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Abstract 

Background:  Improved methods for sampling outdoor-biting mosquitoes are urgently needed to improve surveil-
lance of vector-borne diseases. Such tools could potentially replace the human landing catch (HLC), which, despite 
being the most direct option for measuring human exposures, raises significant ethical and logistical concerns. 
Several alternatives are under development, but detailed evaluation still requires common frameworks for calibration 
relative to HLC. The aim of this study was to develop and validate a statistical framework for predicting human-biting 
rates from different exposure-free alternatives.

Methods:  We obtained mosquito abundance data (Anopheles arabiensis, Anopheles funestus and Culex spp.) 
from a year-long Tanzanian study comparing six outdoor traps [Suna Trap (SUN), BG Sentinel (BGS), M-Trap (MTR), 
M-Trap + CDC (MTRC), Ifakara Tent Trap-C (ITT-C) and Mosquito Magnet-X Trap (MMX)] and HLC. Generalised linear 
models were developed within a Bayesian framework to investigate associations between the traps and HLC, taking 
intra- and inter-specific density dependence into account. The best model was used to create a calibration tool for 
predicting HLC-equivalents.

Results:  For An. arabiensis, SUN catches had the strongest correlation with HLC (R2 = 19.4), followed by BGS (R2 = 17.2) 
and MTRC (R2 = 13.1) catches. The least correlated catch was MMX (R2 = 2.5). For An. funestus, BGS had the strongest 
correlation with the HLC (R2 = 53.4), followed by MTRC (R2 = 37.4) and MTR (R2 = 37.4). For Culex mosquitoes, the traps 
most highly correlated with the HLC were MTR (R2 = 45.4) and MTRC (R2 = 44.2). Density dependence, both between 
and within species, influenced the performance of only BGS traps. An interactive Shiny App calibration tool was devel-
oped for this and similar applications.

Conclusion:  We successfully developed a calibration tool to assess the performance of different traps for assessing 
outdoor-biting risk, and established a valuable framework for estimating human exposures based on the trap catches. 
The performance of candidate traps varied between mosquito taxa; thus, there was no single optimum. Although all 
the traps tested underestimated the HLC-derived exposures, it was possible to mathematically define their represent-
ativeness of the true biting risk, with or without density dependence. The results of this study emphasise the need to 
aim for a consistent and representative sampling approach, as opposed to simply seeking traps that catch the most 
mosquitoes.
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Introduction
Malaria control primarily relies on the use of insecticide-
treated nets (ITNs) and indoor residual spraying (IRS) 
[1–4], with both of these control measures providing 
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protection by targeting mosquitoes that are host seeking 
or resting indoors. Wide-scale use of these tools has 
yielded significant progress but challenges remain, such 
as insecticide resistance [5–8] and outdoor-biting [9–11]. 
Drivers of outdoor mosquito biting may include human 
behaviours [12–14], plasticity in mosquito behaviours 
(e.g. shifting from feeding indoors to feeding outdoors) 
[7, 15–17] and the effects of some indoor interventions 
[18, 19]. Sampling mosquito populations is a core 
component of malaria surveillance activities [20], and the 
aims of these activities include determining when and 
where people are most at risk. For the best results, this 
surveillance should consistently capture the key drivers 
of biting risk both indoors and outdoors. Unfortunately, 
representative sampling of mosquito vectors remains a 
challenge, particularly in outdoor settings.

The main entomological indicators assessed during 
vector surveillance include human-biting rate (HBR) [16, 
21], sporozoite infection prevalence [22, 23], entomologi-
cal inoculation rate (EIR) [21, 24], time of exposure and 
proportion of exposure prevented by ITNs [25–28]. The 
HBR is a fundamental variable for estimating the trans-
mission of malaria and other mosquito-borne diseases 
[29]. As defined in the Ross MacDonald model, the HBR 
is required for estimation of the reproductive rate (R0) 
of malaria. Both the HBR and sporozoite prevalence are 
required for calculation of EIR [29], which is calculated as 
the number of infectious bites a person would be expected 
to receive in a given location over a given time period. The 
HBR and EIR are frequently used to estimate the impact 
of vector control interventions by highlighting how much 
they reduce exposure [4, 21, 30, 31].

The human landing catch (HLC) has long been the gold 
standard for direct measurement of human exposure and 
other key entomological variables. However, this method 
has several limitations and ethical concerns [32–36] due 
to its requirement that human volunteers expose parts of 
their body (usually lower legs) to mosquitoes [26, 37, 38], 
and this combination of ethical concerns and practical 
limitations has led to the wide recognition that alterna-
tive, exposure-free methods for measuring the HBR are 
needed [38–42]. Alternatives such as CDC light traps 
are already widely used for sampling host-seeking mos-
quitoes indoors [43], but these are unsuitable in outdoor 
settings. The urgency to identify suitable methods for 
measuring exposure outdoors is therefore greater [3, 42, 
44, 45], especially due to the growing recognition of the 
importance of outdoor exposure to residual transmission 
[9, 12, 31].

To date, a number of alternative exposure-free meth-
ods have been independently developed and tested in dif-
ferent settings in Africa [3, 25, 38, 40, 42, 45–48]. Some 
methods provide a good representation of vector species 

composition and their biting activities, but underestimate 
density [3, 41, 45]. Others catch more mosquitoes than 
the HLC and thus overestimate typical human exposure 
[40, 49]. Finally, there are traps that are easy to imple-
ment, but which provide biased estimates of outdoor 
exposure by disproportionately sampling endophilic rather 
than exophilic species [50]. These strengths and weak-
nesses suggest that different traps are optimal for differ-
ent surveillance applications. Unfortunately, there are no 
standardised calibration methods to allow estimation of 
HLC-equivalent exposure from the range of different out-
door sampling methods. Development of a standardised 
and validated calibration framework for such prediction 
would enable the results  and methods from different stud-
ies to be compared. Such a calibration tool would need to 
reflect the potential non-linear relationship between trap 
counts and HLC values; this means that no single conver-
sion ‘value’ between methods may apply across the full 
range of mosquito densities.

Several studies have indicated that trap performance 
relative to the HLC is density dependent [43, 51], 
although it should be noted that density dependence is 
often considered in terms of “intraspecific” density (e.g. 
the baseline density of the target vector species [42, 
51]) but not the density of all mosquitoes, target vec-
tors or not, that are attracted to the trap. However, the 
mechanisms that could give rise to intraspecific density 
dependence in trap performance could also generate 
dependence, with the overall densities of all mosquitoes 
attracted to the trap, including other species not of inter-
est. While such interspecific dependence on the wider 
mosquito community is plausible, this has not been for-
mally evaluated in trap evaluation studies.

The overall aim of this study was to provide an extensive 
comparison of six exposure-free traps for three vectors 
(Anopheles arabiensis, Anopheles funestus and Culex 
spp.). Specifically, we aimed to (i) assess the contribution 
of intra- and interspecific density dependence to trap 
performance, and (ii) develop an interactive calibration 
tool (in the form of a Shiny App) through which the 
number of a given species caught in an HLC can be 
predicted from catches made by alternative traps.

Methods
Study area and vector species
Mosquito trapping data were collected from six 
adjacent villages in the Ulanga and Kilombero districts 
of south-eastern Tanzania: Kivukoni (8.2135°S, 
36.6879°E), Minepa (8.2710°S, 36.6771°E), Mavimba 
(8.3124°S, 36.6771°E), Milola (8.3306°S, 36.6727°E), 
Igumbiro (8.3511°S, 36.6725°E) and Lupiro (8.385°S, 
36.670°E). Data were collected over 12 months between 
2015 and 2016. The valley has relatively high mosquito 
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abundance which peaks at the end of the rainy season. 
The common vectors of malaria transmission are An. 
arabiensis and An. funestus [16, 24, 52]. Mosquitoes in 
the Culex genera are also highly abundant, with some 
species being potential vectors for arboviruses found 
in the study area [53, 54].

Data collection
Mosquito sampling was carried out during both the 
wet and dry seasons, using six different traps for 
sampling outdoor-biting mosquitoes around human 
dwellings. The traps were: the Mosquito Magnet trap 
(MMX) [55], BG-Sentinel trap (BGS) [56], Suna trap 
(SUN) [3], Ifakara Tent Trap-C (ITT-C) [48], M-Trap 
(MTR) [57], M-Trap fitted with CDC Light trap 
(MTRC) (this study) and the HLC [3]. Most of these 
traps have been extensively described elsewhere, with 
the exception of the MTR fitted with a CDC light 
trap (MTRC), which was adapted from the original 
exposure-free M-Trap designed by Mwangungulu 
et  al. [57]. Briefly, the HLC method involved male 
volunteers aged between 18 and 35  years who sat 
on a chair with their legs exposed and collected the 
mosquitoes that attempted to bite, using the mouth 
aspirator. Mosquitoes were sampled for 45  min each 
hour, allowing 15  min for rest. Each sampling village 
had its own set of volunteers.

In the present study, the original MTR was divided 
into two compartments made of UV-resistant shade 
netting: one in which a human volunteer sat to attract 
mosquitoes and the other section in which mosquito 
are entered [57]. A CDC light trap was suspended 
inside the other section of the trap to attract more 
mosquitos to the light source.

The traps were located at least 100  m apart. We 
assumed that the distance of 100  m offers sufficient 
independence between the traps as described by pre-
vious authors [58, 59]. Initial trap allocation was ran-
dom, but their positions were switched over successive 
sampling nights in a Latin square design. In this way 
each trap was used in each position once over a 7-night 
cycle. After completion of each cycle, the study team 
moved to the next village so that one round of sampling 
in all six villages was completed over 42 trap-nights. 
Six rounds of data collection were completed, span-
ning the wettest and the driest periods of the year (252 
trap-nights between April 2015 and April 2016). Mos-
quito sampling was done overnight from 6 pm to 6 am. 
The collected mosquitoes were morphologically sorted 
by taxa. A subsample of An. gambiae senso lato (s.l.) 
(n = 1405, 26% of total) was analysed by PCR [60] to 
assess sibling species composition within the complex.

Model fitting
The main goal of our analyses was to create a calibration 
tool to evaluate outdoor mosquito traps and to validate the 
tool by comparing the performance of candidate trapping 
methods relative to HLC (regarded in this study as the “gold 
standard”). In particular, we wanted to test the shape of the 
association between the numbers of mosquitoes collected 
by each trap type with those collected by the HLC. First, we 
pooled all the hourly collections into a single collection cup 
per trap per night. Then, for each of the focus mosquito 
groups (Culex genera, An. arabiensis and An. funestus s.l.), 
we modelled HLC catches as a function of the catching rate 
of each alternative trap.

Four general linear models were developed within a 
Bayesian model fitting framework to allow us to test for lin-
ear and non-linear associations through increasing the lev-
els of complexity. The Bayesian approach allowed specific 
constraints to be placed  on the parameters based on bio-
logical plausibility; this took the form of priors and uncer-
tainty when converting the counts from alternative traps 
into HLC-equivalent values in the form of full posteriors.

For any given trap and mosquito group, we defined the 
response variable (Ni) as the number of female mosquitoes 
on every ith sampling night. Preliminary investigation of 
the data using Poisson likelihood showed over-dispersion 
for all three mosquito groups. Our final models did not 
account for other environmental covariates at specific trap 
locations (e.g. temperature, humidity). We accounted for 
the over-dispersion by using a negative binomial likelihood 
model formulated as a Gamma-Poisson mixture distribu-
tion [61]:

with

where the Poisson rate �i is defined by the shape of the 
relationship between Ni and the number of mosquitoes 
collected with the alternative trap ( ni, Table 1).

Since the algebraic form of this relationship is not 
known, we made three mutually inclusive assumptions 

Ni ∼ Poisson(θ i�i)

θ i ∼ Gamma(τ�i, τ�i)

Table 1  Description of models used to investigate the 
relationships between female mosquito catches by human 
landing catch and the alternative traps

Model Structure

Model 1 log (�i) = β1ni

Model 2 log (�i) = β1ni + β2n
2
i

Model 3 log (�i) = β1ni + β2nimi

Model 4
log (�i) = β1ni +

K∑

k=1

βkniski
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with specified mathematical definitions, as follows: (i) 
that the relationship must start at the origin (i.e. when 
HLCs catch zero mosquitoes, the other traps will, on 
average, also collect zero mosquitoes); (ii) that the rela-
tionship is positive (i.e. no negative relationships between 
trap catches); and (iii) that any given trap could poten-
tially suffer from a density effect (i.e. the slope of the rela-
tionship is not constant and it can change according to 
the baseline abundance of mosquitoes, either only of the 
same mosquito group or of all mosquitoes).

To define �i we therefore formulated four possible sce-
narios to describe the relationship between HLCs and 
other trapping methods as summarised in Table  1 and 
Fig. 1. In Model 1, we considered a simple linear relation-
ship between Ni and ni (Table 1; Fig. 1a). In Model 2, we 
tested if the efficiency of the alternative trap was depend-
ent on the density of the focal mosquito (e.g. “intra-spe-
cific” density dependence) by adding a quadratic term n2

i
 

(Table  1; Fig.  1b). In Model 3, we tested if the captures 
of a given group by a given trap were dependent on the 
abundance of the other taxonomic groups (e.g. “inter-
specific” density dependence) by adding, an interaction 
term between ni and the number of all the females from 
other mosquito groups collected with the same trap ( mi ) 
(Table 1; Fig. 1c). Model 4 was similar to Model 3, but we 
considered all the other Ki taxonomic groups separately. 
Therefore, Model 4 included all the pairwise interac-
tion terms between ni and the number of females of each 
kth mosquito group (ski) (Table 1; Fig. 1d). Our analysis 
mainly focussed on three mosquito groups, but we col-
lected a higher number of species hence K > 3 (Addi-
tional file 1: Table S1).

The analysis was performed in the statistical environ-
ment R [62], with Bayesian model fitting to the data done 
using the program JAGS [63] interfaced within R via the 
package rjags [64]. For parameters β1 , β2 and βk we used 
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Fig. 1  Illustration of models used to investigate the relationship between number of female mosquitoes collected with human landing catch and 
six alternative traps. N = Number of female mosquitoes collected with human landing catch; n = number offemale mosquitoes collected with a 
given alternative trap; m = pooled femalemosquitoes of all the other species collected with the same alternative trap of n; s1,s2, s3 = number of 
female mosquitoes of each of the other K species, where Krefers to all the species collected we developed the focus 1 (here  K = 3).  A Model 1 
considers a simple linear relationship with n. B Model 2 considers a quadratic term n2. C Model 3 includes an interaction term between n and the 
number of all females of the other species collected with the same trap (m). D Model 4 considers all the pairwise interaction between n and s1,s2, s3
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a gamma prior (shape = 0.1, rate = 0.1). The prior for β1 
was chosen to ensure a positive relationship between 
ni and Ni and a positive effect of the quadratic and the 
interaction terms for β2 and βk . To achieve convergence, 
the models were run for up to 3x104 iterations. Means 
of posterior distributions with corresponding credible 
intervals were obtained for each model coefficient β . We 
compared different models by their deviance informa-
tion criteria (DIC) and the goodness of fit of each model 
using pseudo R2 values. Models with the lowest DIC were 
selected as best. As a further cross-validation, we ran-
domly split the data into a training (75%) and a test (25%) 
data set, and we calculated the root-mean-square error 
(RMSE), as the average prediction error by each model.

Interactive calibration tool
We designed a lookup table (Table  3) containing the 
means of posterior predictions for different combinations 
of mosquito taxa, trap types and models. This allowed us 
to predict the expected number of a given mosquito taxa 
from an HLC (with credible intervals) based on the num-
ber caught in the alternative traps. We also developed an 
interactive online tool, in the form of an R Shiny App [65] 
to facilitate these evaluations. This tool provides users with 
an interactive graphical user interface (GUI) to select the 
number of captured mosquitoes for a group of interest by 
trap type, and to explore the predicted number of mosqui-
toes caught in an HLC by method.

Results
The statistical correlations between HLCs and other 
trapping methods for each of the three mosquito 
groups are summarised in Table  2. The fit of models 
varied between trap types and mosquito group, with 
correlations with the HLC (R2 values) ranging from 0.8 to 
53.4% (Table 2). The strength and nature of associations 
(Models 1–4) varied considerably between mosquito 
groups and traps; thus, no one single model was best in 
all cases. We provide an example of a prediction table 
(Table  3) which describes how mosquito abundance 
in a HLC can be estimated from catches made by the 
alternative traps (using Model 1, with intervals grouped 
by 10). Other model (Models 2–4) outputs/predictions 
can be easily retrieved from the Shiny App tool. 
Environmental covariates (temperature and humidity) 
were dropped during the initial model fitting process as 
they were not improving the goodness of fit of the model 
(Models 1–4).

Anopheles arabiensis
In most of the models, trap catches of An. arabiensis 
were only weakly correlated with HLC counts [Table  2 
(b)]. SUN was the only alternative trap with a consistent 

correlation with the HLC of ≥ 17% (R2 > 17). For this trap, 
the relationship with HLC catches was best described 
by Model 4 [R2 = 19.4; Table  2 (b)], which incorporates 
both intra- and interspecific density dependence. How-
ever, the DIC values however did not vary much between 
models of differing complexity [ΔDIC = 1.32; Table 2 (b)]. 
Overall, SUN consistently underestimated HLC catches 
(for example 100 mosquitoes collected with SUN corre-
sponded to 194 HLCs [95% credible intervals (CIs): 142–
257; Table 3 (b); Fig. 2b).

BGS was the only trap where R2 values substantially 
increased with model complexity. Here, the most 
complex model (Model 4), which incorporated intra- 
and interspecific density dependence, had an R2 value of 
17.2% [Table 2 (b)]. For all other trap types, correlations 
with the HLC were best explained by the simplest 
linear relationship (Model 1). Collections from BGS 
also underestimated the number of mosquitoes caught 
by HLC, and to a larger extent than the SUN [e.g. 100 
mosquitoes caught by BGS is equivalent to 423 (95% CIs: 
268–629) by HLC; Table 3 (b); Fig. 2b].

The MMX trap had the poorest correlation and was 
least representative of the HLC (R2 range: 0.8–2.5%), 
particularly at low densities where it often failed 
to capture any individuals. This trap therefore also 
significantly underestimated the catches relative to HLC 
[for example 100 catches of MMX is equivalent to 325 
(95% CI: 187–504); Table 3 (b); Fig. 2b].

Anopheles funestus
There were no major differences between the alternative 
models when describing associations between HLC 
and the other traps for collecting An. funestus. Thus, on 
the basis of parsimony, we concluded that the simple 
linear model (Model 1) was sufficient to describe these 
relationships. BGS was the most highly correlated with 
the HLC (R2 range: 46.6–53.4%). The highest R2 value 
was from the most complex model (Model 4). However, 
similar to An. arabiensis, the BGS underestimated the 
number of An. funestus caught by HLC [Table 3 (c)] while, 
in contrast, the MTR, MTRC, ITT-C and MMX traps 
were only moderately correlated with HLC (R2 range: 
30.0–37.4%); the SUN trap was the worst performing trap 
for this species [Table 2 (c)].

In general, predictions obtained with all An. funestus 
trap models (Models 1–4, for all trap types) were char-
acterised by very large credible intervals (Fig. 2c), mean-
ing that there was insufficient precision to define a useful 
calibration factor. This large uncertainty amount of HLC-
equivalents of trap catches was particularly pronounced 
at higher An. funestus densities. In that sense, the trap 
that resulted in a (relatively) narrower prediction was 
MTR, where for 100 mosquitoes collected, the model 
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would estimate 49 HLC-equivalents, with 95% CIs rang-
ing from 10 to 126 [Table 3 (c)].

Culex species
Overall, there were moderate correlations between the 
alternative traps and HLC for Culex catches compared 
to those for the Anopheles groups (Table  2). However, 
there were no major differences between the tested 

models (based on ΔDIC estimates); thus, the simplest 
linear model was adopted based simply on being the 
thriftiest. Full details of all models are presented in 
Table  2 (a). Catches from MTRC and MTR traps had 
the highest correlations with HLCs (R2 range: 44.2–
45.4%). On the other hand, MMX and ITT-C were the 
worst performing traps and significantly underesti-
mated the HLC catches [Table 2 (a)].

Table 2  Summary (R2, DIC and RMSE values) of models used to investigate the relationship between the numbers of female 
mosquitoes collected with human landing catch and the six alternative outdoor traps

DIC Deviance information criteria, R2 coefficient of determination, RMSE root-mean-square error
a See Table 1 for description of models
b SUN Suna trap, BGS BG-Sentinel trap, ITT-C Ifakara Tent Trap version C, MMX Mosquito Magnet-X trap, MTR-C M-Trap combined with CDC light source, MTR M-Trap. 
See “Data collection” section for references pertaining to each trap

Mosquito species 
and modela

Alternative outdoor trapsb

SUN BGS ITT-C

R2 DIC ΔDIC RMSE R2 DIC ΔDIC RMSE R2 DIC ΔDIC RMSE

Culex spp. (a)

 Model 1 27.3 1026.6 2.36 49.57 25.1 1038.3 0.00 49.37 19.0 769.3 5.07 48.35

 Model 2 27.1 1025.3 1.05 49.63 25.1 1045.2 6.88 49.48 19.2 770.2 5.88 48.52

 Model 3 27.2 1027.5 3.25 49.66 24.9 1040.6 2.32 49.54 19.4 769.1 4.78 64.60

 Model 4 28.1 1024.3 0.00 49.25 25.5 1044.5 6.23 49.15 21.9 764.3 0.00 43.39

Anopheles arabiensis (b)

 Model 1 17.4 780.3 0.00 36.69 10.8 549.6 0.61 61.31 9.3 534.7 6.37 64.93

 Model 2 17.5 780.3 0.03 36.71 10.8 549.0 0.00 61.35 9.4 528.3 0.00 64.96

 Model 3 17.4 782.5 2.21 36.74 10.7 550.9 1.89 61.75 10.4 534.5 6.17 64.16

 Model 4 19.4 781.6 1.32 36.06 17.2 551.2 2.19 61.98 11.8 530.6 2.30 64.05

Anopheles funestus (c)

 Model 1 14.6 76.5 2.79 8.18 46.6 52.9 0.00 4.24 33.9 111.5 0.00 3.81

 Model 2 14.5 77.0 3.30 8.20 50.2 53.7 0.78 4.10 33.6 112.5 0.97 3.83

 Model 3 14.5 76.0 2.29 8.20 52.6 53.4 0.50 3.37 34.3 112.4 0.87 3.84

 Model 4 16.2 73.7 0.00 8.19 53.4 53.8 0.87 3.96 34.3 112.2 0.69 3.84

Mosquito species 
and model

MMX MTR-C MTR

R2 DIC ΔDIC RMSE R2 DIC ΔDIC RMSE R2 DIC ΔDIC RMSE

Culex spp. (a)

 Model 1 12.4 841.0 12.50 67.48 44.7 1236.5 7.95 42.44 44.2 1174.7 6.00 45.00

 Model 2 12.8 838.7 10.27 67.46 44.8 1236.1 7.62 42.38 44.2 1177.1 8.42 45.04

 Model 3 12.8 828.5 0.00 67.47 44.7 1228.5 0.00 42.35 44.2 1168.7 0.00 45.09

 Model 4 15.9 835.5 7.03 66.15 45.4 1235.8 7.29 44.35 43.8 1172.5 3.77 45.08

Anopheles arabiensis (b)

 Model 1 0.8 383.9 3.51 47.19 13.1 991.6 4.43 55.74 11.3 1077.6 12.95 51.96

 Model 2 0.4 382.8 2.46 47.30 10.0 1000.8 13.68 55.74 11.3 1073.0 8.37 51.97

 Model 3 1.4 385.8 5.42 47.23 13.1 987.1 0.00 55.73 11.3 1070.5 5.84 51.96

 Model 4 2.5 380.3 0.00 46.75 12.7 990.5 3.39 55.86 11.1 1064.6 0.00 51.99

Anopheles funestus (c)

 Model 1 31.8 40.9 0.62 5.74 32.6 151.1 1.43 5.56 36.8 120.0 0.00 4.62

 Model 2 30.6 40.3 0.00 5.79 32.4 149.6 0.00 5.58 36.6 120.6 0.56 4.63

 Model 3 30.6 40.7 0.35 5.80 33.4 151.2 1.53 5.51 36.3 122.5 2.45 4.64

 Model 4 30.0 40.4 0.09 5.84 37.4 152.8 3.13 5.20 37.4 120.7 0.65 4.59
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Interactive calibration tool
To support detailed assessment and comparison of these 
and any future trap types for outdoor-sampling, we devel-
oped an interactive calibration tool incorporating the key 
parameters as identified in the analysis above. This tool 
is designed with simple user interfaces to simplify model 
inputs and outputs. For example, reporting full conver-
sion tables for Models 3 and 4, which include density 
dependence, would be challenging since the associated 
interaction terms would require every possible combi-
nation of mosquito group, trap type and catch range. To 

obtain estimates according to these models, readers can 
use of our interactive online tool, which is available as 
an R Shiny​ App. The coefficients of these models will be 
updated regularly as additional data are gathered. This 
tool may be expanded to cover additional geographic 
regions and mosquito species not currently captured. The 
tool is hosted by an online server of the “Boyd Orr Cen-
tre for Population and Ecosystem Health” (University of 
Glasgow), and it is freely available at https://​boydo​rr.​gla.​
ac.​uk/​lucan​elli/​trapc​alibr​ation/.

Table 3  Predicted values for estimating the expected mosquito catches by human landing catch and alternative traps, according to 
the linear model (Model 1)

Numbers in the second column refer to the number of mosquitoes collected with a given trap. To obtain the estimate of the equivalent number that would be 
collected with human landing catch (HLC), refer to the column corresponding to the trap itself. Numbers in brackets are (95% credible intervals)

Mosquito species Collected Expected HLC

SUN BGS ITT-C MMX MTR-C MTR

Culex spp. (a)  10 10 (9–11) 11 (10–12) 8 (8–9) 25 (22–30) 9 (8–9) 9 (9–10)

 20 20 (18–23) 23 (20–25) 16 (14–18) 68 (54–83) 17 (16–19) 19 (17–20)

 30 30 (26–35) 35 (30–39) 23 (20–26) 120 (94–150) 25 (23–28) 27 (25–30)

 40 41 (35–47) 47 (40–54) 30 (26–35) 179 (137–230) 33 (30–37) 36 (33–40)

 50 51 (43–59) 59 (49–68) 37 (32–43) 246 (185–320) 41 (37–46) 45 (40–51)

 60 61 (51–72) 71 (59–83) 44 (37–51) 318 (236–418) 49 (44–55) 54 (48–61)

 70 71 (59–84) 83 (69–98) 51 (43–59) 395 (290–525) 56 (50–63) 63 (55–71)

 80 81 (68–97) 96 (79–114) 57 (48–68) 476 (347–639) 64 (57–72) 72 (63–81)

 90 92 (76–110) 108 (89–129) 64 (53–76) 562 (406–760) 72 (63–81) 80 (70–91)

 100 102 (84–123) 121 (99–145) 70 (59–84) 652 (467–888) 79 (70–90) 89 (77–102)

An. arabiensis (b)  10 14 (12–16) 20 (16–25) 20 (17–24) 18 (14–22) 13 (11–14) 16 (14–18)

 20 31 (25–37) 51 (38–66) 50 (39–64) 43 (30–57) 27 (23–32) 36 (31–43)

 30 49 (39–60) 87 (62–117) 86 (63–112) 71 (48–99) 43 (36–51) 59 (49–71)

 40 68 (53–85) 126 (88–175) 125 (90–166) 102 (66–146) 59 (48–70) 84 (68–102)

 50 88 (67–111) 170 (115–239) 168 (118–227) 135 (85–198) 75 (61–91) 109 (88–135)

 60 108 (82–139) 216 (144–308) 213 (147–292) 170 (105–253) 92 (74–112) 136 (108–170)

 70 129 (97–167) 264 (174–382) 261 (178–361) 207 (125–311) 109 (87–134) 164 (129–207)

 80 150 (112–196) 315 (204–460) 311 (209–435) 245 (145–373) 127 (100–157) 192 (150–244)

 90 172 (127–226) 368 (235–543) 363 (241–512) 284 (166–437) 144 (114–179) 222 (172–283)

 100 194 (142–257) 423 (268–629) 417 (275–592) 325 (187–504) 162 (127–203) 251 (194–323)

An. funestus (c)  10 2 (1–7) 22 (3–67) 7 (3–13) 5 (1–16) 10 (5–16) 7 (3–11)

 20 3 (1–12) 63 (4–237) 12 (3–28) 9 (1–35) 19 (8–37) 12 (5–23)

 30 3 (1–17) 118 (4–497) 17 (4–44) 13 (1–58) 29 (10–60) 17 (6–36)

 40 4 (1–21) 185 (5–840) 22 (4–60) 17 (1–81) 39 (12–85) 22 (6–48)

 50 4 (1–26) 263 (5–1262) 27 (5–77) 21 (1–106) 49 (14–111) 26 (7–61)

 60 5 (1–30) 352 (6–1760) 32 (5–95) 26 (1–131) 59 (16–139) 31 (8–74)

 70 5 (1–34) 452 (6–2332) 37 (6–113) 30 (1–158) 69 (18–167) 35 (9–86)

 80 6 (1–38) 561 (6–2975) 42 (6–131) 34 (1–185) 79 (20–196) 40 (9–99)

 90 6 (1–42) 679 (7–3689) 47 (6–149) 38 (1–213) 89 (21–226) 44 (10–113)

 100 7 (1–46) 807 (7–4471) 51 (6–167) 43 (1–242) 99 (23–256) 49 (10–126)

https://boydorr.gla.ac.uk/lucanelli/trapcalibration/
https://boydorr.gla.ac.uk/lucanelli/trapcalibration/
https://boydorr.gla.ac.uk/lucanelli/trapcalibration/
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Discussion
Despite the growing importance of outdoor-biting 
mosquitoes and their role in malaria transmission in 
different settings, there are limited methods for sampling 
outdoors. HLCs remain common and are sometimes 
considered to be the gold standard, but there are 
multiple ethical, cost and logistical concerns limiting 
its application [66, 67]. Multiple alternative tools have 
therefore been tested as potential HLC replacements in 
different settings [25, 39, 41, 43, 48, 50, 68]. While most 
efforts have focused on finding an alternative that catches 
as many mosquitoes as the HLC, it is now recognised 
that what matters more is how representative the catches 
from any specific trap are relative to HLCs. This means 
that efforts to improve surveillance methods should 
include not just new traps, but also a statistical tool for 
assessing their representativeness.

In this study, we therefore developed and validated a 
statistical framework for predicting credible intervals 
of HLC-derived exposure rates based on catches from 

multiple exposure-free alternatives. We have provided 
extensive comparison and correction factors for the 
different trapping methods, as well as evidence for the 
most representative alternative to the HLC. Furthermore, 
we have translated the results of our modelling approach 
into an easy-to-use interactive calibration tool that 
generates the expected means and credible intervals of 
nightly HBRs (using HLC as a proxy) based on inputs of 
other trap catches.

Among the several trapping methods that have been 
proposed for outdoor mosquito sampling of malaria 
vectors, only a few have been calibrated relative to the 
HLC [43], and even fewer have been calibrated in the 
outdoor setting [42, 45]. These traps provide disparate 
levels of efficacy relative to the HLC, and they rely 
primarily on two mutually inclusive principles: (i) the 
substitution of human subjects with human odours and 
a carbon dioxide source [4, 46]; or (ii) a trap design that 
protects human volunteers from bites with physical 
barriers [25, 41, 45, 57]. Many studies have assessed the 

A

Fig. 2  Expected number of female Culex spp. (A)  Anopheles arabiensis (B) and Anopheles funestus (C) mosquitoes collected with HLC (y-axis), given 
the number of females collected with alternative traps (x-axis). Continuous line is the prediction of a Gamma-Poisson model assuming a linear 
relationship; dashed lines are 95% credible intervals. Abbreviations: HLC, Human landing catch; SUN, Suna trap; BGS, BG-Sentinel trap; ITT-C, Ifakara 
Tent Trap version C; MMX, Mosquito Magnet trap; MTRC, M-Trap-Trap combined with CDC light source; MTR, M-trapTrap
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correlations between mosquito abundance as estimated 
from the HLC and an alternative trap [3, 38, 40, 41, 
45, 48, 51, 69, 70], but only a few provide the relevant 
quantitative estimates of “accuracy” (i.e. how close the 
estimates are to the HLC) and precision (i.e. how variable 
the estimates are) [38, 40, 41, 45, 48]. Furthermore, to our 
knowledge, none have provided an explicit calibration 
tool to facilitate rapid predictions of mosquito counts 
from an alternative trap into an HLC-equivalent. Such a 
calibration tool would need to reflect the potential non-
linear relationship between trap counts and HLC values, 
which means that no single conversion “value” between 
methods may apply across the full range of mosquito 
densities. This hypothesis is backed up by a multi-
country study which evaluated the limitation of CDC 
light traps on African malaria vectors after observing the 
non-linearity [43].

In general, the overall measure for goodness of fit 
(R2) for models predicting HLC counts was highest in 
An. funestus, followed by Culex spp. and An. arabiensis. 
Despite the higher value of R2 in An. funestus, the 
wider credible intervals were probably due to the much 
small sample size of this species (total mosquito caught 

with HCL: An. funestus = 226, An. arabiensis = 5282, 
Culex = 7191), although it could also have been affected 
by other ecological features that were not directly 
captured with this study (e.g. other environmental 
conditions apart from humidity and temperature). 
During the model fitting exercise, temperature and 
humidity were excluded via the model selection process. 
The proportion of An. funestus in the study area 
compared to other species such as An. arabiensis and 
Culex has been historically low [10, 16, 24] although the 
former species carries a significant amount of infection 
compared to other commonly known malaria vectors 
[24].

The performance of some alternative traps in 
comparison to the HLC has been shown to be density 
dependent in several investigations [43, 51] although  
such density-dependent impacts are usually only 
considered in terms of “intraspecific” dependencies, 
such as the baseline density of the target vector species 
[42, 51], overlooking the larger mosquito community. 
However, the same mechanisms that cause intraspecific 
density dependence in trap performance may also cause 
dependence on the overall densities of all mosquito 

B

Fig. 2  continued
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species lured to the trap, including species that are not 
of public health importance. While such reliance on the 
wider mosquito community is plausible, it has yet to be 
tested in trap evaluation studies. Therefore, the present 
study and the calibration tool that we developed also 
included a robust assessment of how density dependence 
may play a role. Models 3 and 4 included these variables 
and will allow users to incorporate these as covariates 
when predicting outdoor-biting rates in their settings of 
interest.

Overall, this study found little evidence that the relative 
performance of the trapping methods investigated here 
is modified by the density of the target mosquito taxa or 
other members of the mosquito community. Models that 
incorporate intra- or interspecific density dependence 
in trap performance did not yield any substantial 
improvements over those assuming simple linear 
relationship between mosquito counts in the HLC and 
the alternative method. This indicates that neither intra- 
nor interspecific density dependence has a large impact 
on the relative efficiency of the alternative traps tested 
here. Given the wide range of trap catches, the calibration 
tool we developed here allows users to incorporate such 

density-dependence effects (both within and between 
species) and to examine if these are applicable in their 
settings. Previous studies detected (intraspecific) density 
dependence in the performance of some trapping 
methods [45, 48, 49], but evidence of density dependence 
in trap performance can be variable even for the same 
trapping method. For example, studies investigating the 
performance of the Mosquito Electrocuting Trap relative 
to the HLC have detected density dependence in some 
cases [25, 43], but not others [45].

One limitation of this study is that while the HLC is 
broadly considered to be the gold standard for collecting 
host-seeking mosquitoes both indoors and outdoors, we 
only focussed on traps for outdoor sampling. Although we 
compared a large number of trap types commonly used 
in Africa settings, other traps may perform differently 
and potentially better than some of the candidate traps 
investigated here [25, 41, 45]. Additional studies including 
additional alternative traps for indoor and outdoor use 
would be of further value—with the calibration tool 
developed here providing a useful framework for their 
evaluation and comparison. Also based on the results 
presented here, we recommend that for whatever trap 

C

Fig. 2  continued
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used, the users should generate credible estimates of what 
the HBRs (as estimated from HLC) could be. Due to the 
potential variation in trap performance between different 
ecological settings and mosquito species, we do not yet 
recommend any one specific trap as the best replacement 
for the HLC. Instead, we recommend that users consider 
and define the statistical relationships between a 
prospective trap and the HLC when planning surveillance 
and interpreting results. The interactive conversion tool 
we have developed here can be used for that purpose and 
is now avail​able online as a Shiny App interface.

Conclusion
Methods for sampling outdoor-biting mosquitoes are 
urgently needed to improve surveillance of vector-
borne diseases. Even if an alternative traps do not catch 
as many mosquitoes as HLC, it is desirable to define the 
statistical relationship between them so that credible 
ranges of actual biting risk can be predicted in units of 
HLC equivalents. In this study, we successfully evaluated 
six different outdoor traps and developed a calibration 
tool to assess their performance relative to the HLC. 
This tool was validated using data from year-round field 
collections and enabled a framework for predicting 
HLC-derived exposure rates representative of individual 
risk to mosquito biting. The tool incorporates multiple 
models, including two that allow assessment of effects 
of both inter- and intra-specific density dependence 
of the performance of candidate traps. In the specific 
field trials from which data were obtained here, density 
dependence between and within mosquito species 
influenced the performance of only one trap, the BGS, 
but not any others. An interactive Shiny App calibration 
tool was developed for this and similar applications. 
We conclude that this calibration approach provides a 
valuable framework for assessing human exposure from 
different outdoor trapping methods. As the performance 
of candidate traps relative to the HLC varied between 
mosquito taxa, there was no single optimum. While all 
the candidate traps underestimated HLC catches, and 
thus HBRs, the calibration tool created here enables 
a mathematical definition of the traps relationship as 
well as model-fitting limits. Further studies of trapping 
methods and associated evaluation criteria should focus 
on consistency and representativeness as opposed to 
simply finding traps that catch as many mosquitoes as 
HLC.
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