, by the very nature of video cameras, such systems remain susceptible to reduced
performance in low light conditions and false detections due to changing light levels.
Larson et al. [20] have conducted an evaluation on pedestrian detection with optical
sensors (video cameras) and thermal sensors (infrared cameras) and found that, in general,
thermal sensors achieved higher detection accuracy than optical. As shown in Figure 2,
the use of an infrared camera significantly improves visual detection in conditions where
a regular video camera fails to do so. Additionally, the variability introduced by colour,
texture, and complex background becomes trivial [21].

However, in Figure 2 we can also observe that pedestrians detected by an infrared
camera lack shape, compared to those seen in Figure 3. Aside from this, other problems
such as a low signal-to-noise ratio, low contrast and complex backgrounds hinder the
reliability of infrared cameras without additional filtering [22].

Vision systems for pedestrian detection can use other types of sensors besides the
aforementioned video and infrared cameras. Cheng [23] shows how point cloud infor-
mation, obtained from an RGB camera, can be used to improve pedestrian detection.
Lorente et al. [24] have shown that LIDAR and Time-of-flight (TOF) cameras can be used
for point cloud acquisition and that such information can be, with the use of deep learning
methods, applied for pedestrian detection. A millimeter-wave radar was used for a similar
application, where Zhao et al. [25] proposed a point cloud classification algorithm for
human–vehicle classification in advanced driver assistance systems (ADAS).
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Figure 2. The left column shows images taken by a video camera and the right column show images
of the same two scenes taken by an infrared camera. Reprinted/Adapted with permission from
Ref. [21]. 2016 Elsevier.

Figure 3. Example of pedestrian detection on an image from Caltech-USA test set by using a method
SquaresChnFtrs. Reprinted/Adapted with permission from Ref. [18]. 2015 Springer Nature.

Aside from various imaging technologies, there are also examples of passive, non-
imaging solutions for sensing a human presence. Examples are pressure-sensitive floor
mats, which are not disadvantaged by the shortcomings of either video cameras or infrared
cameras [9]. Compared to camera systems, these are more difficult to install or retrofit to
existing areas and have seen only a limited install base, so their long-term reliability is yet
to be proven [9]. Using floor mats to discern between different traffic participants or track
their movements is still not reliable for large-scale application [26].

Apart from the use in traffic surveillance and management, as in [27], automotive
pedestrian detectors are actively being researched and improved upon for the use in
autonomous vehicles. The applications vary from collision avoidance and advanced driver
assistance systems [28–30] to detecting occluded and partially occluded pedestrians and
other urban targets [31–33] to interactive autonomous vehicles [34,35].

2.2. Pedestrian Tracking Algorithms

For the reliable operation of traffic light controlling devices, participants need to be
correctly identified and commonly need to have their position tracked within the observable
area, mainly to avoid mis-triggering changes in traffic signalization [20].
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For vision-based systems, several multiple object tracking (MOT) or multiple target
tracking (MTT) approaches exist, which identify different objects in a video stream and then
follow their trajectories [36]. Most modern algorithms in vision processing, working with
either pixel information from cameras or point-clouds from depth cameras or radars, are
based on some deep learning approaches [19,36]. Alternatively, classical algorithms with
Extended Object Tracking (EOT) approaches [37–39] or GTRACK [17] can still be effectively
applied. In this paper, we apply GTRACK to demonstrate the ability of the used FMCW
radar. Other deep-learning-based tracking approaches could be used with the sensor data.

Generally, MOT approaches work according to the tracking-by-detection principle
and employ either some or all of the following: steps [36]:

• Detection stage—input frame is analyzed and observed objects are identified within
the input frame;

• Feature extraction/motion prediction stage—detected objects from the previous step
are analyzed for their unique set of features. Motion prediction is an optional part
of this step, where the algorithm predicts object’s approximate position in the next
input frame;

• Affinity stage—features and motion predictions are used to compare presently de-
tected objects with previously detected objects (from a previous frame or frames);

• Association stage—objects are associated with previously detected objects by assigning
them the same ID and newly detected objects are assigned a new ID.

Each of these stages are performed by different kinds of algorithms and some algo-
rithms perform more than one of these stages at once. In recent years, various deep learning
techniques have been utilized in different stages of MOT. Different types of deep neural
networks (DNN) are commonly applied for different stages, as shown in [36]. Optionally,
MOT task can be extended with an additional segmentation stage. This approach is called
Multiple object tracking and segmentation (MOTS). Voigtlaender et al. [40] have proposed
a method for which they use TrackR-CNN to address detection, tracking and segmentation
with a single convolutional neural network (CNN).

MOT can be divided into batch and online methods based on the task and the choice
of these techniques (or the combination thereof) [36]. The difference is that batch methods
can use future information for object tracking and can provide better tracking quality at
the expense of real-time tracking. We are, therefore, required to use an online method for
real-time pedestrian tracking, which can only use present and past information. Since deep
learning algorithms are often computationally intensive, they are scarcely used in online
MOT methods, though a few exceptions exist [36].

3. Radar for Pedestrian Detection
3.1. Types of RADARs

For accurate-enough tracking of pedestrians, we need to know pedestrians’ positions
relative to the radar and the pedestrians’ walking velocities. The most suitable form of radar
for this task is the FMCW radar, which has several advantages as opposed to other radar
variations. The most common of them are Continuous-Wave Doppler radar (CW radar)
and pulse-Doppler radar. CW radar continuously transmits a narrow-bandwidth signal,
without interruption, at a fixed frequency. Signal reflection from a moving target will cause
a shift in frequency due to a Doppler effect. The frequency shift directly corresponds to
the target’s movement velocity; while this approach allows us to determine pedestrian’s
movement velocity at any given moment easily, we cannot detect stationary pedestrians [9],
nor can we discern pedestrian positions. This is because we cannot discern the round-trip
time of the signal reflection since the signal is being transmitted continuously. The CW radar
lacks necessary mechanisms, which could be used as a sort of timestamp. Without knowing
when the signal was transmitted and later reflected, we cannot accurately determine the
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time delay between transmission and reception (round trip time τ). In general, round trip
time, τ, is calculated by Equation [41,42]:

τ =
2r
c0

, (1)

where r is the distance between a radar and a target and c0 is the speed of light.
One solution is to interrupt the CW signal in repeated transmission intervals of equal

duration, followed by typically longer intervals of radio silence. This type of radar is
called a pulse-Doppler radar and enables the target’s position to be determined. This
method presents a trade-off. Suppose we have long intervals of signal transmission without
interruption (long pulse duration). In that case, the signal (pulse) will have more energy and
will be able to traverse further distances and enable the detection of reflections from more
distant targets. However, longer transmission times also increase the minimum detectable
distance.To decrease the minimum detectable distance, we must, therefore, decrease pulse
duration accordingly at a trade-off of decreased radar range, since short-duration pulses
have less energy and dissipate more quickly [43]. Moreover, round trip times on very short
distances are extremely difficult to measure accurately [9]. This difficulty increases with
moving targets.

Alternatively, one can modulate the signal’s frequency of transmission rather than
break it into pulses. This is called frequency-modulated continuous-wave (FMCW) radar.
This type of radar transmits a radio signal in the form of a signal called chirp. In its simplest
form, a chirp is a continuous wave signal, which linearly changes in frequency through the
course of transmission. The radar we used in this paper is utilizing this type of chirp; more
specifically an up-chirp, which increases in frequency over time.

The advantage of using an FMCW as opposed to CW radar or pulse-Doppler radar is
that it can determine both: the target’s distance from the radar and its movement velocity.
FMCW radar also has the following advantages [44]:

• Ability to detect targets on very short distances r (minimal range is comparable to the
average wavelength of the transmitted signal);

• High accuracy in range estimation;
• Simultaneous transmission and reception;
• Signal processing after mixing stage is performed in a low-frequency spectrum, which

simplifies the printed circuit board (PCB) design.

Hyun et al. [45] have used an FMCW radar for human–vehicle classification by using
support vector machine (SVM) and binary decision tree (BDT) machine learning algorithms
with very high classification decision rates. For this, they proposed three new Doppler-
spectrum features, scattering point count (SPC), scattering point difference (SPD) and
magnitude difference rate (MDR). Another recent use of FMCW radar was presented
by Sang et al. [46], where they proposed a new method for direction-of-arrival (DoA)
estimation in an autonomous driving application. They proposed an alternative to multiple
signal classification (MUSIC), an established algorithm for DoA estimation, and took a
deep-learning-based approach, where they trained a 3D convolutional neural network
(3D-CNN) for DoA estimation. Kim et al. [47] have also recently proposed a new high-
resolution and low-complexity estimation algorithm for FMCW radars. They proposed
using a 2D Fast Fourier transform (2D FFT) algorithm for initial range and DoA estimation,
with the purpose to reduce the search area of the pseudo-spectrum. Data from this reduced
search area is then used as an input for the MUSIC algorithm to achieve higher resolution.

FMCW radars have also been proposed for pedestrian detection. For example,
Rizik et al. [48] have demonstrated the use of 24 GHz FMCW radar for security gate moni-
toring. Their prototype used radar in conjunction with a Raspberry Pi computer for data
acquisition, which was then forwarded to a remote personal computer (PC) for detection,
recognition and target tracking. In this paper, we propose the using 60 GHz FMCW radar
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for the task of traffic-light triggering, with signal processing on a remote PC. The radar’s
features are presented next.

3.2. FMCW Radar for Pedestrian Detection

To explain radar’s basic operating principle, Figure 4 shows the block diagram of a
generic FMCW radar. First, the frequency synthesizer in step 1 periodically generates the
chirp signal x(t) = TX(t), where TX stands for the transmitted signal. This is the signal that
radar is constantly transmitting into space on a selected frequency range (step 2). The received
signal RX(t) = x(t + τ), which is reflected at the target within radar’s range rmax, is received
by the radar with a certain delay because of round trip time τ in step 3. Since the delay directly
correlates to the distance r between the radar and the target, it also means that further-away
targets will cause longer delays in the reception of a reflected signal. With FMCW radars, the
time delay is not measured but is rather calculated from an intermediate frequency IF(t). The
intermediate frequency is a constant continuous wave signal, which results from frequency
mixing of the signals TX(t) and its own delayed copy RX(t + τ). In Figure 5, the height of
intermediate frequency is directly correlated with the time delay τ, where more distant targets
with longer time delays produce higher intermediate frequencies.

IF(t)

1

x(t)

2

3 4

Frequency
synthesizer

TX(t)

RX(t)

TX antenna

RX antenna

Figure 4. Simple block diagram of a generic monostationary FMCW radar with a single transmitter
and single receiver.

The height of the intermediate frequency fIF is described by the Equation

fIF(τ) = tan α · τ = tan α · 2 r
c0

(2)

and tan α, with units [Hz/s], is the slope of a chirp, defined as

tan α =
f1 − f0

Tc
=

B
Tc

, (3)

where B is the chirp’s bandwidth.

τ

Tc

τ

fIF

B

f0

f1

f(t)

0 t

f0

f1

f(t)

0 t

Figure 5. The intermediate frequency is the difference of frequencies of signals TX(t) and RX(t). Tc

marks the duration of a chirp, f0 is the starting frequency and f1 is the stop frequency.
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The general range of radar r is described with the radar Equation [49], which describes
the received power PRX of the reflected radar signal at a distance r away from the target with

PRX =

(
PTXGTX

1

)
︸ ︷︷ ︸

transmission

·
(

1
4πr2

)
︸ ︷︷ ︸
propagation︸ ︷︷ ︸

power flow
of incident waves

·
(

σ

1

)
︸ ︷︷ ︸

reflection

·
(

1
4πr2

)
︸ ︷︷ ︸
propagation

︸ ︷︷ ︸
power flow of scattered waves

·
(

HRX,eff

1

)
︸ ︷︷ ︸

reception

. (4)

Power flow of incident waves is described by transmitted power PTX, multiplied with
the gain of the TX antenna GTX and with the factor of propagation in incident direction,
from the antenna, directly towards the target. The radar cross-section of the target σ is
the effective surface of the target, from which the incident propagation is reflected back
towards the radar. The power flow of scattered propagation is then again reduced by the
same factor of propagation. The final received power PRX is multiplied by the factor of
effective aperture (area) HRX,eff of the receiving antenna. Effective aperture HRX,eff can be
expressed as

HRX,eff =
GRX λ2

4π
. (5)

FMCW radar’s range is additionally limited by chirp’s duration Tc. Targets out of
FMCW radar’s unambiguous range cause reflections with a delay of τ > Tc. Those targets
are ambiguous because they would appear as if they were closer to the radar. If needed,
FMCW radar’s unambiguous range can be increased by increasing the chirp’s duration
time Tc. Targets that are just slightly out of radar’s unambiguous range are mostly filtered
during transmitter idle time TIDLE as seen in Figure 6. TIDLE is also the time when frequency
synthesizer is reset to the starting frequency f0.

f0

f1

f(t)

0 t

Tc TIDLE

Figure 6. Idle time of the transmitter.

3.3. mmWave Module IWR6843AOP

In our experiments for pedestrian detection, we used an evaluation module
IWR6843AOPEVM, by Texas Instruments (shown in Figure 7). The module is intended
to test out the sensor IWR6843AOP, which operates in the millimeter-wave spectrum at
frequencies ranging from 60 GHz to 64 GHz. The sensor is one of several in the family
of radar-on-chip devices and is the first version of the integrated circuit with antennae
on package, hence the suffix AOP. This particular characteristic makes this sensor a good
choice for faster and easier development of the final product in later stages of development.
The rest of the sensors from this family use microstrip patch antennae, which are connected
to the sensor over the circuit board.
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Figure 7. Evaluation module IWR6843AOPEVM (Rev. F), photographed from the front side.

3.3.1. Transceiver Capabilities

Sensor IWR6843AOP can transmit with a maximum power of 10 dBm within its
operating frequency range. Seven antennae are integrated on the chip’s package, just below
the top surface, and have antenna gain G of approximately 5 dBi. Three of those antennae
are used for signal transmission and the remaining four for signal reception. The sensor is
capable of discerning multipath propagation by utilizing three virtual MIMO arrays for
digital beamforming. Transmitters can operate in three different modes of operation. In the
first mode of operation, transmitters are alternatingly powered with the voltage of 1.3 V, so
only two of the transmitters transmit simultaneously. In the second mode of operation, all
three transmitters are powered with the voltage of 1 V and simultaneously transmit the
same signal at different phase shifts, which enables electronic beam steering [50].

By utilizing digital beam-forming techniques, all antennae provide a wide field of view
over both azimuth (120°) and elevation (120°). Figure 8, based on data from [51], shows a
radiation pattern of the TX2 transmitting antenna, a pattern that is similar to all the antennae
on the used FMCW radar. The antenna is transmitting optimally at 60 GHz, and it has a
beam width of 60° across the sensor’s operating frequency range. This radiation pattern is
shared among all seven antennae. Each transmitter has effective isotropic radiating power
of approximately PEIRP ≈ 15 dBm.

Figure 8. The approximate radiation pattern of TX2 transmitting antenna over azimuth at the best
elevation angle.

From the transmitter’s effective isotropic radiative power, we can calculate a minimum
safe distance, r, at which effective electric field falls below |Seff| ≤ 10 Weff/m2 or below
|Eeff| ≤ 61 Veff/m. At the time of writing this paper, this is the value suggested by the Inter-
national Commission on Non-Ionizing Radiation Protection (ICNIRP) as a minimum safe
distance for the general public [52]. This distance also takes electromagnetic compatibility
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with other electronic devices into consideration, as they could start to function incorrectly
in the presence of strong electromagnetic fields. According to Equation [50]

r ≥
√

Z0 PEIRP

4π|Eeff|
, (6)

where Z0 = 377 Ω (free space impedance), the minimum safety distance is r = 12.5 cm.
The European Commission [53] stipulates that electronic devices with PEIRP ≤ 10 W should
be mounted at the height at least 2.2 m above general public walkway to ensure a distance
of at least 20 cm between the main antenna lobe and a 2 m-tall person, by citing the IEC
standard EN 62232:2017 [54].

3.3.2. Chirp Configuration Parameters

For pedestrian detection, the radar was configured for a maximum detectable range of
10.95 m with a range resolution of 21.4 cm. The reason for such a short range of detection is
because, in our study, we are only interested in the immediate pavement area right in front
of the crossing. More precise range resolution is also of lesser importance, since we are
not trying to obtain the exact positions of pedestrians. It is only necessary to see whether
the pedestrian is within the observable area and their velocity. For better detection, it is
better to have a more precise radial velocity resolution as pedestrians and other targets will
all have different movement velocities and are, thus, easier to separate from one another.
Additionally, better velocity resolution helps to better separate stationary clutter from
pedestrians who are standing still, while these pedestrians are not moving around, they do
not remain completely motionless. Furthermore, most targets will not approach the radar
in the radial direction but under different angles of approach, which reduces their radial
velocity compared to their actual movement velocity. Because of this, it is favored to have
a better resolution. The radar was, thus, configured for the maximum radial velocity of
5.12 m/s and radial velocity resolution of 0.08 m/s. Parameters that we used in our set-up
are listed in Table 1.

Table 1. FMCW radar configuration parameters.

Parameter Value

Starting frequency 60 GHz
Bandwidth 4 GHz

Slope 100 MHz/µs
Samples per chirp 64
Samples per frame 384

Max unambiguous range 10.95 m
Range resolution 21.40 cm

Max radial velocity 5.12 m/s
Radial velocity resolution 0.08 m/s

Measurement rate 15.00 Hz

3.3.3. Point Cloud

In each time instance, the radar measures reflections and combines them into a point
cloud. Points in the cloud form clusters, which represent different targets within the
sensor’s range.

Each point in the cloud is described with the following parameters:

• position in Cartesian space, relative to sensor’s position as shown in Figure 9;
• radial velocity vr;
• signal to noise ratio of reflected signal;
• noise level.
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r

(x,y,z)

vr

vt

z

x

y

θ

φ

Figure 9. Representation of a single point of reflection in the sensor’s coordinate system. Distances x,
y and z describe point’s position in radar’s Cartesian space; radius r, elevation angle θ and azimuth
angle ϕ describe point’s position in spherical coordinates; point’s radial velocity is represented by vr,
and tangential velocity is represented by vt (the latter is not measured by the radar).

4. Pedestrian Detection and Tracking with GTRACK

The detection and tracking of pedestrians are performed by the group tracking algo-
rithm GTRACK [17]. GTRACK was initially developed by Texas instruments to be used
with their line of mmWave sensors. Since the algorithm was designed to run on the sensors’
integrated processor, we modified it into a python module, so it can run on any external
CPU capable of running python. By doing so, we off-loaded the detection and tracking
off of the integrated processor. Off-loading the detection and tracking from the integrated
processor allows the sensor to process more reflection points while still meeting high real-
time requirements. GTRACK was modified with the idea that it can be used alongside the
out-of-the-box firmware, which comes pre-flashed on off-the-shelf mmWave FMCW radar.
Since GTRACK uses point cloud data as the main input, it can be further modified to work
with different sensors, not necessarily with an FMCW radar. This especially benefits sensors
with limited processing capabilities and can only output measurements. Nevertheless,
ideally, the same device would perform measurement acquisition, detection, and tracking.

GTRACK takes the point cloud data as the input, which is then processed in several
steps as spatial filtering in the form of clustering and temporal filtering in the form of
tracking. The first step is the prediction step, in which the algorithm estimates the present
position of each currently tracked object at time instance n. This step is completed by
considering the centroid position of the object’s cluster from the previously known position
in time instance n− 1.

Next are the association and allocation steps, when clusters in the point cloud data
are associated with either one of the currently tracked objects’ track. In the case of a newly
detected object, a new unique track is allocated. In the association step, a gate is formed
around each predicted centroid. Measurements within the gate are then associated with
the nearest existing track.

If any measurements remain unassociated, new tracks are created, associated with
clusters of measurements that remained after the association step. This process is similar
to DBSCAN clustering [17] but only completed for unassociated measurements. Measure-
ments are clustered together in the order of closest velocity, then closest distance. A new
tracking object is initialized if a cluster contains enough measurement points with a strong
enough combined signal-to-noise ratio (SNR). The described process is shown in Figure 10.

For each different kind of object we want to track, we must initialise a separate GTRACK
instance. Each instance contains the general description of the object type, e.g., pedestrian,
cyclist, car, or any other traffic participant. For pedestrians, we initialise a GTRACK instance
with parameters described in Tables 2–4. The parameters were determined empirically by
scaling typical human dimensions and space requirements in Table 5. For depth limit and
width limit, a space requirement for a person with an open umbrella was taken [55]; this also
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considers the space requirements for a person with walking crutches [56]. We equated both
measurements because an umbrella is of a round shape. We also observed that measurement
points scatter of a person without an umbrella was almost always of a cylindrical shape,
irrelevant of persons’ orientation respective to the sensor. For the height limit, we considered
the average height of an adult male (1.87 m) [57], that we empirically scaled to 2 m. This
height is also closer to 1.92 m, as listed in [56]. The latter also lists the shoulder width of 99%
of adult males at 0.52 m and abdomen width at 0.35 m.

Since a new instance of the GTRACK algorithm has to be run for each different type of
object, it makes it additionally beneficial for it to run on an external processor. An external
processor can more efficiently handle more concurrent instances than a sensor integrated
processor, as the latter also has to manage measurement acquisition.

C1(n 1)

C2(n  1)

C2,pred(n)

C1,pred(n)
C1(n)

u4

u1

u5

u3

u7

u2

u6

d52

d51

dist

update

prediction

gating function

u10

u11

u12 u13

u14

u15

u16

u17

Figure 10. Single step of GTRACK algorithm.

Table 2. GTRACK gating parameters for pedestrian detection and tracking.

Parameter Value

Depth limit 1.125 m
Width limit 1.125 m
Height limit 2.0 m

Doppler spread limit 0.7 m/s
Gain 3

Table 3. GTRACK allocation parameters for pedestrian detection.

Parameter Value

Min SNR 30.0 dB
Min SNR obscured 160.0 dB

Min Velocity threshold 0.05 m/s
Min Points threshold 7

Max distance threshold 1.6 m2

Max velocity threshold 2.0 m/s

Table 4. GTRACK state transition parameters for pedestrian detection and tracking.

Parameter Value

det2actThre 6
det2freeThre 5

active2freeThre 20
static2freeThre 110
exit2freeThre 25

sleep2freeThre 600



Sensors 2022, 22, 1754 13 of 21

Table 5. Typical human dimensions and space requirements [55].

Measurements Value

Depth 1.125 m
Width 1.125 m
Height 1.87 m

5. Experimental Evaluation

We designed an experiment with six different scenarios to evaluate pedestrian traffic
light triggering. Each scenario was repeated 50-times. In the experiment we assumed that
bypassing pedestrians would not remain in the radar’s observation area, and would exit
this area quickly. Similarly, we assumed that pedestrians intending to cross the street would
remain inside the observation area until they were given a green signal. Thus, in our prototype,
the control of the traffic light was based on the time a person remained in the observation area.
If a pedestrian remained within the area for a set amount of waiting time, the system would
recognize this and act as if a pedestrian call button was pressed. We determined the waiting
time before triggering a traffic light change empirically and set it to 10 s.

In the first scenario, participants entered and stood inside the observation area that
represented the part of the sidewalk where pedestrians would wait for a green signal to
cross the road. In each repetition, only one participant entered and was present in the ob-
servation area at a time. In this scenario, we observed how many times the system correctly
recognized a waiting pedestrian and triggered the change in traffic signalization. If the
system triggered a traffic signalization change, we counted that it responded correctly. If the
system did not trigger a traffic signalization change, we counted it as an incorrect response.

In the second scenario, participants only passed by the observation area to check whether
the system would correctly recognize that none of the detected pedestrians intends to cross
the street and, therefore, should not trigger any change in traffic signalization. Again, in this
scenario, only one participant was simultaneously present in the observation area at a time. If a
green signal was given despite none of the participants stopping to cross the street, it would
only disrupt traffic flow in a real-life scenario, which we counted as incorrect system response.

We also want to track and identify multiple pedestrians since multiple pedestrians
may be concurrently present within the observable area. However, only once in a while do
some of them stop to wait for a green signal. The latter was tested in the third scenario,
in which two or more participants entered the observation area in quick succession, so
there were always two or three participants present in the observation area at a time. Some
participants left the observation area, and some remained inside the area. The participants
only passing by the observation area should not confuse the system, which should still
trigger traffic signalization changes for standing pedestrians. If the system triggered a
traffic signalization change, we counted that it responded correctly. If the system did not
trigger a change in traffic signalization while a participant was waiting for a green signal,
we counted this as an incorrect response.

In the fourth scenario, two or three participants entered the observation area and
immediately left it as if they had only passed by the street crossing. This behaviour
should not confuse the system to falsely trigger traffic signalization changes as none of the
participants in this scenario stopped inside the observation area.

In the fifth and sixth scenarios, we repeated the first and second scenarios where one
person under an open umbrella entered the observation area to check whether the system still
correctly recognized them and responded to their intent, either to cross the road or pass by.

5.1. Experimental Setup

For the experiment, we attached the radar on a vertical pole and set it at the height
of h = 2.2 m with an elevation tilt θ = 26.5°. We arbitrarily set the observation area to be
1.5 m in length, 1.5 m wide and 2 m shifted away from the radar. We chose these measures
to approximate an area in which pedestrians would stand to wait for the change in traffic
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signalization, where area length was chosen to be as long as an approximate width of a
narrower zebra crossing Area width was chosen to approximate the width of a sidewalk,
as shown in Figures 11 and 12. The observation area is configured within the setup of the
GTRACK algorithm and can be easily adapted to different situations.

Zg

Xg

Yg

0

y1

y2

x1

x2

2.2 m

2 m
1.5 m

2 m

θ

(a) (b)

Yr

Figure 11. (a) Experimental setup. (b) Illustration of observation area next to a zebra crossing.

To simulate walking on a sidewalk, participants in our experiment always entered by
either of the two short edges, depending on the walking direction, and were moving in a
tangential direction from the point of view of the radar. Participants who were passing by
also exited the observation area by either of the short edges. In contrast, participants who
stopped to cross the street exited the observation area by the longer edge as if it faced the
zebra crossing.

Figure 12. Photo of experimental setup.

5.2. Triggering Algorithm

For the experiment, we designed a simple algorithm that handles the GTRACK and it
triggers changes in traffic signalization based on the GTRACK output data. On startup, our
algorithm initiates the GTRACK algorithm and creates a table tb_targets. Table tb_targets
keeps information for all currently tracked pedestrians along with the timestamps of
pedestrians’ first detection. Upon detection, GTRACK assigns every pedestrian a unique
identifier, which is used the whole time GTRACK maintains a lock on a pedestrian with
that identifier. Pedestrians are stored in the table with their unique identifiers, which also
serve as table indexing key. In the main program loop, at the beginning of each step, a
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current time is marked and stored in variable timestamp. Following that, GTRACK returns
a list of detected pedestrians, which are then stored in the list detected_targets.

Based on the presence and tracking of pedestrians in the observation area, our algorithm
either responds to the elapsed waiting time by triggering a traffic signalization change and
giving pedestrians a right of way. Alternatively, it keeps the pedestrian crossing closed and
maintains an uninterrupted flow of road traffic if no individual pedestrian detains in the
observation area for a given tracking time of 10 s. A more detailed description of the triggering
algorithm is shown in the flow diagram in Figure 13 and explained in Algorithm 1.

init_gtrack()
init tb_targets

main
loop

START

timestamp = current_time()
detected_targets = gtrack_targets()

A:
check all id

in detected_targets

tb_targets[id] = timestamp

NO

YESis id in
tb_targets?

All targets checked

B:
check all pairs

id, stamp in detected_targets

remove tb_targets[id]

YES

NOis id in
detected_targets?

(timestamp - stamp) >
t_pedestrian? change_traffic_signalisation()

YESNO

all targets
checked?

NO

YES

Figure 13. Flow diagram of pedestrian traffic light triggering algorithm.

Algorithm 1 Pedestrian traffic light triggering algorithm

procedure TRAFFIC LIGHT CONTROL
initiate gtrack( )
create tb_targets
repeat . Forever

set timestamp to current time
get detected_targets from gtrack( )
for all detected_targets do: . A

if target is not in tb_targets then:
save target and timestamp to tb_targets

for all targets in tb_targets do: . B
if target is not in detected_targets then:

remove target from tb_targets
else:

if target is in observable area longer than threshold time t ≥ 10 s then:
change traffic signalization

until shutdown

5.3. Results

Table 6 shows our experimental results. The second column shows the correct re-
sponses among all experimental repetitions for the given scenario. The third column shows
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the number of delayed responses of the system. The delayed responses are undesired, but
still correct. Those are the cases where GTRACK temporarily lost lock on participants,
which led to the reset of the tracking timer and, consequently, a longer waiting time. This
column is only applicable to scenarios 1, 3 and 5. The fourth column shows the number of
incorrect responses for the given testing scenario. During the experiment, we observed that
the setup performed better when pedestrians had a higher radial velocity.

In almost all cases, pedestrians were still being detected, even if they had reduced
radial velocity, for example, if they walked by the pedestrian crossing. It merely took
more detection frames before GTRACK allocated clusters of observed pedestrians. This
could easily be fixed with the below-proposed solutions. We could either elongate the
walking strip, which represented the observable pavement area, or we could set the radar
to face in the walking direction of pedestrians. The latter would also improve the detection
of pedestrians obstructed by other pedestrians walking by their sides. However, this
setup would, at the same time, obscure pedestrians who are walking in the same file.
Nevertheless, pedestrians obstructed in this direction would possibly still be more easily
detected since they would have better diversity in radial velocity.

Table 6. Experimental results of 300 repetitions across all six testing scenarios.

Scenario Correct Delayed Incorrect

Scenario 1 47/50 (94%) 3/50 (6%) 0/50 (0%)
Scenario 2 46/50 (92%) N/A 4/50 (8%)
Scenario 3 45/50 (90%) 2/50 (4%) 3/50 (6%)
Scenario 4 44/50 (88%) N/A 6/50 (12%)
Scenario 5 45/50 (90%) 5/50 (10%) 0/50 (0%)
Scenario 6 50/50 (100%) N/A 0/50 (0%)

In a few cases in scenarios one, three and five, GTRACK lost the lock on pedestrians
because they stood too still. However, when they moved a little bit, GTRACK detected
them again, which resulted in a delayed response of the traffic light triggering algorithm
because the tracking timer restarted. In two cases in scenario three, the algorithm did not
obtain a lock on a waiting pedestrian, as their radial velocity was not high enough for the
GTRACK algorithm to detect them successfully. Furthermore, in one other case in the same
scenario algorithm lost track of the standing pedestrian and did not recognize them again
the second time. In some cases, in scenarios two and four, GTRACK did not lose lock after
pedestrians left the observation area. This was due to when pedestrians moved too close
to moving clutter when they exited the area, so the lock-on from pedestrians exiting the
observation area was sometimes transferred to moving clutter. A similar error happened
when a tracked pedestrian was exiting the observation area where another pedestrian
entered, so exiting and entering pedestrians passed each other just at the edge of the area.
In that case, the track from the exiting pedestrian was transferred to the entering pedestrian,
which did not stop the tracking timer of the exiting pedestrian, nor did it start a new timer
for entering pedestrian.

If we count all correct and delayed responses together as ncd = nc + nd = 277 + 10 =
287 and all incorrect as ni = 13 with a total of nt = 300, we obtained a system performance
of ncd/nt = 0.9567 or 95.67% and an error of ni/nt = 0.0433 or 4.33%. However, if we
count correct responses separately as nc = 277 and we count delayed responses along with
the incorrect responses as nid = ni + nd = 13 + 10 = 23 with a total of nt, we obtained
a system performance of nc/nt = 0.9233 or 92.33% and an error of nid/nt = 0.0767 or
7.67%. Furthermore, if we were to exclude the delayed responses and count only correct nc
and incorrect ni responses with a total of nci = 290, we obtained a system performance of
nc/nci = 0.9552 or 95.52% and an error of ni/nci = 0.0448 or 4.48%.

A separate evaluation of scenarios one, three and five shows, that the system correctly
recognized a waiting pedestrian in ncw = 137 cases, combined with nd = 10 cases of
system’s delayed response. With niw = 3 incorrect responses over a total of 150 cases,
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we obtained a system performance of (ncw + nd)/150 = 0.98 or 98% and an error of
niw/150 = 0.02 or 2%.

If we similarly evaluate scenarios two, four and six, we can observe that system
correctly disregarded pedestrians who were only passing in ncp = 140 cases and mis-
triggered in nip = 10 cases in a total of 150 cases. This gives us the performance of
ncp/150 = 0.9333 or 93.33% and an error of nip/150 = 0.0667 or 6.67%.

Figure 14 shows an example of two pedestrians walking towards each other. Box
frames represent the approximate calculated position of each pedestrian, green dots on
the floor show previous locations of tracked pedestrians, and blue points are points of
reflections detected by the radar. From these points, it is also impossible to recognize any
identifiable features of pedestrians. An example of three separate pedestrians’ tracks is
shown in Figure 15.

Figure 14. Two pedestrians in scenario four are being tracked by the GTRACK algorithm. Both
pedestrians are entering the observation zone in opposite directions and are moving with higher
tangential velocities than their radial velocities vt > vr.
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Figure 15. Example of three pedestrians’ tracks after they have been detected by the system. The
track of pedestrian 1 is from the first scenario, and tracks of pedestrians 2 and 3 are from the fourth
scenario. The radar’s position and orientation are marked with a black triangle.

6. Discussion

Our results have shown that we were already able to detect and track pedestrians,
along with their intent, by using a fairly simple algorithm. By using this as a basis, some
more complex functionalities could be implemented even with the current setup. For
example, a pedestrian call extension for pedestrians entering the radar’s observation area
while the street is open for crossing. Though it is still better to have the observation area
extended over a whole crosswalk for more reliable operation [20]. Our waiting pedestrian
presence detection was also based on a fixed continuous observation time, which could be
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further studied as in [27]. These and other more complex functionalities can be implemented
by using simple logic algorithms or perhaps training a neural network instead. Research
in arrays of multistatic radar sensors, that are connected in a network [58], provides even
more coverage and is opening new possibilities in advanced pedestrian tracking behaviors.
This method additionally benefits by migrating GTRACK to a separated processor, as it
would be easier to modify a single GTRACK instance to detect and track targets of multiple
radars within the same multistatic configuration.

Besides logistical benefits, this method also has the potential to decrease traffic acci-
dents involving pedestrians and, since this method also minimizes unnecessary vehicle
stops [9], it can help to reduce the carbon footprint. An additional benefit of the proposed
system is that it mitigates the need to touch the call button, which is especially important
in times of epidemics, where touching a public surface might increase the possibility of
infection. Using contactless detectors like one proposed in this paper or those described
in [9,20,48], can contribute to slowing the spread of virulent diseases.

Since the proposed system is operating within an unlicensed radio frequency (RF)
spectrum between 57 GHz and 71 GHz and with an average PEIRP < 40 dBm, it does
not require any permissions from a regulator as, for example, Federal Communications
Commission (FCC) [59]. Its operating power may need to be reduced to the average
PEIRP ≤ 10 dBm to comply with the regulations. However, power requirements are set
slightly differently, depending on the regional regulator of the RF spectrum. Additionally,
since FMCW radars operate on different sweep frequencies, we do not expect to cause
or suffer any interference from other FMCW radars, which is additionally beneficial for
testing in a real-life scenario. To evaluate the system in a real-life scenario, we would thus
need to acquire approvals from the local authorities, where testing would be conducted
and from the operator of the experimental testing intersection.

7. Conclusions

In test scenarios, where we evaluated the performance of the proposed system for acti-
vating the green pedestrian signal, we have observed that the system responded correctly in
277 cases out of a total of 300 repetitions across all six experimentation scenarios. In 10 cases,
the system’s response was delayed, but it still responded correctly for a total performance
of 95.67% and an error of 4.33%. However, in the 10 cases where the system’s response
was delayed, this was due to the system losing lock on a waiting pedestrian for a short
time, leading to longer waiting times for those pedestrians. The system struggled most in
cases where pedestrians arrived in strong tangential directions with low radial velocities.
Pedestrians having low radial velocities then led to longer detection times. Compared to
video-surveillance systems that either use a standard video camera or an infrared camera,
this performance is constant through any lighting conditions. We want to point out that all
of the experiments were performed in a dry weather environment. Therefore, the proposed
system performance would have to be similarly evaluated in future studies, where the
experiments would be performed in foggy and rainy weather.

Assessing different setups of radar position and observation areas is left for future
research, the most interesting of which is using two radars to observe the same area. The
system’s accuracy in positioning-detected targets is also yet to be evaluated. To do this,
we need to use a system with known higher accuracy and one preferably not based on
radar technology because, as we have observed, these radars struggle with targets moving
in a tangential direction. An interdisciplinary study on the field of psychology may also
be considered to find an optimal waiting time before the system triggers the change in
traffic signalization.

To take full advantage of this design, we could extend the radar’s observation area
over the whole crosswalk and continuing tracking while pedestrians have a green signal.
This observation area extension makes it is possible to further optimize traffic flow by
changing to a red signal only immediately after there are no more pedestrians crossing
the street [9]. Furthermore, because observed pedestrians were moving in a tangential
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direction in respect to the radar, extending the observation area would allow the radar
to face incoming pedestrians at a more favorable angle. We want to note that the radar
can also be rotated in the azimuthal direction, which could, depending on the setup, also
improve the radar’s detecting and tracking capabilities.
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