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Polymorphism analysis of pfmdr1 
gene in Plasmodium falciparum 
isolates 11 years post‑adoption 
of artemisinin‑based combination 
therapy in Saudi Arabia
Hesham M. Al‑Mekhlafi1,2,3*, Aymen M. Madkhali1,4*, Ahmed A. Abdulhaq2,4, 
Wahib M. Atroosh5,6, Ahmad Hassn Ghzwani1, Khalid Ammash Zain1, Khalid Y. Ghailan2,7, 
Hassan A. Hamali4, Abdullah A. Mobarki4, Talal H. Alharazi8,9, Zaki M. Eisa10 & Yee‑Ling Lau5

A total of 227 Plasmodium falciparum isolates from Jazan region, southwestern Saudi Arabia were 
amplified for the P. falciparum multi-drug resistance 1 (pfmdr1) gene to detect point mutations 
11 years after the introduction of artemisinin‑based combination therapy (ACT) in Saudi Arabia. 
The pfmdr1 86Y mutation was found in 11.5% (26/227) of the isolates while the N86 wild allele was 
detected in 88.5%. Moreover, 184F point mutations dominated (86.3%) the instances of pfmdr1 
polymorphism while no mutation was observed at codons 1034, 1042 and 1246. Three pfmdr1 
haplotypes were identified, NFSND (74.9%), NYSND (13.7%) and YFSND (11.4%). Associations of 
the prevalence of 86Y mutation and YFSND haplotype with participants’ nationality, residency and 
parasitaemia level were found to be significant (P < 0.05). The findings revealed significant decline in 
the prevalence of the pfmdr1 86Y mutation in P. falciparum isolates from Jazan region over a decade 
after the implementation of ACT treatment. Moreover, the high prevalence of the NFSND haplotype 
might be indicative of the potential emergence of CQ‑sensitive but artemether‑lumefantrine‑resistant 
P. falciparum strains since the adoption of ACT. Therefore, continuous monitoring of the molecular 
markers of antimalarial drug resistance in Jazan region is highly recommended.

Malaria is a leading cause of morbidity and death worldwide, particularly in developing countries in the tropical 
and subtropical regions. This vector-borne disease is caused by five species of the genus Plasmodium namely 
Plasmodium falciparum, P. vivax, P. malariae, P. ovale and P. knowlesi, and is transmitted to humans by the bite 
of infected female Anopheles mosquitoes. Plasmodium falciparum is the most virulent species, causing the most 
severe cases of malaria and more than 90% of malaria mortality  globally1. Currently, about half of the world’s 
population is at risk of malaria, with approximately 229 million cases and about 400,000 malaria deaths recorded 
worldwide in  20192. About 95% of all global malaria cases and deaths have occurred in Africa, especially in 
sub-Saharan Africa  countries3. Moreover, it has been estimated that about 3% or ~ 6.4 million cases of malaria 
in 2019 were caused by Plasmodium vivax4.
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Following its discovery during World War II, chloroquine (CQ) became the official first-line treatment for 
malaria for decades. However, as mentioned above, cases of CQ-resistant malaria emerged in the late 1950s 
and then spread  worldwide5,6. Consequently, in some African countries, sulfadoxine-pyrimethamine (SP) was 
used as a new first-line treatment for malaria. However, SP-resistant strains emerged abruptly and have now 
become widespread throughout  Africa7,8. In 2005, the WHO recommended using artemisinin-based combination 
therapies (ACT) as first- and second-line treatments for uncomplicated P. falciparum  malaria9. Unfortunately, 
since then, studies have reported that delayed parasite clearance and ACT treatment failure due to artemisinin 
resistance is widespread in the Greater Mekong Subregion of Southeast  Asia10,11.

The P. falciparum multi-drug resistance 1 (pfmdr1) gene (also known as P-glycoprotein homologue 1; Pgh1), 
which is located on chromosome 5, has been associated with parasite susceptibility to a variety of currently 
available antimalarial drugs including chloroquine (CQ), lumefantrine (LMF), amodiaquine (AQ), mefloquine 
(MFQ), quinine (QN) and artemisinin (AS)12,13. Several pfmdr1 single-nucleotide polymorphisms (SNPs) have 
been described to date, among which the five most common are N86Y, Y184F, S1034C, N1042D and  D1246Y14. 
Previous studies have concluded that, for these five SNPS, substitution of asparagine by tyrosine at codon 86 
(N86Y), which is the most prevalent mutation in Asian and African parasites, enhances parasite resistance to 
CQ and AQ but at the same time increases susceptibility to a wide range of first-line antimalarial drugs including 
LMF, MFQ and dihydroartemisinin (DHA)13,15. Interestingly, previous studies have also reported a significant 
decline in the 86Y point mutation a few years following the adoption of ACT 16,17. Therefore, surveillance of 
changes in the prevalence of pfmdr1 SNPs might provide early warning of the emergence of resistance to ACT.

In Saudi Arabia, a national malaria control programme was established in 1948 and since then, substantial 
progress has been made in reducing the presence of malaria in the  country18. Saudi Arabia is now in the elimi-
nation phase, and malaria transmission is restricted to specific foci in the southwestern parts of the country, 
particularly in the regions of Jazan and  Aseer19,20. However, while the number of annual malaria cases decreased 
steadily between 2000 and 2014, an increasing trend has been observed since 2015, with 3658 cases reported 
in 2020, and 82.6% of those cases were in Jazan  region20,21. In 2007, CQ was replaced by ACT for the treatment 
of uncomplicated falciparum malaria, with artesunate + sulfadoxine-pyrimethamine or mefloquine (AS + SP or 
MFQ) as the first-line and artemether-lumefantrine (AL) as the second-line  treatment22,23. Resistance to CQ in 
Saudi Arabia was first identified in 1992 based on the increased incidence of clinical and parasitological treat-
ment  failure24. Subsequently, prevalence rates of up to 100% of the P. falciparum chloroquine resistance transporter 
(pfcrt) 76 T point mutation (the primary driver of CQ resistance) were  reported25,26.

However, data on the pfmdr1 point mutation genotypes and haplotypes circulating in Saudi Arabia are lacking. 
Therefore, this study aimed to determine the frequency and distribution of pfmdr1 point mutations and related 
haplotypes in P. falciparum isolates from Jazan region 11 years post-adoption of ACT. Such information is essen-
tial to guide health policy-makers on the selection and the monitoring of the country’s ACT treatment policy.

Results
Two hundred and twenty-seven falciparum malaria-positive patients (82.1% males and 17.2% females) 
were involved in this study (Table 1). The patients were aged between 2 and 78 years and the mean age was 
30.7 ± 11.6 years. The majority of the participants (69.6%) were from rural areas and 19.4%, 13.7% and 11.9% of 
the participants were from Baysh, Jazan and Alharth governorates, respectively. Malaria isolates were collected 
from 12 of the 17 governorates of Jazan region (Fig. 1). Approximately 66% (150/227) of the participants were 
non-Saudi while about 34% were Saudi. The majority of the non-Saudi patients were from Yemen (46%) followed 
by Pakistan (18.7%) and India (12%). With regard to parasitaemia (asexual parasite density), 55.1% (125/227) of 
the patients had moderate-to-high parasitaemia while 44.9% had low parasitaemia (Table 1).

Frequency and distribution of pfmdr1 mutations and haplotypes. Out of the 250 isolates col-
lected, the pfmdr1 gene was successfully amplified in 227 isolates (90.8%), with 86.3% (196/227) of the isolates 
showing at least one point mutation at one codon (Table 2). Of the five codons screened, three codons of pfmdr1 
(1034, 1042 and 1246) were found to consist of 100% wild alleles. On the other hand, mutated alleles at codons 
86Y and 184F were found in 11.5% and 86.3% of the studied isolates, respectively. Only three pfmdr1 haplotypes 
were found to be circulating in the study area. The most dominant haplotype (74.9%) was the NFSND single-
mutated haplotype, which represents the substitution of phenylalanine amino acid at position 184. Also, the 
YFSND double-mutated haplotype was found in 26 isolates (11.4%), which was carrying the mutated amino 
acids tyrosine for codon 86 and phenylalanine for codon 184. On the other hand, the wild haplotype, NYSND, 
was found in 13.7% of the isolates.

Associations of pfmdr1 mutations with demographic factors. Some associations were found 
between the pfmdr1 point mutations and haplotypes and the patients’ demographic variables. The results dem-
onstrated that the highest prevalence of the 86Y point mutation was found in the isolates from Yemeni patients 
(20.3%) followed by those from Sudanese patients (18.2%). Accordingly, significantly higher percentages of iso-
lates carrying the pfmdr1 86Y mutated allele and YFSND double-mutated haplotype were found in isolates from 
non-Saudi patients when compared with isolates from Saudi patients (14.7% vs. 5.2%; χ2 = 4.501; P = 0.034). 
Moreover, significantly higher percentages of the 86Y point mutation and YFSND haplotype were observed in 
isolates from participants living in urban areas than those from patients living in rural areas (20.3% vs. 7.6%; 
χ2 = 7.632; P = 0.006). On the other hand, significant associations were not found between the pfmdr1 mutations 
and haplotypes and the participants’ age group and gender (P > 0.05) (Table 3).

In addition, the results showed that mutations in the pfmdr1 gene varied significantly among the studied 
governorates (Fig. 2). It was found that the percentages of the pfmdr1 86Y mutation and the YFSND haplotype 
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were the highest in isolates collected from Aldair governorate (39.1%; 9/23) followed by those from Alharth 
governorate (18.5%; 5/27) while these markers were not reported in Alaridah, Dhamad and Ahad Almsariha 
governorates (χ2 = 24.021; P = 0.013). The opposite situation was observed for the distribution of the NFSND 
single-mutated haplotype in those governorates: NFSND was detected in all isolates from Alaridah, Dhamad 
and Ahad Almsariha governorates while the lowest percentages were in isolates from Aldair (52.2%) and Eidabi 
(53.8%) governorates (χ2 = 22.776; P = 0.019). The distribution of the pfmdr1 184F point mutation among the 
studied governorates was not statistically significant (P > 0.05).

Association of pfmdr1 mutations with parasitaemia. The association of pfmdr1 mutations and hap-
lotypes with parasitaemia level was also examined (Fig. 3). The percentages of the mutated 86Y allele and the 
YFSND haplotype in isolates from participants with a low parasitaemia level were significantly higher than in 
the isolates of those participants with moderate-to-high parasitaemia (17.6% vs. 6.4%; χ2 = 7.006; P = 0.008). 
Likewise, the percentage of the pfmdr1 184F mutation was higher in isolates from patients with a low parasitae-
mia level (91.2%) as compared to those with moderate-to-high parasitaemia (82.4%); however, the difference 
was not statistically significant (P = 0.055). Similarly, significant associations were not found between the per-
centages of the NYSND and the NFSND haplotypes and parasitaemia (P > 0.05).

Discussion
The current study provides information on genetic polymorphisms in the pfmdr1 gene in P. falciparum isolates 
from Jazan region, a low malaria transmission area, 11 years after the discontinuation of CQ and the adoption 
of ACT in its place. The findings revealed that 11.5% and 86.3% of the isolates carried the pfmdr1 86Y and 184F 
point mutations, respectively. Accordingly, three pfmdr1 haplotypes were identified, with the single (NFSND) 
and double (YFSND) mutated haplotypes found in 74.9% and 11.4% of the isolates, respectively.

The prevalence of the pfmdr1 86Y mutation found by the current study is far lower than that reported by the 
only two studies available from Saudi Arabia, which were conducted in Jazan region in 2010 and  201226,27. In 
2010, the 86Y mutation was found in 40.4% of 109 P. falciparum isolates from the Aseer and Jazan  regions27. Two 
years later, 30% of 165 P. falciparum isolates from Jazan region were found to be carrying the pfmdr1 86Y point 
 mutation26. Moreover, the current finding that the 184F point mutation dominated the pfmdr1 polymorphism 
of the analysed isolates is consistent with the sole local study that reported 96% (159/165) of this mutation in the 
region despite an approximately 10% decline demonstrated by our  result26. Likewise, the current study found no 
mutations at codons 1034, 1042 and 1246, similar to the study conducted in Jazan region in  201226.

The current findings suggest that there has been a significant decline in the prevalence of pfmdr1 86Y (and 
conversely an increase in the wild N86 allele) since the implementation of the ACT treatment policy in Saudi 

Table 1.  General characteristics of malaria patients participated in the study (n = 227).

Variables Number %

Age groups

 < 30 106 46.7

 ≥ 30 121 53.3

Gender

Male 188 82.8

Female 39 17.2

Residence

Rural 158 69.6

Urban 69 30.4

Nationality

Saudi Arabia 77 33.9

Yemen 69 30.4

Pakistan 28 12.3

India 18 7.9

Sudan 11 4.8

Egypt 8 3.5

Bangladesh 8 3.5

Ethiopia 5 2.2

Philippine 2 0.9

Syria 2 0.4

Parasitaemia

Low 102 44.9

Moderate 70 30.9

High 55 24.2
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Figure 1.  A map of the study area in Jazan region, southwestern Saudi Arabia (12 governorates were involved 
in this study). The map was originally generated using ArcGIS software version 10.8.1.

Table 2.  Frequency and number of pfmdr1 point mutations and related haplotypes for P. falciparum isolates 
from Jazan, Saudi Arabia (n = 227). Mutant alleles are bold and underlined.

Marker Type of mutations Number %

Codon

Pfmdr1-86
Wild (N86) 201 88.5

Mutated (86Y) 26 11.5

Pfmdr1-184
Wild (Y184) 31 13.7

Mutated (184F) 196 86.3

Pfmdr1-1034
Wild (S1034) 227 100

Mutated (1034C) 0 0

Pfmdr1-1042
Wild (N1042) 227 100

Mutated (1042D) 0 0

Pfmdr1-1046
Wild (D1046) 227 100

Mutated (1046Y) 0 0

Haplotype

NYSND Wild 31 13.7

NFSND Single 170 74.9

YFSND Double 26 11.4
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Arabia, which is consistent with previous reports  elsewhere15,17,28,29. However, a conclusion based on two previ-
ous  studies26,27 and the current study might not be reliable. Therefore, further analyses of the SNPs of the pfmdr1 
gene over time using archived samples are required to enable a better understanding of the trend in pfmdr1 
mutations in Jazan region. Interestingly, the current findings corroborate the results of our separately published 
study on the same isolates, which found a significant decline in the prevalence of pfcrt 76T and the re-emergence 
of pfcrt K76 CQ-sensitive P. falciparum strains in Jazan  region30. Altogether, about two-thirds (69.2%; 18/26) of 
the isolates that carried the pfmdr1 86Y mutation were also found to be carrying the pfcrt 76 T mutation. The 
pfmdr1 86Y point mutation is the second most important molecular marker of CQ resistance after pfcrt 76 T, 
and several studies have suggested that there may be a synergistic association between these pfcrt and pfmdr1 
point  mutations31,32. Moreover, a remarkable decline in the prevalence of mutant pfcrt 76 T and pfmdr1 86Y 
alleles has also been observed in low malaria transmission settings where drug pressure is likely to be  lower33.

In Yemen, a neighbouring country with high malaria transmission, previous studies showed that the preva-
lence of the 86Y mutation was higher than that reported by the current study, varying between 16 and 20% in 
the governorates of Hadhramoud (southeastern Yemen) and Hodeidah (northwestern Yemen)34–36. However, 
striking results were reported in Taiz governorate (southwestern Yemen) in which all of the 50 isolates analysed 
were found to be carrying the wild N86  allele37. On the other hand, mutation at codon 184 was found at a fixa-
tion level (100%)34,36. Interestingly, a high prevalence of mutations (up to 70%) for 1034C and 1042D has been 
reported across  Yemen34,36. In Iran, the 86Y mutation was detected in 23% of isolates while mutations at the other 
four codons were not detected in any  isolate38. Variations in the geographical distribution of pfmdr1 mutations at 
codons 86 and 184 and haplotypes have also been reported in different African and Asian  countries13. The cur-
rent study also found that there was significant variation in the distribution of pfmdr1 polymorphism, with the 
highest prevalence of the 86Y mutation and YFSND haplotype in isolates from Aldair and Alharth governorates. 
These governorates border Yemen and most of the isolates were from Yemeni patients. Thus, the higher percent-
age of 86Y and YFSND might be attributed to the source of malaria infection circulating in northern Yemen.

The current study also demonstrated that three pfmdr1 haplotypes are circulating in Jazan region, with the 
single-mutant NFSND (74.9%) dominant followed by the wild NYSND (13.7%), and the double-mutant YFSND 
(11.4%) haplotypes. This pattern is different from that reported in 2012, where 66% and 31% of the examined 
isolates carried the single NFSN and double YFSN haplotypes while only 3% carried the wild NYSN haplotype 
(codon 1246 was not involved)26. Studies from other countries such as Yemen and Ghana have reported up to 
five different  haplotypes32,36.

Thus, the mutations of pfmdr1 gene are complex. Moreover, the mechanism for modulating multiple antima-
larial drug resistance in P. falciparum parasites as well as their associations with the mutations of other genes such 
as pfcrt is not well understood. Mutation at codon 86 has been associated with CQ resistance in several studies 
from different regions while mutations at other codons of the pfmdr1 gene have been found to have comple-
mentary  roles13. Some previous studies have reported that mutation at codon 86, either alone or in combination 
with mutations at codons 184 and 1246 (YFSNY haplotype), enhances the susceptibility of P. falciparum to ACT, 
specifically AS + MFQ (the first-line treatment in Saudi Arabia)16,39. On the other hand, the wild-type pfmdr1 
N86 has been linked to the less sensitive LMF and MFQ  phenotypes40. Moreover, it has been reported that the 
carrying of the wild-type N86 together with the mutant 184F and wild D1246 (NFSND haplotype) enhances 
parasite tolerance to  AL41,42. In addition, a selection of the pfmdr1 86Y and 1246Y mutations has been observed 
post-AQ  exposure43, whereas mutations at codons 1034C, 1042D and 1246Y have been found to be associated 
with the low parasite susceptibility to  QN44. In the current study, these mutations (1034C, 1042D and 1246Y) 
were not detected. Thus, it could be concluded that QN treatment, which is the third-line treatment (or the rescue 
treatment) for both uncomplicated and severe falciparum malaria in Saudi Arabia remains effective. However, 
it should be noted that AQ has not been used in Saudi Arabia. As a whole, the different patterns of circulating 
pfmdr1 haplotypes that have been identified thus far should be considered when formulating and updating 
antimalaria drug strategies in endemic areas.

Interestingly, significant selection of the pfmdr1 N86 and pfcrt K76 alleles after AL treatment has been 
reported by previous in vivo and in vitro  studies45–47. Moreover, previous studies have demonstrated that increases 
in pfmdr1 copy number, which occurred only with N86 and not with the 86Y allele, resulted in a greater risk of 
failure following treatment with AL or MFQ, either as monotherapy or AS-MFQ combination  therapy48–51. In 

Table 3.  Associations of pfmdr1 mutant alleles and related haplotypes detected in P. falciparum isolates from 
Jazan region with patients’ demographic factors (n = 227). Mutant alleles are bold and underlined. All values 
are number (%). Pfmdr1-1034, Pfmdr1-1042 and Pfmdr1-1046 were of wild type and thus, not included in the 
analysis. *Significant association (P < 0.05). † The difference was examined using Fisher’s exact test (otherwise, 
Chi Square test was used).

Marker

Age group Gender Nationality Residency

 < 30  ≥ 30 P Females Males P Saudi Non-Saudi P Rural Urban P

Pfmdr1-86Y 11 (10.4) 15 (12.4) 0.634 5 (12.8) 21 (11.2) 0.783† 4 (5.2) 22 (14.7) 0.034* 12 (7.6) 14 (20.3) 0.006*

Pfmdr1-184F 92 (86.8) 104 (86.0) 0.854 36 (92.3) 160 (85.1) 0.233 67 (87.0) 129 (86.0) 0.833 136 (86.1) 60 (87.0) 0.859

NYSND 14 (13.2) 17 (14.0) 0.854 3 (7.7) 28 (14.9) 0.233 10 (13.0) 21 (14.0) 0.833 22 (13.9) 9 (13.0) 0.859

NFSND 81 (76.4) 89 (73.6) 0.620 31 (79.5) 139 (73.9) 0.467 63 (81.8) 107 (71.3) 0.085 124 (78.5) 46 (66.7) 0.059

YFSND 11 (10.4) 15 (12.4) 0.634 5 (12.8) 21 (11.2) 0.783† 4 (5.2) 22 (14.7) 0.034* 12 (7.6) 14 (20.3) 0.006*



6

Vol:.(1234567890)

Scientific Reports |          (2022) 12:517  | https://doi.org/10.1038/s41598-021-04450-x

www.nature.com/scientificreports/

the same vein, it was found that NFSND haplotype significantly decreased parasite susceptibility to LMF, MFQ 
and AS when compared with the NYSND wild haplotype, and this suggests a specific role of the pfmdr1 184F 

Figure 2.  Distribution of pfmdr1 N86Y and Y184F mutations and haplotypes according to governorates 
involved in the study in Jazan region. (a) pfmdr1 N86Y. (b) pfmdr1 Y184F. (c) pfmdr1 haplotypes.
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allele in conferring resistance to those antimalarials in P. falciparum parasites carrying the multiple pfmdr1 copy 
 numbers48,51,52. In addition, haplotype-specific pfmdr1-mediated drug transport has been demonstrated by previ-
ous studies, with NFSND haplotype showed significantly higher MFQ and LMF transport capacity that resulted 
in decreased susceptibility to these drugs compared to other haplotypes including NYSND and YYSNY13,49,51,53.

The finding of the current study that NFSND was the predominant pfmdr1 haplotype, combined with our 
previous observation of the re-emergence of pfcrt K76 allele in Jazan  region30, suggests a risk for selection and 
spread of multicopy pfmdr1 and the emergence of AS-MFQ and AL tolerance or resistance in Saudi Arabia after 
the ongoing deployment of AS-MFQ and AL. This possibility would have important public health implications for 
malaria treatment in the country as both MFQ and LMF are important partner drugs of the first- and second-line 
ACT in Saudi Arabia. Therefore, further studies and continuous surveillance are warranted to closely monitor 
the changes in the pfmdr1 copy number, which has been proved as the most sensitive indicator of selection of P. 
falciparum parasites populations by AL and AS-MFQ.

Figure 3.  Association of pfmdr1 N86Y and Y184F mutations and haplotypes with parasitaemia in isolates from 
Jazan region. Parasitaemia levels: low (< 1000 parasites/μl of blood); moderate-to-high (≥ 1000 parasites/μl of 
blood). Mutant alleles are bold and underlined. *Significant association (P < 0.05). (a) pfmdr1 N86Y and Y184F 
mutations. (b) pfmdr1 haplotypes.
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In addition, the current study found significant associations between the pfmdr1 86Y mutation and the 
YFSND haplotype and the nationality and the residence of the participants while associations with age and 
gender were not significant. The percentages of 86Y and YFSND in isolates from non-Saudi patients were sig-
nificantly higher than in isolates from Saudi patients. This is consistent with the fact that more than half (53.8%; 
14/26) of these markers (86Y and YFSND) were detected in isolates from Yemeni patients. These results cor-
roborate the results of our separately published study on the same isolates that showed that 95% of the isolates 
from Yemeni patients carried the pfcrt 76 T  mutations30. In a previous study in Jazan, associations between 
pfmdr1 markers and the patients’ nationality and gender were found to be not  significant26. Similarly, studies from 
Yemen, Sudan and Qatar found no association of pfmdr1 mutations with the age and gender of  patients31,35,36,54. 
In contrast, a study in Kenya found that males are more likely to harbour CQ-resistant P. falciparum parasites 
with high pfmdr1 mutations as compared females. This difference was attributed to a practice among males of 
delayed treatment seeking, which may have placed them at higher risk of accumulating super-infections and 
developing  resistance29.

The current study also demonstrated that the percentages of the pfmdr1 86Y mutation and the YFSND 
haplotype in isolates from patients living in urban areas were almost three times higher than in isolates from 
patients in rural areas while the percentages of the 184F mutation and the NFSND haplotype were comparable 
between both groups. While there is as yet no clear explanation for this finding, a previous study in Burkina 
Faso attributed a higher rate of CQ failure in urban settings to higher drug pressure in those areas as compared 
to rural  areas55. However, conversely, other studies have found a higher prevalence of the 86Y mutation in rural 
areas, and this has been explained by the practice of self-medication41,56. In addition, the findings of the current 
study also revealed that the pfmdr1 86Y mutation and the YFSND haplotype occurred more at low parasitaemia, 
which is consistent with findings by earlier studies  elsewhere57–59. Although causality cannot be inferred, the 
association between the pfmdr1 86Y mutation and the parasitaemia level has been linked to multiplicity of infec-
tion and parasite virulence, with parasites with decreased virulence carrying the mutant pfmdr1 86Y  allele59,60.

Some limitations of the current study should be acknowledged. First, causal relationships between pfmdr1 
markers and the factors studied could not be confirmed due to the cross-sectional design of the study. Second, 
the reported molecular findings were not linked with malaria treatment outcome among the study participants. 
Third, a novel genotype, 86F, which occurs as a result of asparagine amino acid substitution by phenylalanine 
at pfmdr1 codon 86 (N86F) instead of the common substitution by tyrosine (N86Y), has been reported in few P. 
falciparum isolates from different countries including  Swaziland61,  Sudan62,  Afghanistan63, and the  Philippines64. 
The Afl-III enzyme used by the current study in genotyping pfmdr1 codon 86 was found unable to differentiate 
between both 86Y and 86F mutant  alleles65; thus, in our study all digestions with this enzyme were recorded as 
86Y isolates.

Conclusions
The current study revealed a significant decline in the prevalence of the pfmdr1 86Y mutation in P. falciparum 
isolates from Jazan region after over a decade has passed since the introduction of ACT treatment in Saudi Ara-
bia. The results showed a high prevalence of the wild-type alleles N86 and D1246 and of the mutant-type allele 
184F. The results also showed that the NFSND haplotype was the predominant haplotype. These findings may be 
indicative of increased susceptibility to CQ and decreased sensitivity to AL (second-line treatment) as well as to 
MFQ (an alternative of the SP partner drug in AS-SP treatment). These observations have crucial implications 
for the selection and monitoring of ACT in the region and for the identification of approaches that will provide 
protection against the development of resistance. Moreover, further evaluation and continued monitoring of 
molecular markers of antimalarial drug resistance in the region is warranted to inform treatment policies and 
maintain the effectiveness of the malaria elimination programme.

Methods
Ethics statement. Ethical approved for this study was obtained from the Ethics Committee of Jazan Uni-
versity (Ref. No. REC39/6-261). Another approval was also obtained by the Health Affairs Directorate of King 
Fahd Central Hospital, Jazan, Saudi Arabia (Registry No. 086). Before data and sample collection, the patients, or 
their guardians in the case of children, were informed about the aims and procedures of the study. Then, written 
signed informed consent was obtained from all adult participant’s and from parents/guardians of participants 
below 18 years. The patients were treated for malaria at the respective hospitals according to the national malaria 
drug policy. All experiments were performed in accordance with relevant guidelines, regulations and good labo-
ratory practice.

Study area. This cross-sectional study was carried out between April and December 2018 in the Jazan 
region, which located in the southwestern part of Saudi Arabia (16° 17′ North, 42° 43′ East). Febrile patients who 
were suspected to have malaria and who presented at the selected healthcare facilities were involved in this study.

Jazan region is bordered by the Red Sea to the west and by Yemen to the south. The region covers a total 
area of 11,671  km2 and has a population of approximately 1.4  million66. At the administrative level, Jazan region 
is divided into 17 governorates, including Jazan, the capital city (Fig. 1). Jazan region comprises three major 
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landforms: 1) coastal lowlands at an altitude of < 400 m above sea level with aggregated rainfall of < 100 mm/year, 
2) foothill areas at an elevation of 400–600 m with aggregated rainfall of 100–200 mm/year, and 3) mountainous 
areas (highlands) at an elevation of > 2000 m with aggregated rainfall of > 300 mm/year67. The region also has a 
few valleys and streams as well as 15 dams for the conservation of drinking and irrigation  water68.

Although malaria transmission has been interrupted throughout the country, a few foci for malaria transmis-
sion still persist in the regions of Jazan and Aseer. The transmission level peaks between December and March; 
however, malaria cases are reported throughout the  year20. Different Anopheles species have been identified as 
vectors for malaria in Jazan region, including An. arabiensis, the principal vector, An. sergentii, known as the 
desert malaria vector and An. Dthali69. In general, malaria in Jazan region is mainly imported by migrant work-
ers, particularly legal and illegal emigrants from  Yemen19. Nonetheless, dozens of autochthonous malaria cases 
are reported annually, and outbreaks occur  sporadically20.

Study population. This study involved febrile individuals who presented at selected hospitals and tested 
positive for malaria during the study period. As this was a descriptive and exploratory study, sample size 
and power calculations were precluded. However, the sample size was estimated according to Lwanga and 
 Lemeshow70 based on the use of the following: a 95% confidence level, 5% significance level and a very high 
prevalence of malaria. Consequently, it was determined that 138 P. falciparum isolates were the required sample 
size for the objectives of this study. During the study period, a total of 530 febrile individuals agreed to take part 
in the study and were tested for malaria. Of them, 250 were found to be positive for P. falciparum parasites and 
were considered in the study. However, 227 isolates were successfully amplified for the pfmdr1 gene and these 
were included in the final data analysis.

Collection and examination of blood samples. About 2–3  ml of venous blood was collected from 
each participant into an EDTA tube that was labelled with the participant’s information and unique reference 
number. Shortly thereafter, thick and thin blood smears were prepared on a glass slide and stained with diluted 
Giemsa stain following a standard  protocol71. Both smears were examined under a light microscope in order to 
detect and identify Plasmodium parasite species. The parasite density or parasitaemia level was calculated from 
the thick blood smear by counting the asexual stages of the malaria parasites in the sample against a white blood 
cell count of  20071. In addition, dried blood spots were prepared on appropriate filter papers (3MM Whatman 
International Ltd, England) and stored in labelled, separated, zipped plastic bags for later use in the molecular 
examination.

Molecular analysis. Genomic DNA was extracted from the dried blood spots using a Qiagen blood and 
tissue kit (QIAGEN, DNeasy® Blood & Tissue Kit, Cat. no. 69506, Germany), according to the manufacturer’s 
instructions. DNA was eluted using 100 µl AE elution buffer (10 mM Tris–Cl; 0.5 mM EDTA; pH 9.0) provided 
in the kit and kept at − 20 °C until used.

Detection of pfmdr1 mutations. The genomic DNA of P. falciparum was amplified by PCR for the 
pfmdr1 gene of antimalarial drugs resistance and subjected to restriction fragment length polymorphism (RFLP) 
for the detection of point mutations at codons 86 and 1246 of the Pfmdr1 gene, according to an established 
 protocol72. Moreover, mutations at codons 184, 1034, and 1042 of the Pfmdr1 gene were analysed using a previ-
ously designed PCR–RFLP  protocol39, with suitable modifications for codon 184 in the PCR amplification and 
RE digestion. A forward oligonucleotide primer MDR184-F (5′-GAT AAT AAT CCT GGA TCT AAA TTA AGA-3′) 
was designed and utilized as an alternative of A4 to amplify a 155 bp fragment instead of 560 bp, and the use of 
Swa1 restriction enzyme as an alternative of Dra1, which cuts the amplicon once at the restriction site ATTT/
AAA into 123 bp and 32 bp for the mutant alleles but not for the wild type  alleles36.

Table 4 displayed information about primers sequences, PCR thermal conditions, and RE used for the detec-
tion of point mutations of the pfmdr1 gene.

Genomic DNA of P. falciparum reference strains provided by Malaria Research and Reference Reagents 
Resources Centre (MR4, ATCCW, Manassas VA, USA) were utilized as positive controls. The genomic DNA of 
P. falciparum strain Dd2 (MRA-150G) and HB3 (MRA-155G) were employed as positive controls for the 86 and 
184 and 1042 mutant alleles, respectively. Likewise, the P. falciparum reference strains 3D7 (MRA-102G) was 
employed as positive control for the wild types of pfmdr1 at all codons.

Statistical analysis. Data were entered into Microsoft Office Excel 365 spreadsheets and then imported into 
IBM SPSS v20 (IBM Corp., NY, USA) for statistical analysis. Categorical variables including the point pfmdr1 
mutations and haplotypes (dependent variables) and the patients’ demographic factors, were expressed as fre-
quencies and percentages. Quantitative variables including age (years) and parasitaemia levels were expressed as 
mean ± standard deviation (SD) or median (interquartile range, IQR). Pearson’s Chi-square (χ2) test or Fisher’s 
exact test were used, where applicable, to examine the associations between the dependent and the independent 
variables. A P-value of < 0.05 was set as the statistically significant cut-off value for all tests.
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The data that support the findings of this study are available from the corresponding author upon reasonable 
request.
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