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ABSTRACT
Cell migration is a highly orchestrated cellular event that involves physical interactions of diverse
subcellular components. The nucleus as the largest and stiffest organelle in the cell not only
maintains genetic functionality, but also actively changes its morphology and translocates
through dynamic formation of nucleus-bound contractile stress fibers. Nuclear motion is an active
and essential process for successful cell migration and nucleus self-repairs in response to com-
pression and extension forces in complex cell microenvironment. This review recapitulates mole-
cular regulators that are crucial for nuclear motility during cell migration and highlights recent
advances in nuclear deformation-mediated rupture and repair processes in a migrating cell.
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Introduction

Cell migration is a hallmark of embryogenesis, wound
healing, immune responses, and the progression of diverse
human diseases including metastatic cancers [1],[2].
Accumulating evidence suggests that the rate-limiting
step in cell migration through the extracellular matrix of
connective tissues in vivo is the deformation of interphase
nucleus [3,4]. The nucleus contains hierarchically struc-
tured nucleic acids and histone complexes that regulate cell
functions by genetic and epigenetic mechanisms [5]. The
interphase nucleus with viscoelastic solid properties [6,7]
can elastically rebound following a mechanical deforma-
tion through multiple physical connections from the extra-
cellular matrix across the plasmamembrane to the nucleus.

While intracellular nuclear positioning, deformation,
and motility were previously thought to be passively
determined by cell movement [8], recent discoveries on
molecular connections between the nuclear envelope and
cytoskeleton suggest that the nucleus can actively change
its shape [9,10] and repair the nuclear envelope to protect
the nucleus [3,11]. More new evidences have revealed
unprecedented active roles of nuclear dynamics during
cell migration. For instance, cell polarization, the essential
step to initiate cell migration [12], requires intracellular
nuclear repositioning [10,13]. Indeed, nuclear mis-posi-
tioning and abnormal nuclear shaping are associated with
the progression of diverse diseases such as cardiomyopa-
thy [14,15] and autosomal recessive axonal neuropathy
[16,17]. Even in three-dimensional (3D) cell migration,

nuclear deformation is regarded as a critical rate-deter-
mining factor in migration of various cancer cells [18,19].

Therefore, molecular understanding of how the
nucleus moves and responds to extracellular and intra-
cellular mechanical stimuli caused by cell migration
could provide a roadmap to find new molecular targets
to develop effective therapies for human diseases. To
this end, in vitro studies of mesenchymal cell migration
have been attempted to recapitulate in vivo cell migra-
tion in conventional planar two-dimensional (2D) plat-
forms or within cellular microenvironment-mimicking
3D extracellular matrices where cells dynamically pre-
sent migration assisting cytoskeletal structures such as
contractile lamellipodia, dendritic pseudopodial protru-
sions, and/or invadopodia [20–23].

3D cell migration operates under molecular path-
ways fundamentally different from 2D cell migration.
Generation of mechanical forces necessary for net
translocation results in dimension-specific differential
cell motility [24,25]. For example, mechanical rigidity
of the extracellular microenvironment can modulate
prostate cancer cell migration differently between 2D
and 3D environment. Cells are more motile in a less
rigid 3D matrix but they tend to move faster in a more
rigid 2D matrix [26]. Moreover, focal adhesion and
wide lamella with filopodia are formed at the leading
edge of the cell located in 2D space [2], while cells in
the 3D matrix, in contrast, form thick protrusions
rather than lamellipodia or filopodia for migration
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[21]. This distinct cell motility and corresponding pro-
trusion dynamics are best illustrated by different
dimension-specific roles of cytoskeleton regulating pro-
teins [e.g., actin-related protein 2/3 (Arp2/3) complex
and neural Wiskott-Aldrich syndrome protein (N-
WASP)] and their relevant signaling pathways [e.g.,
endothelial growth factor (EGF) signaling].

To recapitulate active roles of the nucleus during cell
migration, an extensive overview of molecular machin-
ery involved in the alteration of nuclear morphology
and motion during cell migration is needed. This
review mainly focuses on the role of the nucleus in
relatively slow migration of mesenchymal cells and in
the invasion of metastatic cancer cells. We will discuss
recent advances in our understanding of how cells
deform, translocate, and rotate their nucleus as they
move. Cytoplasmic molecular regulators that mediate
nuclear movement in the migrating cell and molecular
interactions between nucleus and cytoskeleton during
nuclear motion are addressed along with physical inter-
pretation of morphological alteration of the nucleus.
The last section discusses rheological aspects of the
nucleus in a migrating cell and challenges that cells
face during migration, with a special focus on nuclear
envelope deformation, lamina rupture and repair, intra-
nuclear stress asymmetry, and chromosomal damage
when migrating through 3D matrices. Pathological
complications resulting from defects in cell migration
are also highlighted.

Cytoplasmic molecular regulators of nuclear
movement

While dorsal actin cables can advance the nucleus from the
back of the cell forward during nuclear translocation [27],
the nucleus is located close to the centroid of the cell during
nuclear rotation [10]. Since nuclear positioning is a highly
orchestrated intracellular process, complex molecular
machinery is involved in the nuclear membrane and intra-
cellular cytoplasmic space [13]. Below is a description of
the impact ofmolecular factors on nuclearmotility, starting
from those in the cytoskeleton that dynamically bind to the
outer nuclear membrane (ONM) through nucleus-cytos-
keletal connections such as linkers of nucleoskeleton and
cytoskeleton (LINC) complexes. Next, the focus is on
molecular regulators in the inner nuclear membrane
(INM) and associated nuclear lamina and chromatin. An
overview of these regulators is presented in Table 1.

Nuclear motion could be regulated by the mechano-
receptors in the cell surface. β1 integrin transfers the
extracellular force stemming from contraction of type 1
collagen through regulating a PI3k/Akt pathway, which
helps the nucleus to penetrate the narrow pore [28,29].

Actomyosin contraction regulated by Rho kinase
further mediates focal adhesions (e.g., talin, vinculin,
and FAK) through integrin and rear end retraction,
which helps nuclear translocation during restricted
cell migration. Ultimately, the nucleus is squeezed and
pushed to the front edge by rear end actomyosin con-
traction [29,30].

Cytoskeletal proteins play a critical role in mediating
nuclear movement. In particular, actin dynamics is essen-
tial for cell movement, contraction, phagocytosis, cyto-
plasmic division, and intracellular transport [31–34].
During cell migration in a 2D microenvironment, mole-
cular connection between the nuclear envelope and actin
cytoskeleton determines nuclear shape and movement
through highly contractile actin stress fibers that drape
around the nucleus. For instance, well characterized api-
cal stress fibers (ASFs) [35,36] frequently termed as peri-
nuclear actin cap allow the cell to maintain rapid,
sustained, and directed migration [10,37,38] while the
nucleus typically displays elongated shape and transloca-
tional motion without rotation [10,39]. Contrary to 2D
cell migration where unique cytoskeletal architecture
dominantly regulates nuclear motion, vertical asymmetry
of the perinuclear region in a 3D space is not precisely
determined, causing more complex actin polymerization-
based cellular structures (e.g. membrane protrusions) to
dominate nuclear motion [40].

During cell migration, actin regulating proteins con-
trol F-actin formation so that nuclear movement is
coordinated. Refilin proteins including RefilinA and
RefilinB are a novel family of filamin-binding short-
lived actin regulators involved in cellular phenotypic
alterations such as epithelial-to-mesenchymal transition
(EMT) which makes cells to promote metastasis by
decreasing nuclear stiffness that is induced by the loss
of lamin A/C and allows nucleus to translocate to the
foreign microenvironment with severe physical stress
[18,41–43]. RefilinA promotes actin-binding filamin A
(FLNA) to assemble F-actin bundles whereas RefilinB
organizes a perinuclear actin cap [44]. As a downstream
effector of refilin proteins, FLNA coordinates reorgani-
zation of the perinuclear actin cytoskeleton that regulates
nuclear motion in 2D cell migration [45].

In 3D cell migration, Arp2/3 and WASP-family
Verprolin-Homologous Protein2 (WAVE2) mediate
nucleation of the perinuclear actin network, which dis-
rupts perinuclear shell of lamin A/C [46]. Therefore,
cells become more deformable to overcome physical
limits and thus they can migrate in confined channel
[46]. Non-muscle myosin II (NMII) also plays a critical
role in nuclear motion in 3D cell migration by applying
contractile force to the nucleus that enables cells to
penetrate into their neighboring tiny pores formed by
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fibrous network of the extracellular matrix [48]. Since
myosin-II is associated with formin that binds to
barbed ends of actin filaments, formins are also
involved in nuclear motion in 3D cell migration by
modulating cell adhesion and polarization in 3D extra-
cellular matrix [47].

Recent studies have shown that actin reorganization
and the relative position of microtubule-organizing
center (MTOC or centrosome) are both important for
efficient nuclear movement [49,50]. While the precise
position of MTOC depends on various factors (extra-
cellular microenvironment, cell morphology, and a
variety of intracellular molecular events such as chro-
mosome pairing, retrograde actin flow, aggregation of
adhesion molecules [13,51]), the relative position of the
nucleus and centrosome largely determines cell polar-
ity. The distance between MTOC and cell centroid
tends to increase as cell polarization progresses [52–54].

Cell division control protein 42 homolog (Cdc42)
and transmembrane actin-associated nuclear (TAN)
lines are essential molecular factors involved in
MTOC and nucleus positioning during cell polarization
for directed migration [13]. The activity of Cdc42 is
enhanced at the leading edge of migrating cells [54]
where MTOC and Golgi apparatus are placed ahead of
the nucleus [2,55]. This structural configuration stimu-
lates microtubule formation that contributes to lamelli-
podia growth and vesicle delivery from Golgi to the
frontal side of the cell by utilizing protrusion-mediating
proteins [57]. For example, when fibroblasts experience

shear stresses, small GTPase Cdc42 will localize the
MTOC following the direction of flow [2,56].
Moreover, transmembrane actin-associated nuclear
(TAN) lines (referred to as organization of nesprin-2
giant SUN2 and perinuclear actin cables) are known to
induce nuclear rearward movement by retrograde actin
flow to the nucleus [27]. Since retrograde actin flow is
required for nuclear repositioning by exerting a push-
ing force to the nucleus through accumulation of inter-
mediate filaments in front of the nucleus [50], TAN
lines could also promote nucleus and centrosome
orientation for nuclear forward movement
[27,49,57,58].

This section described cytoskeletons and cytoplasmic
regulators involved in nuclear positioning and move-
ment during cell migration. Emphasis is placed on
underlying cytoplasmic molecular mechanisms of 1)
how actin filament and associated proteins could med-
iate nuclear motion, and 2) how MTOC and TAN lines
could play a crucial role in locating the nucleus in a
migrating cell.

Nuclear-cytoskeletal connection in a migrating cell

This section focuses on how molecular regulators that
interact with the nuclear membrane contribute to cell
motility. While the mechanism by which cells interact
with their nucleus for migration depends on tissue type,
common proteins and signaling pathways are involved
in this event [45]. Figure 1 illustrates the architecture of

Table 1. Nuclear molecules involved in cell migration.
Molecular Player Location Function Literature

Refilin Cytoplasm A novel family of filamin-binding short-lived
actin regulators that are involved in cellular phenotypic alterations such as epithelial-
to-mesenchymal transition

[41,44]

Refilin A: promotes the actin-binding filamin A (FLNA) to convert FLNA into an
F-actin bundles
Refilin B: organizes a perinuclear actin cap

Filamin Cytoplasm A downstream effector of the refilin proteins,
coordinates the reorganization of perinuclear actin cytoskeleton and regulates nuclear
motion

[45]

Formin Cytoplasm or
within the
Nucleus

Involved in nuclear motion during 3D cell migration by modulating cell adhesion and
polarization in 3D matrix

[47]

Cdc42 Cytoplasm Involved in nuclear positioning [2,55]
SUN-1,-2 INM Proteins that bind to nuclear lamins are required to position the nucleus by recruiting

Syne-1 and Syne-2 to promote centrosome-nucleus coupling
[61,70]

The Klarsicht-ANC-1-Syne-
Homology (KASH)
domain

ONM. This component of the LINC is involved in the positioning of the nucleus in the cell [68]

Nesprin-1,-2 ONM Connected with the actin cytoskeleton [135]
Nesprin-3 ONM Moves the nucleus forward to create a pressure gradient in the cell, interacts directly

with plectin, and establishes the linkage to the intermediate filaments
[76–78,138]

Nesprin-4 ONM Binds to kinesin-1 and positions the MTOC and Golgi for migration [79]
Lamin Nucleoplasm Fibrous proteins in a mesh network that connect to chromatin directly or indirectly,

exhibits distinct viscoelastic properties to stabilize the nucleus
[38,57,87,88,112]

Lamin A: contributes to cell invasion, stability, nuclear elasticity, resistance to
mechanical stress, gene expression, and differentiation.
Regulates viscous features of the nuclear lamina.
Lamin B: acts as an elastic component of the lamina and restores local deformation
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nuclear envelope that provides a framework of mechan-
otransduction for establishing mechanical interaction
between nucleus and cell. Recently, identification of
molecular components in the nuclear envelope and
their connections with extranuclear cytoskeletons have
revealed a force-induced molecular machinery that can

alter nuclear morphology and movement during cell
migration [3,10,11,38,59,60]. Linkers of nucleoskeleton
and cytoskeleton (LINC) complexes, the most notable
molecular structure interconnecting nucleus and cell,
provide nuclear integrity and aid in cell migration by
connecting cytoskeletal filaments to INM-associated

Figure 1. Molecular factors involved in cell migration. Schematic illustration showing key molecules involved in cell migration at the
nuclear envelope and cell boundary. The highlighted signaling pathway depicts the formation of lamellipodia via Arp2/3 (Right).
Cdc42: Cell division control protein 42 homolog; WASP: Wiskott-Aldrich syndrome protein; WAVE: WASP-family Verprolin-
Homologous Protein; Arp2/3: Actin-related protein 2/3. The cytoskeleton is anchored to the intranuclear lamina through LINC
molecular complexes located in the nuclear membranes (Below). ONM: Outer nuclear membrane; PNS: Perinuclear space; INM: Inner
nuclear membrane; KASH: Klarsicht-ANC-1-Syne-Homolog; SUN: Sad1p; UNC-84.
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proteins [61–64]. The key structure in LINC complex is
the SUN-KASH bridge that has been covered by several
comprehensive reviews [65–67]. What follows is a
structural insight into molecular components of the
SUN-KASH bridge and the underlying mechanism of
how these components interact with cytoplasmic and
nuclear domains.

SUN proteins are inner nuclear membrane proteins
that interact with a Klarsicht-ANC-1-Syne-Homology
(KASH) domain, a component of LINC complexes
residing in the ONM [68]. The KASH domain found
at the C-terminal of Nesprins (numbered 1 to 4) can
bind to different proteins through specific cytoplasmic
domains [69]. SUN proteins are required to position
the nucleus by recruiting Syne-1 and Syne-2 to promote
centrosome-nucleus coupling [61,70]. Nesprin proteins
located in the ONM have various isoforms that mediate
mechano-sensory functions via cytoskeletal connec-
tions [71,72]. Nesprin-1 and −2 bind to F-actin with
calponin homology domains [73]. They also interact
with microtubule motor proteins such as dynein and
kinesin-1 [70,74]. Nesprin-2 is also associated with
emerin, an inner nuclear membrane protein, and the
common C-terminal region of lamin A/C [75].
Nesprin-3 that directly interacts with plectin is con-
nected to intermediate filaments that are essential for
directed cell migration [76,77]. Nesprin-3 dependent
forward movement of the nucleus can create a pressure
gradient in the cell, inducing 3D cell migration in a
manner akin to a piston [78]. Nesprin-4 contributes to
the relative positioning of the centrosome and nucleus
in a migrating cell by binding to microtubule motor
protein kinesin-1 [79].

The relative position of the nucleus in a migrating cell
can change temporarily during repeated cycles of cell
polarization which generally consist of stabilization of a
main protrusion, formation of the leading edge, transloca-
tion of the cell body, and retraction of the rear end [80]. In
the absence of physical confinement, cells preferentially
migrate toward chemo-attractants, switching between two
migration modes that display different nuclear morpholo-
gies. For instance, while persistently migrating motile cells
typically show translocation of an elongated nucleus, slow
and less motile cells exhibit rotation of a round nucleus
[10]. This intracellular nuclear positioning is mediated by
the cytoskeletalmachinery such asmicrotubulemotors and
actin filaments that utilize LINC complexes [49].
Therefore, defects in LINC complex components are highly
associated with the onset of pathological disorders [81]
such as metastatic cancers, arthrogryposis multiplex con-
genita (AMC), and autosomal recessive autism that are
largely attributed to mutations of nesprin and its binding
partners [82]. Mutations in emerin also induce Emery-

Dreifuss muscular dystrophy (EDMD) [83]. Ablation of
both Nesprin-1 and −2 from myocardium results in cardi-
omyopathy and decreased response to biochemical signals
[15]. Outer hair cells with Nesprin-4 mutations can inhibit
cellular polarization, eventually inducing hearing impair-
ment [84]. Diseases resulting from incomplete mechano-
transduction by disruption of LINC complexes have been
summarized in a previous review by Lammerding and
Jaalouk [85].

LINC complex molecules are bound to nuclear lamina
which consists of A-type (A/C) and B-type (B1, B2) lamins
assembled with type IV intermediate filaments to form
~ 15 nm thick mesh network [86]. These lamins inside
the nucleoplasm are connected to chromatin, exhibiting
distinct viscoelastic properties to stabilize the nucleus
[38,87]. A-type lamins contribute to cellular structural
stability and dynamic response of the cell such as cell
invasion, nuclear elasticity, resistance to mechanical stress,
and cell differentiation by reinforcing the connection to the
nuclear envelope [57,88]. In in vivo mimicking 3D micro-
channels, lamin A expression is diminished, causing the
nucleus to become softer and deform more easily [43].
Moreover, nuclei with wild-type lamin is known to con-
serve the nuclear shape better than lamin A-deficient cells
[89]. In the case of stem cell differentiation, while cell fate
depends upon substrate compliance, lamin A expression is
modulated by substrate stiffness [90]. Inside the nucleus,
location-specific activated genes coincide with the organi-
zation of lamin A, demonstrating that A-type lamin also
controls gene expression [38].

Collectively termed laminopathies are rare genetic
disorders associated with defects of the nuclear
envelope largely resulting from mutations of lamin-
expressing LMNA gene. Laminopathic cells are typi-
cally accompanied by destabilized nucleus, increased
fragility, and interrupted signaling [91]. In embryo-
nic fibroblasts, for instance, lack of lamin A/C
diminishes cellular responses to wounding, cell
speed, cytoplasmic elasticity, and the linkage
between MTOC and nuclear envelope [17], resulting
in diverse rare genetic disorders such as muscular
dystrophy, cardiomyopathy with conduction system
disease, partial lipodystrophy, and progeria syn-
drome [88]. Therefore, understanding the molecular
connectivity between nucleus and cell could lead to
the development of new therapeutic strategies tar-
geting nuclear motility and cell motion.

This section discusses how the LINC complex
relays biophysical signals between the nucleus and
cytoskeleton. The role of lamin proteins in con-
structing nuclear lamina in the INM and possible
diseases associated with lamin deficiency are
delineated.
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Mechanism of nuclear remodeling during cell
migration

Nuclear remodeling involves structural deformation of
the nucleus. The dimension of the nucleus such as shape
and size is tightly regulated in the cell [92,93]. Nuclear
morphology is one of the most important characteristic
features in pathology. Abnormal nuclear morphology is
routinely assessed in the clinic owing to its strong rele-
vance to pathological alterations of cellular homeostasis,
including cell migration, proliferation, and disease pro-
gression [94,95]. Nuclear volume can also be a promis-
ing determinant of normal nuclear mechanics involved
in cell migration, e.g., nuclear compression and relaxa-
tion during cell migration through constricted channels
or inside the 3D extracellular matrix [89,96,97]. The
nucleus has reversible elastic behavior and plasticity to
nuclear deformation [98]. Thus, alteration of nuclear
shape and volume can have great impact on a cell’s
ability to migrate through complex tissue environments.
This section highlights molecular and biophysical
mechanisms that regulate the response of the nucleus
to mechanical stresses (Figure 2).

Nuclear shape is strongly dependent on intracellular
and extracellular mechanical stimuli, including pressure
difference across the nuclear membrane [96], cytoske-
letal pre-stress [99], and topology of the nuclear envel-
ope [100]. In higher eukaryotes, nuclear morphology is

tightly regulated by nuclear lamina [101,102]. High
resolution real time imaging [102] and micromanipula-
tion of cell adhesion [39,104] have demonstrated that
nuclear shape is systematically altered during cell
migration through tight molecular interactions between
the nuclear envelope and cytoskeletal components
[10,89]. Nuclear motion during mesenchymal cell
migration, for instance, typically features a repetition
of a persistently migrating translocation and a hesitat-
ing less motile mode that precisely recapitulates the
cycle of cell polarization [10].

Mechanotransduction, the essential relay of biophy-
sical signals during cell migration, is mediated by mole-
cular coupling between nuclear lamina and
cytoskeletons. For example, perinuclear apical actin
stress fibers specifically formed in the cell placed on
2D substrate exert vertical force onto the nucleus
[96,105]. Accordingly, elevated nuclear pressure by the
extranuclear actin stress fibers reorganizes A-type
lamins to concentrate on the apical side of the nucleus
where the compressive force is applied. The pressurized
nucleus can further drive lamin A/C toward a more
condensed state (e.g., compact interlaced polymer net-
works) [38]. Moreover, formation of actin stress fibers
accelerates the assembly of A-type lamins in cells cul-
tured on rigid matrices [9] by inhibiting the affinity of
tyrosine kinases that can phosphorylate A-type lamins
to ultimately induce degradation of nuclear envelope

Lamin A/C deficiency

The karyoplasmic ratio

Osmotic pressure drop

Cytoskeletal tension

Figure 2. Alteration of nuclear morphology. Diverse morphological changes of the cell nucleus depend on the situation that the cell
encounters. The nuclear volume decreases with reduction in osmotic pressure. The perinuclear actin cap aligns the nucleus along
actin filaments during directed cell migration. A-type lamin deficiency attenuates nuclear structural integrity of human cells. The
karyoplasmic ratio, a ratio of nuclear volume to cell volume (N/C ratio), is kept constant.
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architecture [90]. Vertical polarization of A-type lamin
is therefore, the consequence of adaptive response of
nuclear lamina to external physical stimuli conveyed
from the extracellular microenvironment [105]. In
addition to substrate rigidity, various mechanical sti-
muli from extracellular matrix control the property of
nucleus. Curvature of surface that cells adhere to also
determines nucleus shape and physical property.
Concave surface lifts the cell up, while convex surface
pushes the cell down [106] because the surface curva-
ture differs the direction of actin cytoskeletal force.
Consequently, the nuclear structure on the convex sur-
face is compressed and remodels to flat nuclear mor-
phology with enhanced expression of A type-lamins
[106]. Recent studies also demonstrated that surface
topology, modulated by the interspace of PLGA micro-
pillar array, changes nuclear shape. They showed that
deformed nucleus was rapidly recovered by actin cables
around the nucleus. Therefore, these profound evi-
dences demonstrate that the nucleus is a center of
mechanotransduction by remodeling its intra- and
extra- spaces [107]

The karyoplasmic ratio, a ratio of nuclear volume to
cell volume, is known to roughly remain constant in
diverse cell growth conditions, genetic variations, and
various stages of the cell cycle that could affect cell dimen-
sion and DNA content [108]. Therefore, nuclear volume
change largely follows cell volume change [109]. Recent
studies have further demonstrated that nuclear volume is
also determined by a combination of two physical forces
applied to the nuclear surface during migration: (i) an
osmotic pressure drop across the nuclear envelope, and
(ii) hydrostatic pressure difference between cytoskeletal
forces and mechanical resistance of the nuclear envelope
[110]. The functional relationship between changes in
nuclear volume and nuclear shape can be directly
observed by monitoring reductions in nuclear volume
induced by detachment of cells from their adhesive sub-
strate [96]. Indeed, cell detachment can induce decrease
in nuclear volume of up to 50%. It is typically accompa-
nied by the formation of deep invaginations in the nuclear
envelope which in turn induce highly irregular nuclear
shape [96]. These shape changes are due to balance
between cytoskeletal forces and osmotic pressure drop
across the nuclear envelope [111] where small molecules
can flow through nuclear pore complexes that are perme-
able to water molecules [112,113].

This section describes nuclear shape and size
changes that underlie nuclear remodeling. A-type
lamins determine nuclear shape change while A-type
lamin-bound actin stress fibers can relay biophysical
stimuli stemmed from extracellular microenvironments
into the nucleus. Thus, nuclear volume is highly

dependent on osmotic pressure drop across nuclear
membrane as well as cytoskeletal forces mediated by
nuclear lamina-cytoskeletal connection.

The role of nuclear rheology in three-dimensional
cell migration

During in vivo cell migration, cells continuously
encounter situations that they should deform their
nucleus to move through narrow spaces. This nuclear
deformation is enabled by material property of the
nucleus that is conventionally modeled as a viscoelastic
gel. This chapter elucidates rheological behaviors of
nuclear envelope that mediate 3D cell migration.

Intracellular organelles can also adapt to altered
micro-environment that migrating cells experience to
maintain their functions. One of these environmental
challenges is confined space that cells encounter during
their 3D migration inside tissues (Figure 3). Contrary to
cell motion on planar 2D surface, 3D cell migration
consists of five steps: (i) actin assembly, formation of
protrusions, and nuclear rotation; (ii) sensation of ECM
and intracellular nuclear repositioning; (iii) proteolytic
degradation of ECM; (iv) myosin II-dependent posterior
contraction; and (v) rear end releases [64]. As the
nucleus is two- to ten-times stiffer than the cytoplasm
[114], the nucleus must undergo deformation to fit
through extracellular matrix pores and confined narrow
channels formed by aligned muscle or nerve fibers [115].

Nuclear stiffness is not only affected by its intrinsic
rheology (i.e., passively) that is mostly controlled by
nuclear lamina and chromatin, but also governed by
contractile cytoskeletal structure (i.e., actively) that is
bound to the nuclear envelope and dynamically con-
nected to the lamina through protein linkers [43,116].
A-type lamins (e.g., lamin A/C) known to raise nuclear
stiffness [116,117] represent the viscous feature of
nuclear lamina to relieve the mechanical force applied
to the nucleus, ultimately making the nuclear lamina
function as a ‘shock-absorber’ in various tissues.
Meanwhile, B-type lamins (e.g., lamin B1 and lamin
B2) mainly act as elastic components of the nuclear
lamina. Therefore, the nucleus becomes more elastic
when more mechanical forces are applied to restore
local deformation along the nuclear surface [112,118].
Moreover, chromatin density affects the mechanical
property of the nucleus. Chromatin density and nuclear
stiffness are known to be increased when the nucleus is
physically condensed [116]. Therefore, aggressively
invading cancer cells display reduced chromatin con-
densation which induces nuclei to be more deform-
able [119].
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During 3D cell migration, along with physical prop-
erties of the nucleus, nuclear dimension also mediates
cell migration through complex 3D pores [3]. In gen-
eral, pore sizes of less than 10% of non-deformed
nuclear diameter can halt cell migration [114,120]. In
combination with cell migration steps, recent studies
have demonstrated that the rate-limiting step in 3D cell
migration in the matrix is associated with rear end
release that pushes cell forward. It is also closely related
to deformation of lamin network and nuclear envelope
as pore size becomes smaller [64,120,121]. This mate-
rial property-dependent behavior is dominated by acto-
myosin contraction mediated by Rho-associated
protein kinase (ROCK) which allows for sufficient
intracellular tension to initiate cell migration through
narrow pores [64,120]. Therefore, confined cell migra-
tion (e.g., cells located inside narrow micro-channels)
require active acto-myosin contraction that cannot exist
without A-type lamin [43].

Indeed, the role of lamin proteins in cell migration is
not straightforward. It needs further investigation. For
random cell migration in a 3D extracellular matrix, the
nucleus requires A-type lamins to maintain its struc-
tural integrity to facilitate directed cell migration that
requires nuclear deformation with the help of actin
stress fibers [47,122]. In contrast, recent studies per-
formed with microfluidic devices have suggested an
unusual role of A-type lamin in 3D cell migration

where microfluidic devices with a chemotactic gradient
along micro-channels are devised to mimic the archi-
tecture of human connective tissues and monitor con-
stricted cell migration in vitro [122,124]. It has been
found that deficiency in A-type lamins can enhance the
migrating ability of human fibrosarcoma and breast
carcinoma cells so that they can move through con-
stricted channels fast [43]. These results demonstrate
that nuclear pressure is increased during confined cell
movement along pores, resulting in lamina rupture,
chromatin herniation, nuclear fragmentation, and
breakage of double strand DNA [123,124]. Moreover,
nuclear pressure-induced bleb formation along the
nuclear envelope increases with reduced levels of
lamin B1. Thus, lower level of lamin A/C and B2
increases the chance of nuclear rupture because
A-type lamin prevents nuclear deformation [57].
Indeed, cells with lower levels of lamin A/C can migrate
faster in confined micro-channels [3,124].

After constricted cell migration through 3um pore
sized micro-channels, nuclear membrane rupture is
induced [43,125]. Eventually, DNA repair factors (eg.,
Ku80, BRCA1 and RPA1) delocalize from intranuclear
space to all around the cytoplasm and the nonlethal
DNA damage occurrence (i.e., aneuploidy) was followed
by the loss of DNA repair factors [126]. After entering
the narrow pore, cells are elongated and microtubule-
associated transcription factor GATA4 is upregulated,

• Actomyosin contraction
• Optional proteolytic degradation 

• Actin assembly
• Nuclear rotation

Focal adhesion

Actin fiber

ECM 

• Nuclear repositioning
• ECM & protrusion interaction

Pore size <  10% of the original nuclear cross section

10% < Pore size <  100% of the original nuclear cross section

• Releasing adhesion of the rear end
• Nuclear relaxation

Figure 3. Nuclear deformation during cell migration through the extracellular matrix. Cell penetration into the extracellular matrix
requires multiple steps: formation of a protrusion at the leading edge and nuclear rotation, nuclear repositioning and interaction
with the ECM, myosin-dependent contraction, matrix remodeling, and finally release of adhesion force at the rear of the cell.
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which mediates an endothelial-to-mesenchymal transi-
tion (EMT) [127]. Moreover, it is well established that
cell and nuclear morphology switch intermittently
between two distinct nuclear motion – nuclear rotation
and translocation where one directional nuclear translo-
cation is dominant in elongated cell shape (i.e., restricted
cell migration through the microchannel) [10]. These
results suggest that epigenetic changes are induced by
the alteration of cell phenotype that is tightly regulated
by nuclear motion.

This section highlights nuclear rheology regulating
nuclear lamina, nucleus-cytoskeletal connection, and
the nuclear envelope. This segment also provides the
underlying mechanism of nuclear deformation during
3D cell migration that can result in epigenetic altera-
tions associated with devastating human diseases.

Conclusion and perspectives

This review explains how molecular regulators are
involved in nuclear dynamics of migrating cells.
Alteration of nuclear morphology is precisely tuned
to preserve important cellular functions under
mechanical stimuli such as shear and pressure-driven
forces [3,128,129]. Nuclear dynamics is receiving
growing attention from traditional cell biologists, bio-
physicists, as well as clinicians since diverse patholo-
gical processes are tightly regulated by nucleus-cell
interaction during cell migration. The combination
of nanotechnology and cell biology is actively applied
to provide in-depth knowledge of nuclear behavior.
For instance, traction force microscopy, a method
developed and refined over the past twenty years, has
enabled quantification and observation of mechanical
interactions within the cell or between cells and their
surrounding tissues [130,131], allowing for a better
understanding of the role of the nucleus in a migrating
cell. Microfluidic devices have also been improved to
allow for systems that can better mimic 3D in vivo
conditions [123]. While the field of the nuclear
dynamics is quite new, diverse technical advancement
has been made and this advancement aims for the
achievement of both the imaging and quantification
[10,54]. These methods have demonstrated that
nucleus is a dynamic organelle that utilizes molecular
connections between its lamina and the cytoskeleton
(i.e., LINC complexes) which in turn assembles
nucleus-linked actin fibers and generates mechanical
forces to properly orient and drive directed cell migra-
tion [47,131]. Hence, it becomes more convincing that
the nucleus is not passively dragged along within the
migrating cell. Instead, it provides the necessary
mechanical support to the cytoskeleton for efficient

generation of contractile forces [133]. Recent studies
on cardiac diseases such as myotonic dystrophy and
osteoporosis have provided further support for the
notion that the onset of some devastating diseases is
attributed to defects of nuclear dynamics rather than
genetic mutation itself [134,135]. Functional declines
from defects in LINC complex are observed in aging
process [136], and during cancer metastasis from the
primary tumor site to remote tissue, physical proper-
ties of the nucleus act as a crucial factor [43].
Therefore, therapeutic target in nuclear motion is the
nucleoskeletal LINC proteins and intranuclear factors
affecting the nuclear property. Permanent or transient
alterations of cell nucleus during cancer invasion or
under the external mechanical stresses could be attrib-
uted to nuclear deformation in outer/inner nuclear
membrane as well (e.g. fluctuation of lamin density
and chromosomal defects). Consequently, nuclear
morphology and molecular architecture reflect cells’
ability, and eventually predict disease progression of
patients via intranuclear organizations. Additionally,
the way to modulate the nuclear property (e.g. chro-
matin density, A-type lamin expression) toward the
indicator of the healthiness is a new avenue for curing
devastating diseases. Therefore, continued investiga-
tion of the structure and function of molecular factors
within and surrounding the nucleus may allow clin-
icians to develop more efficacious therapies to treat a
variety of diseases.
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