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Abstract: This study was conducted to investigate if taurine supplementation stimulates the induction
of thermogenic genes in fat tissues and muscles and decipher the mechanism by which taurine exerts
its anti-obesity effect in a mildly obese ICR (CD-1®) mouse model. Three groups of ICR mice were
fed a normal chow diet, a high-fat diet (HFD), or HFD supplemented with 2% taurine in drinking
water for 28 weeks. The expression profiles of various genes were analyzed by real time PCR in
interscapular brown adipose tissue (BAT), inguinal white adipose tissue (iWAT), and the quadriceps
muscles of the experimental groups. Genes that are known to regulate thermogenesis like PGC-1α,
UCP-1, Cox7a1, Cox8b, CIDE-A, and β1-, β2-, and β3-adrenergic receptors (β-ARs) were found to
be differentially expressed in the three tissues. These genes were expressed at a very low level in
iWAT as compared to BAT and muscle. Whereas, HFD increased the expression of these genes.
Taurine supplementation stimulated the expression of UCP-1, Cox7a1, and Cox8b in BAT and only
Cox7a1 in muscle, while there was a decrease in iWAT. In contrast, fat deposition-related genes,
monoamine oxidases (MAO)-A, and -B, and lipin-1, were decreased by taurine supplementation only
in iWAT and not in BAT or muscle. In conclusion, the potential anti-obesity effects of taurine may be
partly due to upregulated thermogenesis in BAT, energy metabolism of muscle, and downregulated
fat deposition in iWAT.

Keywords: taurine; brown fat tissue (BAT); inguinal white fat tissue (iWAT); high-fat diet (HFD);
thermogenesis; anti-obesity

1. Introduction

Taurine (2-aminoethane-sulfonic acid) is a sulfur-containing amino acid and is regarded as the
most abundant free amino acid in a number of mammalian tissues [1]. The intracellular concentration
of taurine varies at 2–20 µmole/g wet weight in many tissues such as the brain, heart,
and skeletal muscles [1,2]. Taurine is endogenously synthesized from cysteine and methionine.
Primarily synthesized in the liver and kidneys, taurine is used for bile acid conjugation and to counter a
significant change in osmotic pressure, respectively [1,3,4]. Other tissues are known to partly contribute
to its synthesis depending on the presence of key enzymes such as cysteine dioxygenase (CDO) and
cysteinesulfinic acid decarboxylase (CSDA) even if tissue synthesis is lower compared to the amount
in the liver and kidneys. Unexpectedly, the mRNA expression of the CDO enzyme, taurine synthesis
in the epididymal, and perirenal white adipose tissues of rats appears to be similar to that of the liver
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and kidneys [5]. Therefore, taurine is actively synthesized in white adipose tissue, but adipose taurine
synthesis is reduced in obese mice [6,7]. These results suggest an important physiological role of
taurine in adipose tissue as well as in the liver and kidneys [7,8].

Among the various beneficial effects of taurine [8,9], the anti-obesity effect has been analyzed
in clinical studies [10–12] as well as in animal models [13–16]. Many studies have indicated that
taurine deficiency is associated with metabolic dysfunction, such as obesity or diabetes [17,18],
and its supplementation may help slow down the progression of obesity. Recently, it was reported
that taurine supplementation improved oxidative stress indices and inflammatory biomarkers in
patients with type 2 diabetes mellitus [19]. These results show the potential taurine possesses to be
developed as a safe and beneficial agent to reduce obesity-associated metabolic dysfunctions such as
dyslipidemia, insulin resistance, and hyperglycemia. The anti-obesity effect of taurine has been well
demonstrated in animal studies. However, the dose of taurine used to treat obese animals has not been
physiologically practical to be included as a dietary regimen for humans. This may be one of the reasons
why the anti-obesity effects of taurine have not been clearly shown in clinical human studies [20].
Also, the C57BL/6 mice used as an obesity model is known to develop severe obesity when fed a high fat
diet (HFD) due to their genetic susceptibility to diet-induced obesity (DIO) [21]. Even though C57BL/6
and ICR mice overall have similar physiological and metabolic phenotypes [22], C57BL/6 HFD fed mice
also develop dyslipidemia and changes in glucose homeostasis resembling a pre-diabetic condition,
whereas ICR mice show mild obesity without any pre-diabetic conditions. Therefore, ICR HFD fed mice
may be a more suitable model system for mimicking mild obesity similar to humans than C57BL/6 mice.
In our previous study, we developed a mild obese model using HFD-fed ICR mice and demonstrated
the anti-obesity effects of 2% taurine supplemented drinking water [23]. In this study, we showed one
of the molecular mechanisms by which taurine ameliorates mild obesity. Taurine supplementation
downregulated the expression of adipogenesis-related genes such as PPAR-α, PPAR-γ, C/EBP-α,
C/EBP-β, and AP2 in white adipose tissue (WAT) but not in brown adipose tissue (BAT) [23]. BAT is
responsible for heat generation (thermogenesis) through a process called uncoupled respiration
mediated by uncoupling protein-1 (UCP1), while WAT stores energy [24,25]. Taurine supplementation
increased body temperature in a monosodium glutamate (MSG)-induced obesity rat model as compared
to obese control rats [15]. Taurine treatment decreased the weight of WAT and increased the weight of
BAT by inducing the expression of peroxisome proliferator-activated receptor gamma co-activator 1α
(PGC-1α), which is involved in stimulation of energy expenditure. All these reports suggest that taurine
may enhance the “browning” process in adipocytes and induce thermogenesis from BAT by increasing
the expression of genes related to energy expenditure. Browning is the process that increases the number
of beige or brite (brown in white) adipocytes, which help to increase energy expenditure and reduce
obesity through thermogenic heat generation [26]. Therefore, augmentation of brown fat mass and/or
its activity has become a promising strategy to reduce obesity without side effects [27]. As a result,
many researchers have aimed to discover dietary compounds that increase the browning process or
energy expenditure [28–30] and also tried to evaluate which genes could be markers of beige adipocytes
in WAT [26]. Other thermoregulatory genes such as Cytochrome C Oxidase Subunit VIIIb (Cox8b),
Cox7a, and Cell Death-Inducing DFFA-Like Effector A (CIDEA) were also specific markers of beige
adipocytes. Also, BAT is densely innervated by the sympathetic nervous system (SNS), which governs
its thermogenesis. Catecholamines released from sympathetic neurons stimulateβ-adrenergic receptors
present on the cell surface, ultimately activating UCP-1-dependent thermogenesis [31]. In addition,
catecholamine such as dopamine, epinephrine (adrenaline), and norepinephrine are known to activate
lipolysis, mainly through β-adrenergic receptor activation [32]. The level of catecholamine is regulated
by the monoamine oxidase (MAO) enzyme and inhibition of MAO results in loss of body weight [33].
In addition, adipogenesis-related increase of monoamine oxidase (MAO) is known to occur in adipocytes.
Therefore, MAO may be a target for therapeutic intervention in obesity [34]. Furthermore, lipin-1 of
the lipin family plays a key role in lipid synthesis due to its phosphatidate phosphatase activity and
also because it acts as a transcriptional co-activator to regulate the expression of genes involved in lipid
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metabolism [35]. In this study, we investigated how taurine affects the expression of thermogenesis-
and browning-related genes in muscles, WAT, and BAT in a mild obese mouse model.

2. Materials and Methods

2.1. Animals and Diets

Thirty male, four-week old ICR (CD-1®) mice were randomly subdivided into three groups,
housed in a specific pathogen-free (SPF) facility with a 12 h light/dark cycle, and given ad libitum access
to food and water. As described previously [23], for 28 weeks, the first group was fed a normal chow
diet and it was named as the Normal group (n = 10), the second group was fed a high-fat diet (HFD)
and named as the HFD group (n = 10), and the third group was fed HFD supplemented with 2%
taurine in the drinking water and was named the HFD + TAU group (n = 10). All animal protocols
were approved by the Committee on Animals of Kyung Hee University Hospital at GANGDONG
(KHNMC AP 2016-009). Nara Biotech (Seoul, Korea) provided the HFD, Research Diets D12451 diet
(45 kcal% fat). Dong-A Pharmaceuticals (YongIn, Korea) supplied the taurine. The HFD + TAU group
received taurine in purified drinking water containing 2% taurine, while unadjusted purified water
was provided to the Normal and HFD groups.

2.2. Food Uptake, Activity, and Metabolic Parameters

As described previously [23], mouse body weight was monitored weekly for 28 weeks.
Metabolic monitoring was assessed in a resting state using the PhenoMaster System (TSE systems
GmbH, Bad Homburg, Germany). Energy expenditures including CO2 production (VCO2) and
O2 consumption (VO2) were monitored for 48 h. The mice were free to consume food and water.
The respiratory exchange ratio (RER) was defined as the ratio of carbon dioxide volume versus
oxygen volume (VCO2/VO2). Food uptake and locomotor activity were also measured. An LF50
body composition analyzer (Bruker, Germany) was used to determine body composition (lean body
mass, total body fat, and fluid) in mice. Animals were given 4–6 h to acclimate to the metabolic
caging prior to beginning data collection, which took place over a 24 h period. Data collected
(respiratory exchange ratio (RER), VO2, VCO2, energy expenditure (EE), food uptake, drinking,
and activity) were separately averaged over the light and dark periods. Animals were maintained
on a 12 h light–dark cycle, continued to consume a standard rodent chow diet, and were provided
with water ad libitum. All procedures were approved and ethical consent was provided by the Animal
Care Committee at Seoul University College of Veterinary Medicine, Korea Mouse Phenotyping
Center (KMPC).

2.3. Body Weight and Composition

Mouse body weight was monitored every week for 28 weeks. An LF50 body composition analyzer
(Bruker Co., Billerica, MA, USA) was used to determine body composition (lean body mass, total body
fat, and fluid) in mice. This analyzer is based on Time Domain Nuclear Magnetic Resonance (TD-NMR)
technology. The animal was loaded into the sample holder (animal restrainer not to limit movement
of the animal). The animal holder was inserted into the instrument LF50 for analysis. Results are
displayed and stored on a PC.

2.4. Harvest Tissues from Mice

As described previously [23], inguinal white adipose tissue, interscapular brown adipose tissue,
and quadriceps muscles were harvested from euthanized mice by cervical dislocation, instantly frozen
in liquid nitrogen, and kept at −80 ◦C until analysis. Total RNA was extracted from the harvested
tissues using Trizol (Thermo Fisher Scientific Korea, Seoul, Korea).
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2.5. Quantitative Real-Time RT-PCR

cDNA was synthesized from RNA using a commercial cDNA synthesis kit (Thermo Fisher
Scientific Korea, Seoul, Korea) according to the manufacturer’s instructions. Quantitative real-time
RT-PCR was performed using an Applied Biosystem™ Real-Time PCR system (Applied Biosystems,
Carlsbad, CA, USA) with the primer sequences as shown in Table 1. The relative mRNA expression
of the target gene was calculated using the ∆∆Ct method and was normalized to 18S rRNA as an
internal control.

Table 1. Primer sequences used in the experiment.

PGC-1α
Forward AGAAGCGGGAGTCTGAAAGG

Backward TTCTGTCCGCGTTGTGTCAG

Cox7a1
Forward CGACAATGACCTCCCAGTACA

Backward AGCCCAAGCAGTATAAGCAGTAG

Cox8b
Forward AAAGCCCATGTCTCTGCCAA

Backward TGGAACCATGAAGCCAACGA

UCP-1
Forward AGTACCCAAGCGTACCAAGC

Backward ACCCGAGTCGCAGAAAAGAA

CIDE-A
Forward AGACCGCCAGGGACTACG

Backward GAAACTCGAAAAGGGCGAGC

ADRB1
Forward ATGGGTGTGTTCACGCTCTG

Backward AGAAGACGAAGAGGCGATCC

ADRB2
Forward AATAGCAACGGCAGAACGGA

Backward TCAACGCTAAGGCTAGGCAC

ADRB3
Forward AAACTGGTTGCGAACTGTGG

Backward TAACGCAAAGGGTTGGTGAC

MAO-A
Forward CGGAAAGCTGAACGACTTGC

Backward ACTGCTCCTCACACCAGTTC

MAO-B
Forward CCCTTGCTGAAGAGTGGGAC

Backward TCACAAAGAGCGTGGCAATC

Lipin-1
Forward ACTGGGAAAGGCCACAATAC

Backward GTGCTCTTCATCACTGGAGG

F4/80
Forward AAGACTGACAACCAGACGGC

Backward AAGAGCATCACTGCCTCCAC

CD206
Forward AGCCTGGAAAGAGCTGTGTG

Backward CATCGCTTGCTGAGGGAATG

CD163
Forward ATGCTTCCATCCAGTGCCTC

Backward CTGTCGTCGCTTCAGAGTCC

CD11c
Forward AGCCTTTCTTCTGCTGTTGG

Backward AAATGTGTCGGCTTCTCTGC

CD68
Forward AAAGGCCGTTACTCTCCTGC

Backward ACTCGGGCTCTGATATAGGT
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2.6. Statistical Analysis

Experimental data are expressed as mean ± standard error of the mean (SEM). Differences between
the three groups were analyzed using the nonparametric Kruskal-Wallis test. If a statistical difference
was detected (p < 0.05), post-hoc pairwise group comparisons were performed using Dunn’s test with
Bonferroni multiple-testing correction [36]. Prism software v.5 (Graphpad Software, San Diego, CA,
USA) was used for statistical analysis and generating graphs. Differences were considered statistically
significant at p < 0.05.

3. Results

3.1. Effect of Taurine on Anti-Obesity in HFD-Induced Mildly Obese ICR Mice

To prepare the mild obesity mouse model, ICR mice were fed an HFD for 28 weeks to mimic mild
human obesity. As shown previously [23], HFD significantly increased body weight over 28 weeks
of feeding compared to mice receiving a normal diet. Taurine supplementation (2% in drinking
water) significantly inhibited body weight gain over 28 weeks (Figure 1A). The mean body weights
(mean ± SEM) of HFD-fed mice and normal mice were 55.90 ± 2.71 g and 45 ± 1.21 g, respectively.
Taurine supplementation (2% in drinking water) in HFD-fed mice induced weight loss in HFD-induced
mildly obese ICR mice compared to HFD-fed mice (55.9 ± 2.71 g vs. 49.33 ± 1.13 g). In accordance
with the body weight change, body composition analyzer showed that the fat mass of HFD-fed mice
significantly increased to 25.28 ± 1.22% of body weight from 9.74 ± 1.22% of the normal diet-fed group
(Figure 1B). Taurine supplementation reversed the fat mass build up to 11.69 ± 5.25%. Taken together,
these findings suggest that long-term taurine supplementation (2% in drinking water) may result in
the loss of fat mass in HFD-fed mice.Foods 2020, 9, x FOR PEER REVIEW 6 of 15 
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those seen in BAT, suggesting that energy expenditure is required for muscle movement. 
Interestingly, neither UCP-1 nor CIDE-A were highly expressed in muscle and were as low as 
expressed in iWAT. Next, we investigated how HFD or taurine supplementation could change the 
gene expression level. As shown in Figure 2B, HFD significantly stimulated the expression of genes 
such as PGC-1α and UCP-1 in BAT and slightly increased in the three tissues. In addition, taurine 
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Figure 1. Effect of taurine on body weight loss in high-fat diet (HFD)-fed ICR mice. (A) ICR mice were
fed a normal chew diet, HFD, or HFD + taurine (2% in drinking water) for 28 weeks (n = 10/group).
They were named as Normal group, HFD group, and HFD + Tau group, respectively. (B) Body
composition of the three groups (n = 4) was analyzed with an LF50 body composition analyzer after
each meal for 28 weeks. Differences between three groups were analyzed using the nonparametric
Kruskal-Wallis test. If a statistical difference was detected (p < 0.05), post-hoc pairwise group comparisons
were performed using Dunn’s test with Bonferroni multiple-testing correction. Differences were considered
statistically significantly at p < 0.05. *** p < 0.001; * p < 0.05; ns, not significant.
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3.2. Effect of Taurine on the Transcriptional Expression of Thermogenesis-Related Genes in Fat Tissue and
Muscles of HFD-Induced Mildly Obese ICR Mice

First, the transcriptional expression levels of several thermoregulatory and beige cell marker genes
such as PGC-1α, UCP-1, Cox7a1, Cox8b, and CIDE-A were investigated and compared in three tissues:
inguinal white adipose tissue (iWAT), interscapular brown adipose tissue (BAT), and quadricep muscles
(Muscle). As shown in Figure 2A, all the genes were highly expressed in BAT, but not in iWAT at the
mRNA level. The lower level expression of these genes in WAT suggested that they were associated
with energy expenditure and were not required for WAT functioning of energy storage. In contrast,
the expression levels of PGC-1α, Cox7a1, and Cox8b in muscles were as high as those seen in BAT,
suggesting that energy expenditure is required for muscle movement. Interestingly, neither UCP-1 nor
CIDE-A were highly expressed in muscle and were as low as expressed in iWAT. Next, we investigated
how HFD or taurine supplementation could change the gene expression level. As shown in Figure 2B,
HFD significantly stimulated the expression of genes such as PGC-1α and UCP-1 in BAT and slightly
increased in the three tissues. In addition, taurine supplementation further stimulated gene expression
in BAT and muscle.

Figure 2. Effects of taurine on transcriptional expression of thermogenesis-related genes in tissues.
(A) The basal mRNA expression levels of PGC-1α, Cox7a1, Cox8b, UCP-1, and CIDE-A were compared
to determine the relative expression of the genes from the three tissues in the normal diet fed (N)
group: inguinal white fat tissue (iWAT), interscapular brown fat tissue (BAT), and quadricep muscle
tissues. (B) The mRNA expression levels of the genes in iWAT, BAT, and muscles of the three groups
were compared to determine how HFD and/or taurine supplementation affected the gene expression
of each tissue of the three groups; N normal diet group (n = 5), HFD high-fat diet group (n = 5),
and H + Tau HFD + taurine (2% in drinking water) group (n = 5). Differences between the three groups
were analyzed using the nonparametric Kruskal–Wallis test. If a statistical difference was detected
(p < 0.05), post hoc pairwise group comparisons were performed using Dunn’s test with Bonferroni
multiple-testing correction. The P values of the two groups were included to show the expression
difference of thermogenesis-related genes. Differences were considered statistically significant at
p < 0.05. ** p < 0.01; * p < 0.05; ns not significant. N normal diet group, HFD high-fat diet group,
H + Tau HFD + taurine (2% in drinking water) group.
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3.3. Effect of Taurine on the Transcriptional Expression of β1, 2, 3-Adrenergic Receptors in Fat Tissue and
Muscles of HFD-Induced Mildly Obese ICR Mice

To investigate if taurine affects the expression of β-adrenergic receptors involved in browning
and thermogenesis [37,38], the basal mRNA expression levels of three subtypes of β1, 2, 3-adrenergic
receptors (β1; ADRB1, β2; ADRB2, and β3; ADRB3) were compared in the three tissues. As shown in
Figure 3A, all the receptors were highly expressed in BAT, while the expression of the β2-adrenergic
receptor (ADRB2) at high basal level was only found in muscle. In contrast, iWAT expresses the three
types of receptors at very low levels compared to those of BAT and muscle. ADRB3 expression in
iWAT was higher than the other two subtypes. As shown in Figure 3B, HFD slightly increased the
expression of ADRB1 and ADRB3 in BAT, but only affected ADRB2 expression in iWAT. In contrast,
only ADRB3 was significantly increased in muscle by HFD and taurine supplementation. All these
results suggest that HFD or taurine-mediated β-adrenergic receptors are not significantly involved in
thermogenesis in BAT and iWAT, but that taurine could have the potential to stimulate thermogenesis
in muscle through stimulation of ADRB3 expression.

Figure 3. The effects of taurine on the transcriptional expression of β1, 2, 3-adrenergic receptors in
tissues. (A) The relative basal mRNA expression levels of three subtypes of β1, 2, 3-adrenergic receptors
(ADRB1, ADRB2, and ADRB3) were compared in the three tissues of the normal diet (N) group. (B) The
mRNA expression levels were compared to determine if HFD and/or taurine supplementation affected
gene expression in each tissue of the three groups: N normal diet group (n = 5), HFD high-fat diet
group (n = 5), and H + Tau HFD + taurine (2% in drinking water) group (n = 5). Differences between
the three groups were analyzed using the nonparametric Kruskal–Wallis test as described in Figure 2.
Differences were considered statistically significant at p < 0.05. ** p < 0.01; * p < 0.05; ns not significant.
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3.4. Effect of Taurine on Transcriptional Expression of Monoamine Oxidases (MAOs) and Lipin-1 in Fat Tissue
and Muscles of HFD-Induced Mildly Obese ICR Mice

To investigate if taurine affects the expression of MAOs and lipin-1 involved in thermogenesis or
lipid content, the basal expression level of three genes is checked (Figure 4). The expression of MAO-A
is expressed in three tissues at similar levels, but the expression of MAO-B and lipin-1 in iWAT is
much lower than that in BAT and muscle (Figure 4A). Also, taurine and HFD did not greatly affect
the expression of MAO-A, MAO-B, and the lipin-1 gene in BAT and muscle (Figure 4B). In contrast,
HFD increased the expression of the three genes in iWAT, but taurine supplementation significantly
decreased the upregulated expression of these genes. These results indirectly suggest that taurine
supplementation partly contributes to the anti-obesity effect via the inhibition of lipid synthesis in
iWAT but not in BAT or muscle.

Figure 4. Effects of taurine on the transcriptional expression of monoamine oxidase (MAO) and lipin-1
in tissues. (A) The relative basal mRNA expression levels of MAO-A, MAO-B, and lipin-1 were
compared in the three tissues of the normal diet (N) group. (B) The mRNA expression levels were
compared to evaluate the effect of HFD and/or taurine supplementation on each tissue of the three
groups: N normal diet group (n = 5), HFD high-fat diet group (n = 5), and H + Tau HFD + taurine
(2% in drinking water) group (n = 5). Differences between the three groups were analyzed using the
nonparametric Kruskal–Wallis test as described in Figure 2. Differences were considered statistically
significant at p < 0.05. ** p < 0.01; * p < 0.05; ns not significant.

3.5. Effect of Taurine on Infiltration of Macrophages into Fat Tissues

Next, we checked if taurine supplementation inhibits the infiltration of M1 and M2 macrophages
because alternatively activated M2 macrophages can control BAT thermogenesis through the local
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release of catecholamine [39]. As shown in Figure 5A, as expected, the basal transcriptional levels of
both macrophage marker genes (F4/80) and M2 macrophage-specific marker genes (CD206 and CD163)
were higher in iWAT than that of BAT and muscle. In addition, the expression of M1 macrophage
marker genes (CD11c and CD68) in iWAT was significantly higher than in BAT and muscle. This means
that macrophages remain more in iWAT than in BAT and muscle. However, HFD increased the
level of F4/80 in BAT as well as iWAT, suggesting that more macrophages infiltrated into increased
adipose tissues, even though all the marker genes such as M2 macrophage marker genes (CD206 and
CD163) as well as M1 macrophage marker genes (CD11c and CD68) were not significantly increased in
iWAT and BAT (Figure 5B). This suggests that HFD induced the infiltration of more macrophages into
increased fat tissues. In contrast, taurine supplementation significantly decreased the macrophage
marker gene expression (F4/80) in iWAT but had no effect in BAT. This indirectly suggests that taurine
supplementation inhibits the increase of iWAT more than BAT by HFD feeding.

Figure 5. Effect of taurine on the shift from M1 to M2 macrophages in fat tissues. (A) The relative
basal mRNA expression levels of the macrophage marker genes (F4/80) and M1 (CD11c and CD68)
and M2 (CD206 and CD163) macrophage-specific marker genes were investigated to determine how
many M1 and M2 macrophages existed in iWAT and BAT of the normal diet (N) group. (B) The effect
of HFD or taurine supplementation on the mRNA expression levels was investigated to determine if
HFD or taurine supplementation affected the infiltration of macrophages into fat tissues and the shift
of M1/M2 macrophages in iWAT and BAT: N normal diet group (n = 5), HFD high-fat diet group (n = 5),
and H + Tau HFD + taurine (2% in drinking water) group (n = 5). Differences between the three groups
were analyzed using the nonparametric Kruskal–Wallis test as described in Figure 2. Differences were
considered statistically significant at p < 0.05. * p < 0.05; ns not significant.

4. Discussion

The functional role of dietary taurine in reducing obesity has been reported earlier. However, there are
not many studies that document the exact underlying molecular mechanism of its anti-obesity effects.
In our previous study, it was reported that taurine mediated the inhibition of HFD-induced adipogenesis
in iWAT, but not in BAT, while taurine did not affect the HFD uptake for 2 days in a metabolic cage.
This prompted us to investigate if taurine supplementation induced weight loss was a result of
up-regulated thermogenic mechanisms including browning of iWAT and via activation of BAT. It was
our intention to check the expression of thermoregulatory genes such as PGC-1α, UCP-1, Cox7a1,
Cox8b, and CIDE-A in BAT and iWAT involved in this process [40,41].
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As shown in Figure 2, only HFD intake stimulated the expression of these genes in BAT and the
iWAT of this study. This can be explained by the fact that energy expenditure is triggered in response
to caloric excess. HFD induces acquisition of brown adipocyte-associated gene expression features
in white adipose tissue [42]. Also, diet-induced thermogenesis occurs in brown adipose tissue (BAT)
through the increase of UCP1 expression [43]. However, taurine treatment in our study decreased the
expression of PGC-1α, Cox7a1, Cox8b, and UCP-1, which was increased by HFD in iWAT, but not in
BAT. Meanwhile, another recent study showed that taurine exerts anti-obesity effects. The molecular
mechanism was explained by browning WAT through the significantly elevated expression of PGC-1α
and UCP-1 in iWAT [44]. This result was opposite to our result. This discrepancy might be partly due
to the differences in the genetic background based on diet-induced obesity (DIO) between C57BL/6
and ICR mice. Extending support to this thought, obesity-prone C57/BL6 and obesity-resistant SV129
mice have differential expression of UCP-1 level in subcutaneous fat, which could mediate obesity
resistance [45]. Thus, this indirectly suggests that in a mild obese model of ICR mice, taurine-mediated
thermogenesis in BAT could contribute more to weight loss than taurine-mediated browning in iWAT.
Meanwhile, UCP-1 is mainly expressed in BAT, while UCP-3 expression is largely expressed in skeletal
muscle mitochondria [46]. Thus, we wondered how UCP-3 expression is changed in response to HFD
or taurine supplementation. UCP-3 expression in muscle, BAT, and iWAT is changed similarly to
the UCP-1 expression pattern in response to taurine (data not shown). Thus, it was thought that the
taurine-mediated decreased expression of PGC-1α and UCP-1 in iWAT is not an artefact but could
be induced in obesity-resistant ICR mice. Furthermore, the cytochrome c oxidase subunit isoform
Cox7a1 and Cox8b is highly abundant in skeletal muscle and is well-known as brown adipocyte gene
marker, as a cold-responsive protein of brown adipose tissue [47]. The expression of two genes was
also changed with the same pattern in response to taurine. Also, CIDE-A (cell death-inducing DNA
fragmentation factor α-like effector A) is highly expressed in thermogenesis-competent adipose cells
such as brown and brite. As shown in Figure 2, the gene was highly expressed in BAT compared to that
of iWAT and muscle. The CIDE-A expression was also reduced in iWAT by taurine supplementation.

The thermogenic regulation in BAT has been strongly associated with activation of α and β

adrenergic receptors (AR) in the SNS by norepinephrine (NE) [38]. HFD-mediated AR activation
stimulates lipolysis and energy expenditure [48,49]. HFD also activates β-AR [50]. The three subtypes
of β-AR, β1, β2, and β3 (ADRB1, ADRB2, and ADRB3) in adipose tissue are differentially expressed
at a ratio of 3:1:150 in mice at normal temperatures. Higher expression of ADRB3 results in a much
lower affinity for catecholamines than with ADRB1 and ADRB2 [51]. These subtypes are also able to
regulate the expression of the UCP gene family [52]. Disruption of ARDB3 increases susceptibility to
diet-induced obesity in mice [53]. Therefore, ADRB3 seems to be more important for BAT activation,
energy expenditure, lipolysis, and reduced fat mass. Therefore, in this study, HFD induced higher
expression of ADRB3 than ARDB1 and ADRB2 in BAT, but not in iWAT. Taurine also significantly
stimulated the expression of ADRB3 in muscle, giving insight into developing novel targets to
pharmacologically activate energy expenditure in muscle. Meanwhile, ARDB2, which is highly
expressed in skeletal muscle, plays a critical role in the maintenance of muscle mass by enhancing
cAMP signaling through the activation of ADRB2. Several food factors are known to show agonistic
activity at mouse or human ADRB2 [54]. Taurine also has potential to modulate the expression of
ADRBs in tissues. On the contrary, with the activation of ADRBs by taurine, this could inhibit the release
of acetylcholine and norepinephrine at synapses as a modulator of neuronal activity [55]. Also, it is
beneficial in chronic heart failure (CHF) as it deactivates the sympathetic nervous system through
inhibition of catecholamine [18]. Thus, taurine may have no significant effect on ADRB-mediated
thermogenesis because it downregulates the release of catecholamine, even though it greatly stimulated
the expression of ADRB3 in muscle in this study.

Also, catecholamines such as dopamine, norepinephrine, and serotonin are well known to be
associated with emotion. Thus, decreased levels of these three neurotransmitters have been linked
with depression and anxiety [56,57]. Monoamine oxidase inhibitors (MAOIs) are useful at relieving
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symptoms associated with depression, such as sadness or anxiety, because they block the actions of
MAO in the brain [58]. Taurine also showed potential antidepressant activity in chronic unpredictable
mild stress-induced depressive rats. It was explained that taurine may be involved in the regulation of
the hypothalamic-pituitary-adrenal (HPA) axis and the promotion of neurogenesis, neuronal survival,
and growth in the hippocampus [59]. However, in our study, taurine supplementation inhibited the
expression of MAO in iWAT and thus, taurine-mediated MAO inhibition in the brain partly acted
as an anti-depressant in the rat model. This suggests that taurine indirectly induces the change
of catecholamine, but that taurine-mediated MAO expression does not significantly contribute to
weight loss.

Resident adipose tissue macrophages (ATMs) respond to the drastic changes in adipose tissues
under obesity conditions. Obesity induced low-grade inflammation causes a phenotypic shift in ATMs
from so-called alternatively activated “M2” macrophages to classically activated “M1” macrophages
in adipocyte niche through interplay with other immune cells [60]. In this study, taurine inhibited
HFD-mediated infiltration of M1 macrophages but could have the potential to modestly affect
macrophage polarization from M1 to M2, which may be due to weak inflammatory conditions in
our mild obese model. Also, M1 macrophage induces insulin resistance through the production of
pro-inflammatory cytokines and suppresses the induction of thermogenic adipocytes through inhibition
of UCP-1 expression in obese adipose tissues [61]. M2 macrophages contribute to thermogenesis
through activation of ADRB3 by release of catecholamine [39]. Thus, it should be considered that
taurine-mediated macrophage activation contributes to body weight loss.

Recent investigations have demonstrated that dietary supplements containing thermogenic
constituents can increase resting metabolic rate (RMR) and thereby also promote thermogenesis through
BAT activation and beige fat development [62,63]. Dietary constituents contain many phytochemicals
(e.g., capsaicin, resveratrol, curcumin, green tea, and berberine), dietary fatty acids, and trans retinoic
acid, a vitamin A metabolite. Flavonoids, potential bioactive compounds, are also suggested to activate
non-shivering thermogenesis [29]. Furthermore, “non-energetic food constituents” such as smell and
taste through sensory nerve stimulation have been found to be intrinsically linked with the accelerated
expression of diet-induced thermogenesis, which accompanies the burning of fat within brown adipose
tissues (BAT) [28]. These dietary factors have received more attention as a promising solution to
increase energy expenditure. They have potential as therapeutic agents that ameliorate obesity by
activating or inducing BAT and UCP1.

5. Conclusions

In conclusion, the data indirectly provide insights to explore the molecular mechanisms by which
taurine exerts its anti-obesity effect. Our study suggests that these effects are a result of taurine
induced activation of thermogenesis in BAT and inhibition of fat deposition in WAT. Long-term taurine
supplementation in a mildly obese ICR mouse model induced weight loss. However, regulated clinical
trials are necessary to determine the anti-obesity effects of taurine in humans.
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