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ABSTRACT: Using recently derived analytical equations of state
for hard rod dispersions, we predict the phase behavior of athermal
rod−polymer mixtures with free volume theory. The rods are
modeled as hard spherocylinders, while the nonadsorbing polymer
chains are described as penetrable hard spheres. It is demonstrated
that all of the different types of phase states that are stable for pure
colloidal rod dispersions can coexist with any combination of these
phases if polymers are added, depending on the concentrations, rod
aspect ratio, and polymer−rod size ratio. This includes novel two-,
three-, and four-phase coexistences and isostructural coexistences
between dilute and concentrated phases of the same kind, even for
the more ordered (liquid) crystal phases. This work provides
insight into the conditions at which particular multiphase
coexistences are expected for well-defined model colloidal rod−polymer mixtures. We provide a quantitative map detailing the
various types of isostructural coexistences, which confirms an early qualitative hypothesis by Bolhuis et al. (J. Chem. Phys. 107, 1997
1551).

■ INTRODUCTION

Suspensions of rodlike particles exhibit fascinating phase
behavior.1,2 Addition of nonadsorbing polymers to dispersions
of colloidal rodlike particles, like tobacco mosaic3,4 or
filamentous viruses,5,6 cellulose nanocrystals,7,8 or boehmite
rods,9 can lead to demixing into two or three coexisting phases
in otherwise stable suspensions. Similar to mixtures of spherical
colloids and polymers, the phase behavior in rod−polymer
mixtures has been explained with the concept of polymer-
mediated excluded volume interactions.10−13 In such mixtures,
there is a region around each colloidal particle that is depleted
of polymers. When these depletion zones of different colloidal
particles overlap, the available volume for the polymers and
thus the entropy of the polymer chains increases. As a result,
adding nonadsorbing polymers leads to an effective depletion
attraction between the colloidal particles. For spherical
particles, this depletion effect can lead to phase-separated
colloid−polymer mixtures, in which colloidal gas, liquid, and/
or crystal phases coexist.14,15 Similar effects on the phase
behavior of rodlike particle dispersions are expected, but
because these also exhibit liquid crystalline phases,16−22 a rich
set of possible phase coexistences and system properties is
expected as well.
To theoretically quantify the effects of nonadsorbing

polymers on the phase behavior of rods, it is useful to model
the rodlike particles as hard spherocylinders.13 In this model,
the colloidal rods cannot penetrate each other and do not
interact otherwise. Computer simulations24,25 revealed that

dispersions of hard spherocylinders can assume isotropic (I),
nematic (N), smectic-A (SmA), AAA, and ABC phase states
(see Figure 1 for a sketch of these phase states).23,25 The
thermodynamically preferred phase state depends on the
concentration and length−diameter aspect ratio. In both the
isotropic and nematic phases, there is no positional order, but
in the nematic phase, the rods assume a preferred orientation.
Depending on the rod aspect ratio, both I and N phases can be
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Figure 1. Sketch of the different phase states for hard spherocylinder
dispersions from left to right: isotropic (I), nematic (N), smectic-A
(SmA), AAA crystal, and ABC crystal. Reprinted figure with
permission from Peters et al.23, Phys. Rev. E 101, 062707, 2020.
Copyright 2020 by the American Physical Society.
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observed in dilute dispersions. At somewhat higher colloid
concentrations, the rods can assume a smectic-A phase. In this
phase state, the particles are confined into layers wherein they
move freely while being aligned perpendicular to the layer
normal. At even higher concentrations, the rods may form
either an AAA or ABC crystal phase with long-range periodic
order in all three dimensions. Here, the particles are also
confined into layers, but within the layers, there is hexagonal
packing. For the AAA phase, rods are packed directly on top of
each other. For the ABC phase, the rods are stacked in
between the rods of adjacent layers. The resulting ABC
packing is equivalent to the FCC crystal phase of spheres. The
stability of these particular crystalline phases is related to the
spherical geometry of the endcaps. Because the endcaps dictate
a small portion of the crystal lattice, there is only a small
difference in the free energy of the crystalline phases, especially
for longer rods. In experiments, other liquid crystal phases like
the smectic-B or columnar phase have also been observed for
dispersions of colloidal rods, and this is attributed to
polydispersity, semiflexibility, or additional (e.g., electrostatic)
interactions.20,21,26−29

Most of the experimental and theoretical work on the phase
behavior of rod−polymer mixtures focused on the I−N phase
coexistence.6−10,13 These show that the I−N phase coexistence
region can broaden upon adding nonadsorbing polymers. For
relatively large polymers, the isotropic phase may become
unstable at certain compositions, leading to isostructural I1−I2
phase equilibria. In an isostructural phase equilibrium, two
phases of the same kind but at different concentrations are in
equilibrium, similar to a gas−liquid coexistence. In the case of
relatively small polymers, earlier theoretical approaches10,13

also predicted that the nematic phase may become unstable
leading to (isostructural) N1−N2 equilibria. With regard to the
other phase equilibria, the I−SmA coexistence has been
reported experimentally as well.4,5 Additionally, for a limited
set of aspect ratios, Monte Carlo simulations were performed
on the full phase behavior by Bolhuis et al.11 and Savenko and
Dijkstra.12 Systematic knowledge about the trends of the phase
behavior of rod−polymer mixtures, including the smectic and
crystal phases, for a wide range of aspect ratios and polymer
sizes, is however still lacking.
Recently, we predicted that for athermal rod−polymer

mixtures, four- and five-phase coexistences are obtained that
initially seemed in contrast to the Gibbs phase rule, but could
be explained using an extended Gibbs phase rule.30 The work
of ref 30, however, only highlights a fraction of the plethora of
multiphase coexistences possible for rod−polymer mixtures.
Only a limited range of parameters was explored and the
isostructural coexistences were out of the scope of that work.
Based on the same theoretical methods,30 here, FVT is
combined with recently derived equations of state23 for the
phase states in hard spherocylinder dispersions. For details on
this theoretical framework, we refer to the Methods section or
ref 30. We aim to systematically map out the trends in the
phase behavior for rod−polymer mixtures including isostruc-
tural coexistences to indicate which type of (isostructural)
phase coexistences can be obtained at certain aspect ratios and
polymer sizes. This should aid further experimental or
computer simulation work on rod−polymer mixtures to locate
a particular coexistence of interest, as it is difficult to scan such
a wide range of parameters outside of theoretical methods.

■ METHODS
Free Volume Theory. We approximate the colloidal rods as hard

spherocylinders (HSC) of length L, diameter D (total length L + D),
and volume vc = πLD2/4 + πD3/6, and the polymers as penetrable
hard spheres (PHS) with radius δ = Rg and volume vp = 4πδ3/3. The
number densities of the colloids and polymers, ρc and ρp, respectively,
are related to the respective volume fractions, η = ρcvc and ϕ = ρpvp.
PHS are considered as hard particles regarding interactions with the
rods, and thus they cannot penetrate these particles. PHS have no
interactions with themselves and can freely overlap with each other, so
a dispersion of PHS behaves like an ideal solution.

In FVT, we treat the rod−polymer mixture within a semi-grand
canonical ensemble.10,14 The system of interest of HSC + PHS is in
contact with a polymer (PHS) reservoir through a semipermeable
membrane that is impermeable to the colloids but fully permeable for
the polymers. Solvent is considered as background in both the
reservoir and the system. This allows us to derive the following semi-
grand canonical potential Ω of the system14

ω α=
Ω
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where ω is the normalized semi-grand canonical potential, kBT is the
thermal energy, V is the total (constant) volume of the system, f 0 =
F0vc/(kBTV) is the normalized Helmholtz free energy of a pure rod
dispersion as outlined previously,23 and −αΠ̃R is the change in ω
caused by the presence of polymer in the system. The term ΠR is the
osmotic pressure in the polymer reservoir which by approximating the
polymers as PHS is given by van’t Hoff’s law ΠR = ρp

RkBT for an ideal
solution of polymer particles. The normalized osmotic pressure is
therefore given by13
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where Γ = 1 + L/D is the relative total rod length (with L/D being the
rod aspect ratio) and q = 2δ/D is the relative polymer size. The
quantity ϕR = ρp

Rvp is the relative polymer concentration in the
reservoir; ϕR = 1 refers to the polymer coil overlap concentration,
related to the relative polymer concentration in the system ϕ by ϕ =
αϕR. The term α = ⟨Vfree⟩/V is the ensemble-averaged free volume
available for the polymers normalized to the total system volume. We
approximate α by the free volume fraction in the undistorted pure rod
dispersion with α = ⟨Vfree⟩

0/V, which is estimated by scaled particle
theory as follows10,13

α η= − −Q(1 )exp( ) (3)

where η is the rod volume fraction and Q is given by
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Here, Π̃0 = Π0vc/(kBT), with Π̃0 as the osmotic pressure of a pure rod
dispersion, which is estimated from the specific equation of state for
the phase of the rods.23

Phase Behavior. Binodals. From eq 1, it is possible to calculate
the concentrations at the binodals from two different phases i and j by
solving the coexistence equations

μ μ̃ = ̃i j (4)

Π̃ = Π̃i j (5)

where μ̃ = μ/(kBT) and Π̃ are the normalized colloid chemical
potential and normalized osmotic pressure of the colloid−polymer
mixture in the system. Chemical equilibrium for the polymers is
already implied within the framework of FVT. These thermodynamic
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quantities can be obtained from ω in eq 1 using μ̃ = ∂ω/∂η, Π̃ =
−∂(ω/η)/∂(1/η)14

μ μ α
η

̃ = ̃ − Π̃ ∂
∂

0 R

(6)

i
k
jjjj

y
{
zzzzα η α

η
Π̃ = Π̃ + Π̃ − ∂

∂
0 R

(7)

With eqs 4 and 5, the concentrations ηi and ηj can then be predicted
for all two-phase coexistences as a function of ϕR, q, and Γ. At certain
values of these parameters, coexistence between more than two phases
is possible. In such cases, the additional coexisting phases should also
have the same μ̃ and Π̃. The equations μ̃i = μ̃k and Π̃i = Π̃k should be
solved for all involved phases k, so the preferred phase state or phase
coexistence at specific system parameters is the one with the lowest ω,
while the others are metastable.
Isostructural Coexistence. Under certain conditions, a single phase

may demix into a dilute and concentrated version of the same phase
state, e.g., I1−I2 coexistence, like how a fluid demixes into gas and
liquid phases. These binodals can also be calculated using eqs 4 and 5.
The conditions for which the composition of the two coexisting
isostructural phases becomes identical is known as the critical point,
which is obtained by

ω
η

ω
η
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∂
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= 0
2
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For certain values of q and Γ, it is however possible that other phase
coexistences are more stable than the isostructural phase coexistence
at the critical point. In such a case, the isostructural phase coexistence
is metastable at all concentrations. For example, under certain
conditions, the I−N coexistence is preferred over the I1−I2
coexistence. To identify the conditions at which the critical point is
at the verge of becoming more favorable than another phase
coexistence, it is useful to calculate the critical endpoint (CEP). At
the CEP, the critical point coexists with another phase state, so eqs 4,
5, and 8 apply simultaneously. For instance, the CEP of I−N
coexistence at the I1−I2 critical point is given by solving ∂

2ωI/∂η
2 =

∂
3ωI/∂η

3 = 0, μ̃I = μ̃N, and Π̃I = Π̃N. When q is increased above qCEP,
I1−I2 coexistence will, at least at certain compositions, be preferred
over I−N coexistence.

■ RESULTS
Phase coexistences have been predicted for hard spherocy-
linders mixed with polymers for a wide variety of rod aspect
ratios L/D and polymer-to-rod size ratio q = 2Rg/D. Here, D is
the rod diameter, L is the rod length (excluding hemispherical

Figure 2. Phase diagrams of dispersions of rods modeled as hard spherocylinders with rod length-to-diameter ratio (a) L/D = 5 or (b) L/D = 12
plus nonadsorbing polymers described as penetrable hard spheres. The binodals (solid curves) are plotted in terms of the polymer reservoir relative
concentration ϕR versus rod volume fraction η for various relative polymer sizes q = 2Rg/D. Three- and four-phase coexistences are indicated with,
respectively, red or blue dashed horizontal lines. The isotropic (I), nematic (N), smectic-A (SmA), AAA crystal, and ABC crystal phase states of the
rods are considered.
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endcaps), and Rg is the polymer radius of gyration. In the
following, we provide illustrative phase diagrams for the
different stable phase coexistences and elaborate on the trends
in phase behavior upon changing the system parameters. First,
we focus on the phase behavior at the specific range of
parameters where isostructural coexistence is not predicted.
Nonisostructural Phase Coexistence. In Figure 2a, we

have plotted three representative phase diagrams of rods with
L/D = 5 mixed with polymers of various (relative) polymer
sizes q. They indicate the variety of phase coexistences that can
occur upon changing q and also indicate a four-phase
coexistence. The different phase states and phase coexistences
are marked in the plots, where the solid curves represent
binodals and the dashed lines indicate where the binodals
coincide to give three- or four-phase coexistences.
At low polymer concentrations, the same coexistences are

found as in pure rod dispersions. Here, it follows that the
isotropic (I), nematic (N), smectic-A (SmA), and ABC crystal
phases are the preferred phase states found upon increasing the
rod concentration.23−25 In between these single-phase states
are regions of two-phase coexistence. For example, we predict
an I−N coexistence between η ≈ 0.37−0.41 for pure rod
dispersions. As the polymer concentration is increased, the
region of I−N phase coexistence widens. For q = 0.3 (Figure
2a, left), an I−N−ABC triple line is predicted near ϕR ≈ 0.07.
At higher polymer concentrations, the N phase is metastable
and I−ABC phase coexistence is found instead. For the N−
SmA and SmA−ABC phase coexistence, similar trends can be
observed: both regions of two-phase coexistences widen as the
polymer concentration is increased. At q = 0.3, an N−SmA−
ABC triple line is obtained when the N−SmA and SmA−ABC
coexistences coincide at ϕR ≈ 0.05. Upon further increase of
the polymer concentration, the SmA phase becomes
metastable and instead an N−ABC coexistence appears. The
N−ABC phase coexistence is only found for ϕR values below
the I−N−ABC triple line, as at higher ϕR, only I−ABC
coexistence remains.
At q = 0.6 (Figure 2a, right), different triple lines are

predicted instead with the I−SmA−ABC and I−N−SmA
coexistence. At polymer concentrations between these triple
lines, the I−SmA phase coexistence is predicted. In comparing
these graphs, it is useful to define the relative stability. At q =
0.3, the single-phase N region is stable at higher values of ϕR

than the single-phase SmA region, while at q = 0.6, it is the
other way around. The relative height of the peaks of these
regions dictates what kind of coexistences are found. We
indicate this by saying that at q = 0.3, the N phase is relatively
more stable upon increasing ϕR than the SmA phase, and vice
versa at q = 0.6. Furthermore, we can conclude that the relative
stability of the SmA phase compared to the N phase has
increased upon increasing q.
Exactly at q = 0.439 (Figure 2a, middle), the relative stability

of the N and SmA phase is the same. Hence, a quadruple line is
found since the I−N−ABC, N−SmA−ABC, I−N−SmA, and
I−SmA−ABC triple lines have merged. For this reason, the
two-phase N−ABC or I−SmA coexistences do not appear in
this case. The principle behind the four-phase I−N−SmA−
ABC coexistence is similar to that reported for plate−polymer
mixtures31 and the I−N−SmA−AAA coexistence reported for
rod−polymer mixtures.30 However, for the plate−polymer
mixtures of ref 31, only three structurally different phases were
considered, so four-phase coexistence was solely observed in
combination with an isostructural coexistence.

These multiphase coexistences occur only at a particular
colloid and polymer chemical potential and osmotic pressure
and therefore at a particular value of the polymer reservoir
concentration ϕR. Hence, the multiphase coexistences are
found only along the dashed lines in this representation. The
polymer concentration in the system, given by ϕ = αϕR, is
different for different values of colloid volume fractions η, since
the free volume fraction α is a function of η. Therefore, the
triple or quadruple points become a region in the system
representation with a range of η and ϕ. Within this region, the
system can demix into these particular phases of fixed
composition but with varying volumes.
Even more different coexistences that have not been

reported before emerge at L/D = 12 (see Figure 2b) and
relatively small q values. Here, at low polymer concentrations
and in pure rod dispersions23 the N and SmA phases are stable
over a wider range of η in comparison to L/D = 5.
Additionally, the AAA crystal phase now precedes the ABC
crystal phase for η ≈ 0.63−0.75. We observe similar trends in
coexistences as for L/D = 5 (see Figure 2a). The two-phase
coexistence regions, N−SmA and SmA−AAA in particular,
widen as the polymer concentration is increased and
depending on the relative stability of the N, SmA, and AAA
phases upon increasing ϕR, different phase coexistences than
before are stable. At q = 0.233, there is now an N−SmA−
AAA−ABC quadruple line, and at q = 0.337, there is an I−N−
AAA−ABC quadruple line. Additionally, we find I−N−ABC or
N−SmA−AAA triple lines, and at intermediate ϕR values,
there is N−ABC or N−AAA two-phase coexistence.
These coexistences are all dictated by the relative stability of

the N, SmA, and AAA phase upon increasing ϕR. For example,
at exactly q = 0.233, the relative stability of the AAA phase
upon increasing ϕR is equal to that of the SmA phase and lower
than that of the N phase. Exactly at q = 0.337, the relative
stability of the AAA phase is the same as that of the N phase
and higher than that of the SmA phase. Here, it is observed
that the relative stability of the AAA phase compared to the N
and SmA phase is significantly higher for larger q. For even
higher q than shown here, the relative stability of the AAA
phase only increases further compared to the N and SmA
phases, and as for L/D = 5, the relative stability of the SmA
phase will become higher than for the N phase as well.
Therefore, it seems that at larger q, the stability of the more
ordered phases increases relative to that of the more
disordered phases.
At only these two L/D values and by varying q, we found

that all 10 possible combinations of two- and three-phase
coexistences can appear (not all are shown in Figure 2). All five
possible quadruple lines were also found to appear, although
the I−SmA−AAA−ABC coexistence only appears for a narrow
range of intermediate L/D values. To indicate when the
possible nonisostructural multiphase coexistences appear over
a wide range of system parameters, we have calculated the four-
phase coexistence points as a function of q and D/L as shown
in Figure 3. The different regions in this plot indicate the
relative stability of the N, SmA, and AAA phases upon
increasing ϕR and the different sets of two- and three-phase
coexistences, which are described in Table 1. Note that the
coexistences found in pure rod dispersions and the I−ABC
coexistence are not included as these are not unique to specific
regions.
The results in Figure 2a at L/D = 5 and q = 0.3 or q = 0.6

are illustrative to those found in region II or region I,
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respectively, while q = 0.439 corresponds to the transition
between these regions where a four-phase coexistence is found.
Similarly, in Figure 2b, at L/D = 12, we have shown the
transition between regions II and III at q = 0.233 and between
regions III and IV at q = 0.337. At L/D = 6.086 and q = 0.470,
all quadruple curves converge to form the five-phase
coexistence reported earlier.30

In the region of short rods at D/L ≳ 0.18, there is only the
I−N−SmA−ABC four-phase coexistence as the AAA phase is
metastable. This curve indicates the parameters where either
the N or SmA phase is more stable upon increasing ϕR. At D/L
≈ 0.26, the q value of the I−N−SmA−ABC coexistence
vanishes because D/L then approaches the I−N−SmA triple
line for pure rod dispersions.23 At higher D/L, the N phase
becomes metastable. For longer rods at lower D/L, the I−N−
SmA−ABC four-phase coexistence becomes metastable as the
relative stability of the AAA phase becomes larger. Here, the
I−N−SmA−AAA curve instead indicates whether the N or
SmA phase is more stable with respect to ϕR. For long rods,
the value of q increases rapidly and the SmA phase will only be
more stable than the N phase for relatively large polymers.
The I−SmA−AAA−ABC and N−SmA−AAA−ABC curves

designate whether the SmA or AAA phase is the preferred

phase state. Similar to I−N−SmA−ABC coexistence, the I−
SmA−AAA−ABC curve increases asymptotically when ap-
proaching the SmA−AAA−ABC triple line for pure rod
dispersions at D/L ≈ 0.18. The N−SmA−AAA−ABC curve
goes to q = 0 at L/D ≈ 138. Finally, only the I−N−AAA−ABC
curve designates whether the N or AAA phase is more stable.
Note that the relative stability between these two phases is not
relevant within region I with regard to different phase
coexistences, and it is therefore not indicated. The I−N−
AAA−ABC curve attains q = 0 at L/D ≈ 325. At L/D ≳ 325 or
D/L ≲ 0.003, the AAA phase is thus always the preferred phase
state compared to the N and SmA phase with respect to ϕR.
The relative stability of the N, SmA, and AAA phases in

rod−polymer mixtures can be summarized as follows: for short
rods and large polymers, the SmA phase is the most stable; for
short or long rods and small polymers, the N phase is the
thermodynamically preferred state; and for long rods and large
polymers or very long rods and all polymer sizes, the AAA
phase is the most stable. In general, increasing the polymer size
tends to promote the stability of ordered phases over
disordered ones.

Phase Behavior Including Isostructural Phases. The
size ratios used to calculate the illustrative phase diagrams in
Figure 2 have been chosen intentionally such that isostructural
phase coexistences are metastable. These isostructural
coexistences also do not interfere with any of the quadruple
lines shown in Figure 3. In general, it is not obvious whether
isostructural phase equilibria are metastable or not. For quite
some time, the fluid−fluid phase coexistence in binary hard
sphere mixtures was a matter of debate until computer
simulations of Dijkstra, van Roij, and Evans32 revealed they are
metastable. Here, we show that isostructural phase equilibria
can appear (are not metastable) for all five phase states of the
rods. In the following, we show illustrative phase diagrams for
all of these possible isostructural phase coexistences and
indicate at which size parameters these are preferred.
For L/D = 4.5, the I1−I2 coexistence only appears in phase

diagrams for q > 0.636 (critical endpoint). In Figure 4a, we
show an example of a phase diagram that reveals an
isostructural phase coexistence at L/D = 4.5 at a q value of
0.728 (so relatively long-range attraction). Near ϕR ≈ 0.36 and
η ≈ 0.2, there is a critical point above which it becomes
favorable that the isotropic phase demixes into a dilute (I1) and
concentrated (I2) isotropic phase. As the polymer concen-
tration increases, the I1−I2 coexistence region widens. At ϕR ≈
0.43, the I1−I2−N−SmA quadruple line is reached and the I2
phase becomes metastable with increasing polymer concen-
trations. Additionally, there is an I1−SmA−ABC triple line and
I1−SmA at intermediate polymer concentrations.
Again it is the relative stability upon increasing ϕR of the

different phases that determines which kind of coexistences are

Figure 3. Phase coexistence overview, which, together with Table 1,
indicates the possible multiphase coexistences and the relative stability
of the N, SmA, and AAA phases upon increasing ϕR. The short
dashed curves correspond to the four-phase coexistence points, and
their intersection (purple) indicates the five-phase coexistence. The
vertical long dashed line at D/L ≈ 0.18 is the SmA−AAA−ABC triple
line for pure rod dispersions that shows whether the AAA phase is
stable (left) or metastable (right).

Table 1. Relative Stabilities of the N, SmA, and AAA Phases upon Increasing ϕR and the Unique Stable Phase Coexistences Are
Given for the Specified Regions in Figure 3

type of phase coexistence

region relative stability two phases three phases

I SmA > N and SmA > AAA I−SmA SmA−ABC I−N−SmA I−SmA−ABC SmA−AAA−ABC
II N > SmA > AAA N−ABC SmA−ABC I−N−ABC N−SmA−ABC SmA−AAA−ABC
III N > AAA > SmA N−AAA N−ABC I−N−ABC N−SmA−AAA N−AAA−ABC
IV AAA > N > SmA I−AAA N−AAA I−N−AAA N−SmA−AAA I−AAA−ABC
V AAA > SmA > N I−SmA I−AAA I−N−SmA I−SmA−AAA I−AAA−ABC
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found. Now, however, the relative stability that is related to the
peak of the I2 phase is also relevant. At q = 0.728, the relative
stability of the I2 and N phases is the same to form the I1−I2−
N−SmA quadruple line. For other q values, the relative
stabilities shift and several other two- and three-phase
coexistences can be observed. For increasing q values, two
observations were made. First, the I1−I2 coexistence region
increases as q increases. Second, as q increases, the more highly
ordered phases will become more stable with respect to the
disordered I2 phase, which is in agreement with our conclusion
in the previous section.
For longer rods and similar q values, a low concentration

(N1) nematic phase coexists with a high concentration nematic
(N2). At L/D = 50, the N1−N2 coexistence is stable for 0.792 <
q < 1.483. In Figure 4b, an illustrative phase diagram is shown
for q = 0.947, where an I−N1−N2−SmA quadruple line
appears. At different q values, novel two- and three-phase
coexistences related with the N1 and N2 phase can also be
found. For both lower and higher q values, the N1−N2

coexistence region will become smaller. This time the
appearance of certain coexistences is dictated by the relative
stability upon increasing ϕR of the different peaks for the N1

and N2 phase states and the four-phase coexistence in the top
right panel is formed when the relative stability is the same. It
was observed that as q increases, the relative stability of the N2

phase increases with respect to the N1 phase, while both have a

lower relative stability compared to the SmA and AAA phase
for the entire q stability range (0.792 < q < 1.483).
While isostructural coexistences for the I and N phase were

reported before,9−13 we have also found regions for stable
isostructural coexistences with the other phase states. In Figure
4, examples of phase diagrams with ABC1−ABC2, AAA1−
AAA2, and SmA1−SmA2 isostructural coexistences are
presented at a q value where there is four-phase coexistence.
For short rods, at L/D = 3.68, an ABC1−ABC2 coexistence
region is observed for small polymers at q < 0.0906 (see Figure
4c). At exactly q = 0.0406, the stability with respect to ϕR of
the ABC1 phase is equal to that of the SmA phase and an I−
SmA−ABC1−ABC2 coexistence is predicted.
For longer rods, at L/D = 50, an AAA1−AAA2 coexistence is

found instead for small polymers at q < 0.126. At exactly q =
0.035 (Figure 4d), the stability with respect to ϕR of the AAA1
and AAA2 phase is equal to find a SmA−AAA1−AAA2−ABC
quadruple line. In general, ABC1−ABC2 coexistence is found
for short rods in the opposite limit of both q and η as the I1−I2
coexistence. While for longer rods, the AAA1−AAA2
coexistence is similarly related to the N1−N2 coexistence.
For even longer rods, at L/D = 500 (Figure 4e), isostructural
coexistence for the SmA phase was found for intermediate
polymer sized at 0.439776 < q < 0.406952. At exactly q =
0.417, an N−SmA1−SmA2−AAA quadruple line is found,
where the stability with respect to ϕR of the SmA1 and SmA2
phases is the same. Note that the coexistence region is tiny.

Figure 4. Phase diagrams as in Figure 2, but for different q and L/D values indicated in the plots, focusing on conditions with isostructural phase
coexistence. A distinction is made between a dilute (I1, N1,SmA1, AAA1, ABC1) and concentrated (I2, N2, SmA2, AAA2, ABC2) phase state. The
critical points of isostructural phase coexistences are indicated by filled circles.
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Even if an experimental, nearly monodisperse, rod−polymer
mixture could be realized at the appropriate dimensions, it
would still be a challenge to detect this four-phase coexistence
region. At this L/D, the I and ABC phase are also only stable at
respectively extremely dilute or highly concentrated colloid
volume fractions.
To indicate when the different isostructural coexistences and

related two-, three-, and four-phase coexistences are found over
a wide parameter range, the critical endpoints and quadruple
points were predicted as a function of q and L/D as presented
in Figure 5. Only at the L/D and q within the colored regions a
specific isostructural coexistence is predicted to be stable for
certain concentrations. Four-phase coexistence curves involv-
ing isostructural coexistence (dashed curves), divide these
regions to indicate which specific three-phase coexistence is
predicted. Related unique two- and four-phase coexistences
can be derived from the triple lines but have been left out for
clarity. For instance, in the region where the I1−I2−N triple
coexistence is found, both an I1−N and I2−N coexistence are
predicted. On the dashed curve that divides this region with
that for the I1−I2−SmA triple line, we find I1−I2−N−SmA
coexistence. The results from Figure 4 can all be linked to one
of these region boundaries as in Figure 3. With both phase
coexistence overviews (Figures 3 and 5), the complete

topology of a phase diagram for a particular L/D and q
combination is predicted.
Looking into preferred phase behavior trends, we find that

long rods favor N, SmA, and AAA isostructural coexistences
and short rods favor I and ABC isostructural coexistences. We
also find that some of the trends about relative stability for
increasing q, as mentioned before, are found over the entire L/
D range. For N, SmA, and AAA isostructural coexistences, it is
the case that as q increases, the more concentrated phase
becomes more stable with respect to ϕR than the more dilute
phase. For I and ABC isostructural coexistences, we find that as
q increases, the more ordered phase becomes more stable upon
increasing ϕR than the more disordered phase. As the ordered
phases are also more concentrated than the disordered phases
in these cases, this is in agreement with the results in Figure 3.
In this regard, it is interesting that the isostructural
coexistences of the ordered AAA and ABC phases are observed
at a small q, for which the stability of strongly ordered phases is
relatively low. Similarly, when the more disordered phases have
relatively low stability at a high q, isostructural coexistence of
the disordered I and N phases is predicted. Further, for long
rods at intermediate q ≈ 0.4, the SmA phase stability is
relatively low and SmA1−SmA2 coexistence is observed. Thus,
for q values at which the stability of a certain phase upon

Figure 5. Phase behavior topology overview indicating the stable isostructural coexistences and the relative stability of the relevant dilute and
concentrated phases upon increasing ϕR. The critical endpoints (solid curves) and four-phase coexistence points (dashed curves) enclose the
colored regions where the indicated isostructural phase coexistences are stable.

Figure 6. Phase behavior topology overview indicating the stable isostructural two-phase coexistences as speculated by Bolhuis et al. (left)11

compared to our results (right). Note that the horizontal axis is inverted with respect to the graph in Figure 5. The S−S coexistence denotes the
ABC1−ABC2 coexistence, while the P−P coexistence refers to a plastic crystal phase only observed for shorter rods than those examined here. The
figure on the left reproduced from Bolhuis et al.,11 with the permission of AIP Publishing.
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increasing ϕR is low compared to other phases, isostructural
coexistence becomes more preferred.

■ DISCUSSION
Figure 6 (right) replots the results from Figure 5 with a
different abscissa and without the quadruple lines and the
indications of the different additional coexistences. This allows
for a clear comparison to a speculative qualitative sketch (left)
that was presented in the work of Bolhuis et al.,11 based upon
their computer simulation results for a limited set of
conditions. Only for the I1−I2 and N1−N2 were they able to
predict phase diagrams in their paper. It is remarkable how
good the agreement is with the graph we are now able to
calculate. The trends seem to follow a generic rule of thumb.
Isostructural demixing of a certain phase is caused if the size of
the added polymer is comparable to the typical distance
between the particles in that phase. Then, large polymers will
destabilize the more fluid-like phases (I and N) while short
polymers generate demixing of the dense AAA/ABC crystals,
with demixing of the partially crystalline SmA phase occurring
at intermediate polymer sizes. Additionally, our results are also
in good agreement with predictions of the phase diagrams
themselves computed by the combination of indirect Monte
Carlo computer simulations and FVT,11,12 but these were only
reported for a limited number of system parameters. The
theoretical framework presented here is also consistent with
previous predictions by free volume theory (FVT) for the I−N
coexistence.6,9,13

The agreement with the sketch in Figure 6 leads us to
speculate further over why certain trends in the phase behavior
are found using the concepts of excluded volume interactions
and FVT. The depletion attraction occurs when the depletion
zones around the rods overlap and thus the free volume and
entropy for the polymers is increased. The range of the
depletion attraction is determined by the size of the depletant,
while the strength of this attraction is also related to the
osmotic pressure (hence concentration) of the dispersion of
depletants, which for our system in turn is related to ϕR. We
can consider the phase stability upon increasing ϕR for a dilute
and a concentrated colloidal phase. For small polymers (low
q), there is relatively little overlap of depletion zones in both
phases and thus there is a significant gain in free volume and
polymer entropy when bringing the rods closer together. Due
to the proximity of the rods and lower colloidal entropy in the
concentrated phase, it is possible that this would require a
smaller colloidal entropy loss than for the dilute phase.
Therefore, the attraction strength and ϕR needed to destabilize
the concentrated phase would be lower than for the dilute
phase. For large polymers (high q), the concentrated phase has
a significant amount of overlap between the depletion zones,
while this is not the case for the dilute phase. Therefore, there
is only a relatively small gain in free volume and polymer
entropy when bringing the rods in the concentrated phase
closer together, as the free volume fraction is small in all cases.
The attraction strength needed to destabilize the concentrated
phase would be higher than that for the dilute phase. Thus, as q
increases, dilute and disordered phases become less stable
compared to concentrated and ordered phases.
The exact stability of a certain phase is also strongly

influenced by the η and L/D values, where this phase is stable
in pure rod dispersions. As an example, we consider a phase
that is only stable for a small η range, when the L/D is near the
triple lines in pure rod dispersions. As this phase is almost

metastable already, it requires a small amount of attraction
strength for another phase equilibrium to appear. This explains
the asymptotic increase in q of the I−SmA−AAA−ABC curve
in Figure 3, and the I1−I2−N−SmA and I1−I2−SmA−ABC
curves in Figure 5 near the D/L of, respectively, the SmA−
AAA−ABC, I−N−SmA, and I−SmA−ABC triple line for pure
rod dispersions. Since here the N, SmA, or AAA phase is only
stable at a short range of η, it requires a relatively low ϕR to
become completely metastable. Thus, even at a higher q, the
more ordered N, SmA, or AAA phase is less stable than the
more disordered phases. A similar argument can be made for
the I−N−SmA−ABC curve going to q = 0 near the I−N−SmA
triple line for pure rod dispersions.
The range of η also has influence on the appearance of

isostructural coexistence. At a lower D/L, the I and ABC
phases become stable over a smaller region of η, while the N,
SmA, and AAA phases become stable over a larger region of η.
Hence, an isostructural coexistence can occur with a larger
concentration difference for the N, SmA, and AAA phases than
for the I and ABC phases. This makes the I and ABC
isostructural coexistences the most stable for short rods, while
N, SmA, and AAA isostructural coexistences are the preferred
stable phase states for long rods.
While our approach has expanded the range of system

parameters for predictions about rod−polymer phase behavior,
it should be stressed that due to the theoretical approximations
made, only semiquantitative and qualitative agreement with
experimental systems is expected. Including effects of
polydispersity, polymer−polymer interactions, rod semiflexi-
bility, double-layer interactions in case of charged rods, van der
Waals attractions between rods, and the presence of short
repulsive anchored brushes is nontrivial within FVT. These
could suppress certain phases in favor of other phase
symmetries (such as columnar or smectic-B) not considered
in our model. It is possible that trends would be shifted and
four- or five-phase coexistence can occur for a broader range of
q and L/D values. Some of these effects have however been
examined within FVT.
For sufficiently large polymer sizes, it is known that the

interactions between polymers themselves affect the overall
phase behavior from previous calculations on spherical
colloid−polymer mixtures. Then, the approximation of
polymers as penetrable hard spheres (PHS) is less
adequate.33,34 This leads to an offset of the critical endpoint
for the colloidal gas−liquid coexistence. The effect of the
polymer interactions could be implemented for rod−polymer
mixtures similarly and would likely shift the critical endpoints
of the disordered I and N phases to higher q values as was
shown in preliminary calculations for I1−I2 coexistence.15

There is however no indication in the reported results on
interacting polymers15,33,34 that it would negate the appearance
of the multiphase coexistences altogether; it is expected only to
be a quantitative effect.
Also for small polymers, some deviations are expected due to

our definition of the free volume fraction α for the more highly
ordered phases. This comes from the fact that the expression
assumes a fluid-like colloidal phase and does not take into
account the correct partitioning of the polymers. A geometrical
calculation of α in mixtures of PHS with colloidal spheres35 or
plates36 was shown to be more accurate for more highly
ordered phases. Therefore, we expect a geometrically based α
to lead to a shift of the critical endpoints from SmA, AAA, and
ABC isostructural coexistence. We wish to underline that these
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technical modifications will severely complicate the analysis
without affecting the qualitative phase behavior trends.
With regard to experimental systems, we should also address

the topic of polydispersity as the four- and five-phase
coexistences appear at very specific values of L/D and q.
While sufficiently monodisperse colloidal particles may be
difficult to realize, polydispersity is known to promote
multiphase coexistence even further,37 so it is hypothesized
that realistic hard rod−polymer mixtures may indeed reveal the
multiphase coexistences for the right parameters under the
appropriate conditions. However, the presence of rod length
dispersity will likely suppress the formation of the AAA/ABC
crystals (and possibly also SmA) in favor of columnar order.38

Polymer polydispersity often only leads to a quantitative shift
in colloid−polymer mixture phase behavior.39,40

■ CONCLUDING REMARKS

Using free volume theory, we have presented a complete map
of possible phase coexistences in mixtures of colloidal rods and
nonadsorbing polymers with arbitrary rod aspect ratio and
rod−polymer size ratio. Due to the inclusion of more strongly
ordered (liquid) crystal phases, a plethora of novel two-, three-,
and four-phase coexistences are found. We can indicate the
conditions where any of the five-phase symmetries for hard
spherocylindrical rods (isotropic, nematic, smectic-A, and two
crystal states) can be made to coexist with one another. We
further show that the addition of polymers is capable of
generating isostructural demixing even for the more strongly
ordered (liquid) crystal phases, and we can indicate at which
conditions they could be found. In further computer
simulation studies, the phase coexistences found for short
rods are probably most accessible. From an experimental point
of view, phase coexistences involving AAA and ABC crystals
could be relevant for colloidal rods with a highly monodisperse
rod shape mixed with nonadsorbing polymers, while
isostructural demixing of the I and N fluids as well as the
lamellar SmA structures should be more broadly observable in
experimental rod−polymer mixtures with low to moderate size
dispersity. Overall, our results highlight the wide range of
possibilities in colloidal phase behavior for rod−polymer
mixtures and indicate the approximate conditions for obtaining
these in realistic systems.
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