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Background and Aim. Individual lipid phenotypes including circulating total cholesterol (TC), low-density lipoprotein cholesterol
(LDL-c), high-density lipoprotein cholesterol (HDL-c), and triglycerides (TG) determinations are influenced by gene-environment
interactions. The aim of this study was to predict blood lipid level (TC, LDL-c, HDL-c, and TG) variability using genetic and
lifestyle data in subjects with excessive body weight-for-height. Methods. This cross-sectional study enrolled 304 unrelated
overweight/obese adults of self-reported European ancestry. A total of 95 single nucleotide polymorphisms (SNPs) related to
obesity and weight loss were analyzed by a targeted next-generation sequencing system. Relevant genotypes of each SNP were
coded as 0 (nonrisk) and 1 (risk). Four genetic risk scores (GRS) for each lipid phenotype were calculated by adding the risk
genotypes. Information concerning lifestyle (diet, physical activity, alcohol drinking, and smoking) was obtained using validated
questionnaires. Total body fat (TFAT) and visceral fat (VFAT) were determined by dual-energy X-ray absorptiometry. Results.
Overall, 45 obesity-related genetic variants were associated with some of the studied blood lipids. In addition to conventional
factors (age, sex, dietary intakes, and alcohol consumption), the calculated GRS significantly contributed to explain their
corresponding plasma lipid trait. Thus, HDL-c, TG, TC, and LDL-c serum concentrations were predicted by approximately 28%
(optimism-corrected adj. R2 = 0 28), 25% (optimism-corrected adj. R2 = 0 25), 24% (optimism-corrected adj. R2 = 0 24), and
21% (optimism-corrected adj. R2=0.21), respectively. Interestingly, GRS were the greatest contributors to TC (squared partial
correlation (PC2) = 0.18) and LDL-c (PC2 = 0.18) features. Likewise, VFAT and GRS had a higher impact on HDL-c (PC2 = 0.09
and PC2 = 0.06, respectively) and TG levels (PC2 = 0.20 and PC2 = 0.07, respectively) than the rest of variables. Conclusions.
Besides known lifestyle influences, some obesity-related genetic variants could help to predict blood lipid phenotypes.

1. Introduction

Triglycerides, cholesterol, and related lipoproteins are major
constituents of the lipid fraction of the human body, playing
essential physiological roles such as cell membrane stability,
energy storage, hormone and bile acid syntheses, dietary fat
absorption and assembling, stress response, cell signaling,
and calcium metabolism [1, 2]. However, abnormalities in

lipid metabolism may lead to the onset and development
of several metabolic disorders, including cardiovascular
disease features [3]. In this context, elevated plasma levels
of total cholesterol (TC), low-density lipoprotein cholesterol
(LDL-c), and triglycerides (TG) have been associated with
the risk of coronary heart disease, whereas high concentra-
tions of high-density lipoprotein cholesterol (HDL-c) may
exert a protective effect [4].
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Growing scientific evidence suggests that gene-
environment interactions may influence plasma lipid phe-
notypes [5]. Lifestyle factors such as diet, physical activity,
alcohol drinking, and smoking have been recognized as
important determinants of the blood lipid profile [5]. More-
over, genome-wide association studies (GWAS) and gene-
candidate analyses have identified a number of common
genetic variants associated with diverse lipid traits [6]. Also,
specific genetic risk scores (GRS) including multiple gene loci
have accounted for dyslipidemia susceptibilities and predis-
position to related health risks in some populations [7, 8].

Furthermore, differences in cholesterol and TG out-
comes according to genotypes of single nucleotide polymor-
phisms (SNPs) in response to dietary interventions have been
reported [9–11]. Nevertheless, most available studies mainly
include SNPs in genes directly implicated in lipid metabolism
(uptake, transport, and signaling) [12, 13], whereas those
related to body weight regulation and obesity remain less
explored. Together, these insights reveal a genetic compo-
nent implicated in lipid homeostasis that may partially
explain the variability in circulating lipids among individuals.
In addition, this knowledge can help to specifically establish
personalized nutritional guidelines that complement the
general recommendations to the prevention and precision
management of dyslipidemia [14, 15]. Hence, the aim of this
research was to predict blood lipid profiles using genetic
and environmental data in subjects with excessive body
weight-for-height.

2. Materials and Methods

2.1. Subjects. This cross-sectional study enrolled 304 unre-
lated (nonconsanguineous) Spanish adults of self-reported
European ancestry, who presented overweight (BMI: 25–
29.9 kg/m2) and obesity (BMI: 30–40 kg/m2). Subjects were
recruited at the Center for Nutrition Research of the Univer-
sity of Navarra in the city of Pamplona, Navarra, Spain.
Major exclusion criteria included a history of diabetes melli-
tus, cardiovascular disease and hypertension, pregnant or
lactating women, and current use of lipid-lowering drugs.
Patients with diagnosed primary hyperlipidemia were also
excluded. This investigation followed the ethical principles
for medical research in humans from the 2013 Helsinki Dec-
laration [16]. Moreover, the research protocol was properly
approved by the Research Ethics Committee of the Univer-
sity of Navarra (ref. 132/2015). A written informed consent
from each participant was obtained before the inclusion in
the study.

2.2. Anthropometry and Blood Pressure. Anthropometric
measurements such as height (cm), body weight (kg),
and waist circumference (WC, cm) were collected at the fast-
ing state by trained nutritionists following validated proce-
dures [17]. BMI was calculated as the ratio between weight
and squared height (kg/m2). Total body fat (TFAT, kg)
and visceral fat (VF, kg) were quantified by dual-energy
X-ray absorptiometry according to instructions provided
by the supplier (Lunar Prodigy, software version 6.0, Mad-
ison, WI, USA). Systolic blood pressure (SBP, mmHg) and

diastolic blood pressure (DBP, mmHg) were measured with
an automated sphygmomanometer according to standard-
ized criteria as described by the World Health Organization
and the International Society of Hypertension [18].

2.3. Biochemical Measurements. Blood samples were drawn
by venipuncture after an overnight fast. Biochemical mea-
surements including glucose (mg/dl), total cholesterol (TC,
mg/dl), high-density lipoprotein cholesterol (HDL-c, mg/
dl), and triglycerides (TG, mg/dl) were determined in an
automatic analyzer (Pentra C200, HORIBA Medical) using
appropriate kits provided by the company. Low-density lipo-
protein cholesterol (LDL-c, mg/dl) was calculated with the
Friedewald formula [19]. The following cutoffs for the Span-
ish population were used to the diagnosis of dyslipidemia:
hypercholesterolemia (TC≥ 200mg/dl), high LDL-c (LDL-
c≥ 130mg/dl), hypoalphalipoproteinemia (HDL-c< 40mg/
dl in men and < 50mg/dl in women), and hypertriglyc-
eridemia (TG≥ 150mg/dl), as reported elsewhere [20].

2.4. Lifestyle Factors. A validated semiquantitative food fre-
quency questionnaire was used to evaluate habitual con-
sumption (daily, weekly, monthly, or never) of 137 foods
during the previous year [21]. Energy and nutrient intakes
were further calculated with an ad hoc computer program
based on the standard Spanish food composition tables [22].

The physical activity level was estimated using a validated
questionnaire [23]. The volume of activity was expressed in
metabolic equivalents (METs), as described elsewhere [24].

Current smoking and drinking habits were evaluated
through valid medical questionnaires. Alcohol consumption
higher than 40 g of ethanol/d in men and 20 g of ethanol/d
in women was considered clinically significant [25].

2.5. SNP Selection and Genotyping. A total of 95 genetic
variants related to obesity and weight loss as well as inter-
actions with dietary prescriptions were analyzed after an
exhaustive bibliographic review following PRISMA criteria
[14, 15, 26, 27], whose genomic characteristics are presented
(Supplementary Table 1).

Buccal samples were collected with a liquid-based kit
(ORAcollect-DNA, OCR-100, DNA Genotek Inc., Ottawa,
Canada). Subsequently, genomic DNA was isolated using
the Maxwell® 16 Buccal Swab LEV DNA Purification Kit in
the Maxwell® 16 Instrument (Promega Corp., Madison,
WI, USA) according to the manufacturer’s protocol. A cus-
tomized panel of primers to amplify the regions containing
the selected SNPs was designed using the “online” application
of Thermo Fisher AmpliSeq Designer (https://www.ampliseq.
com). Overall, the amplicon average size was 185 bp. The
amplicon library for massive sequencing was constructed
with the custom-designed panel and the Ion AmpliSeq™
Library Kit 2.0 (Thermo Fisher Scientific Inc., Waltham,
MA, USA) according to the manufacturer’s protocol.

Genotyping was performed by targeted next-generation
sequencing in the Ion Torrent PGM™ equipment (Thermo
Fisher Scientific Inc., Waltham, MA, USA), as described else-
where [9, 10]. Raw data were processed in the Ion Torrent
Suite™ Server version 5.0.4 (Thermo Fisher Scientific Inc.,
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Waltham, MA, USA) using the Homo sapiens (HG19) as the
reference genome for the alignment. A custom-designed Bed
file was used to locate the SNPs of interest. Genetic variants
were identified with the Torrent Variant Caller 5.0 (Thermo
Fisher Scientific Inc., Waltham, MA, USA) with a minimum
coverage value of 25 sequences [28]. Hardy-Weinberg equi-
librium (HWE) was estimated with the Convert (version
1.31) and the Arlequin software (version 3.0). Furthermore,
the analysis of molecular variance (AMOVA) test using the
95 SNPs was performed in the Arlequin software in order
to corroborate the homogeneity of the sample.

2.6. GRS Calculation.Once the 95 SNPs were genotyped, four
individual GRS were calculated for each lipid trait (TC, LDL-
c, HDL-c, and TG) according to the following steps. First, in
order to avoid bias and overfitting in the preselection of SNPs
[29], ANOVA tests were run to discard those clearly not
associated (P > 0 25) with some of the four blood lipid phe-
notypes. The genotypes of the rest of SNPs (n = 74) were
differentially coded as 0 (nonrisk) and 1 (risk) based on the
observed average values of each lipid between the three geno-
types using post hoc tests (Bonferroni or Dunnett’s T3). A
risk genotype was defined as the one that was associated with
increased concentrations of fasting TC, LDL-c, and TG or
decreased HDL-c levels. Genotypes with similar effects
were grouped in a single category. In a third step, Student’s
t-tests were further applied to assess statistical differences
between the categorized genotype groups (risk vs. nonrisk).
Then SNPs showing at least a marginal statistical trend
(P < 0 10) were selected (n = 54) to design each specific
GRS, excluding those with a low prevalence (<10%) in either
genotype category (risk and nonrisk) to avoid model instabil-
ity (n = 9). From the remaining 45 SNPs, four different GRS
(GRS_TC, GRS_LDL-c, GRS_HDL-c, and GRS_TG) were
constructed by adding the risk genotypes of the correspond-
ing SNPs for each study lipid trait (Supplementary
Tables 2a–2d). Analyses were performed using the four
GRS as continuous and categorical variables.

2.7. Statistical Analyses. Continuous variables were expressed
as means± standard deviations, while dichotomous variables
were presented as numbers and percentages. Normality of
study variables was screened by the Kolmogorov-Smirnov
test. All principal variables including TC, LDL-c, HDL-c,
and TG were normally distributed (P > 0 05).

In addition to genetic variants, other conventional pre-
dictors of blood lipid levels were evaluated including age,
sex, BMI (kg/m2), adiposity markers (TFAT and VFAT),
physical activity (METs), total energy (kcal), and macronu-
trient intakes (% E) as well as smoking and drinking habits.
Relevant interactions between genetic and lifestyle factors
were calculated with simple linear regression tests. Statistical
differences in blood lipids by predictor categories were
assessed by Student’s t-tests.

The prediction of the variability in all blood lipid levels
was performed using multiple linear regression models. For
this purpose, three statistical approaches were used: least-
angle regression (LARS) [30], best subset regression proce-
dure (BSRP) [31], and bootstrapping stepwise method

(BSM) [32]. In order to select the most robust model, all
candidate predictive models were corrected for optimism
and overfitting following Harrell’s bootstrapping algorithm
[33]. This method is based on using bootstrapped datasets to
internally validate the linear regression models as well as to
repeatedly quantify the degree of overfitting in the model-
building process. Moreover, squared partial correlations
(PC2) were used to estimate the individual contribution of
each predictor to the blood lipid variability.

Statistical analyses were performed in the statistical
program STATA 12 (StataCorp LLC, College Station, TX,
USA; http://www.stata.com). A Venn diagram was con-
structed online (http://bioinfogp.cnb.csic.es/tools/venny/) in
order to show common and uncommon SNPs associated
with each of the studied blood lipids. Figure plots concern-
ing comparisons of blood lipid levels between predictor cat-
egories were created using the GraphPad Prism® software,
version 6.0C (La Jolla, CA, USA). Statistical significance
was based on a P value lower than 0.05.

3. Results

The anthropometric, biochemical, and nutritional charac-
teristics of the study population are reported (Table 1).
Overall, 70% (n = 212) of subjects were women. According
to the BMI classification criteria of theWorld Health Organi-
zation, 38% of individuals were overweight (n = 114), and
62% (n = 190) presented obesity. The average values of TC
and LDL-c were above the reference limits. The frequencies
of hypercholesterolemia, high LDL-c, and low HDL-c (also
known as hypoalphalipoproteinemia) were 65% (n = 199),
59% (n = 179), and 23% (n = 69), respectively, whereas 15%
of the study population had hypertriglyceridemia (n = 45).
The nutritional pattern of the study population was charac-
terized by a high consumption of energy derived from fat
(40.4%) and a concomitant low intake of carbohydrates
(40.7%) with respect to general nutritional recommendations
for the Spanish population. The frequencies of smoking and
drinking habits were 21.9 and 13.5%, respectively (Table 1).

A total of 45 obesity-related genetic variants were asso-
ciated with some of the studied blood lipid levels (Supple-
mentary Tables 2a–2d). Of these, 2 SNPs were common
among all lipids: rs1685325 (UCP3) and rs894160 (PLIN1).
On the other hand, 22 SNPs were exclusively related to
a specific lipid—4 for TC: rs569805 (ABCB11), rs494874
(ABCB11), rs1801260 (CLOCK), and rs6013029 (CTNNBL1);
3 for LDL-c: rs7799039 (LEP), rs7498665 (SH2B1), and
rs7359397 (SH2B1); 9 for HDL-c: rs2815752 (NEGR1), rs-
2943641 (IRS1), rs2419621 (ACSL5), rs6265 (BDNF), rs110-
30104 (BDNF), rs4769873 (ALOX5AP), rs9939609 (FTO),
rs6567160 (MC4R), and rs2287019 (QPCTL); and 6 for
TG: rs324420 (FAAH), rs2959272 (PPARG), rs1386835
(PPARG), rs709158 (PPARG), rs1175540 (PPARG), rs180-
0544 (ADRA2A) (Figure 1). The distribution of genotypes
of most obesity-predisposing SNPs was concordant with the
Hardy-Weinberg equilibrium principle, except for rs1386835
(PPARG), rs17782313 (MC4R), rs2287019 (QPCTL), and
rs3813929 (HTR2C), as shown in Supplementary Table 1.
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AMOVA analyses revealed no significant differentiation
within the sample (P > 0 05).

The performance of the three multiple linear regres-
sion models predicting blood lipid profiles are reported
(Supplementary Tables 3a–3d). After optimism correction,
the best model explaining TC, LDL-c, and HDL-c serum
concentrations was then obtained using the BSRP approach,
whereas TG levels were better predicted by the BSM
method (Table 2). Of note, all models included the calcu-
lated GRS in addition to conventional factors such as age,
sex, dietary intakes, and alcohol consumption. The highest
number of predictors was found for HDL-c, whereas LDL-c
was only influenced by the GRS_LDL-c and age. No statisti-
cally significant interactions between the 4 GRS and lifestyle
variables were found. Overall, HDL-c, TG, TC, and LDL-c
variabilities were explained in approximately 28% (opti-
mism-corrected adj. R2 = 0 28), 25% (optimism-corrected
adj. R2 = 0 25), 24% (optimism-corrected adj. R2 = 0 24),
and 21% (optimism-corrected adj. R2 = 0 21), respectively
(Table 2).

Moreover, estimations regarding the individual contri-
bution of each independent predictor to blood lipid levels
using PC2 are presented (Table 2). Interestingly, GRS_TC
and GRS_LDL-c were the greatest contributors to TC
and LDL-c features, respectively, with about 18% for both
lipids (PC2= 0.18). Likewise, VFAT and the respective GRS
(GRS_HDL-c and GRS_TG) had a higher impact on HDL-c,
with 9% (PC2=0.09) and 6% (PC2=0.06), respectively,
as well as on TG concentrations, with 20% (PC2=0.20)
and 7% (PC2=0.07), respectively. Additionally, compari-
sons of average blood lipid levels by predictor clusters based
on median values are plotted (Figure 2). Greater differ-
ences in TC and LDL-c values were found by GRS_TC
and GRS_LDL-c categorized by the median number of risk
genotypes. Meanwhile, VFAT and the corresponding GRS
categories (GRS_HDL-c and GRS_TG) accounted for
higher variances in HDL-c and TG, respectively, as com-
pared to other factors including energy intake, alcohol con-
sumption, cholesterol intake, and TFAT (Figure 2).

4. Discussion

In the last years, multiple genetic variants have been found
to be associated with specific phenotypes and metabolic
disorders, including dyslipidemia [6]. In the current investi-
gation, 45 obesity-related SNPs were associated with circulat-
ing lipids (TC, LDL-c, HDL-c, and TG). Of note, some of
such associations are reported for the first time, except for
rs1799883 (FABP2) [34], rs660339 (UCP2) and rs659366
(UCP2) [35], rs1052700 (PLIN1) [36], rs17782313 (MC4R)
[37], rs7799039 (LEP) [38], rs2943641 (IRS1) [39], rs993-
9609 (FTO) [40], and rs324420 (FAAH) [41]. Interestingly,
about 50% of SNPs were related to one specific circulating
lipid, whereas only rs1685325 (UCP3) and rs894160 (PLIN1)
were common among all lipids. This finding is consistent
with previous studies illustrating the number of loci influenc-
ing blood lipid phenotypes using genome-wide and custom-
ized genotyping approaches [6, 42]. In contrast to UCP1, it
has been postulated that UCP3 regulates cellular lipid
metabolism by exporting those fatty acids that cannot be
oxidized from the mitochondrial matrix to prevent their
deleterious accumulation [43]. Meanwhile, PLIN1 is an
adipocyte-specific lipid-coated protein involved in the regu-
lation of lipolysis by regulating lipase interactions [44]. Also,
PLIN1 promotes the efficient lipid droplet formation in
adipocytes [45].

The magnitude of associations between individual gene
variants and metabolic traits is generally modest. Therefore,
effect size estimations based on the combination of multiple
loci into a GRS are a common method to improve the predic-
tive value of simple SNPs [46, 47]. In this study, GRS adding
risk genotypes were major predictors of their respective
plasma lipid in all performed linear regression models,
mainly for TC and LDL-c blood concentrations (both 18%)
and followed by TG (7%) and HDL-c (6%). Lower effects
were reported for different GRS constructed from published
meta-analyses of individuals of European ancestry, explain-
ing 7%, 6%, 4%, and 3% of the total variance in HDL-c, TC,
LDL-c, and TG, respectively [48]. Also, the combination of

Table 1: Anthropometric, biochemical, and nutritional characteristics
of the study population (n = 304).

Variable Average values

Age (years) 45.8± 10.5
Sex (F/M) 212/92

Anthropometrics and clinical data

Weight (kg) 87.7± 13.0
BMI (kg/m2) 31.6± 3.5
WC (cm) 102± 11
TFAT (kg) 36.9± 7.6
VFAT (kg) 1.48± 0.90
SBP (mmHg) 128± 17
DBP (mmHg) 79± 11
Biochemical profile

Glucose (mg/dl) 96.6± 14.1
TC (mg/dl) 216± 38
HDL-c (mg/dl) 55.3± 12.9
LDL-c (mg/dl) 140± 34
TG (mg/dl) 104± 56
Dietary intake/day

Energy (Kcal) 2970± 934
Carbohydrates (% E) 40.7± 6.8
Protein (% E) 17.0± 2.9
Fat (% E) 40.4± 5.8
Lifestyle

Smokers (%) 21.9

Drinkers (%) 13.5

METs 23.8± 20.0
Variables are expressed as means ± standard deviations. BMI: body
mass index; WC: waist circumference; TFAT: total body fat; VFAT:
visceral fat; SBP: systolic blood pressure; DBP: diastolic blood pressure; TC:
total cholesterol; HDL-c: high-density lipoprotein cholesterol; LDL-c:
low-density lipoprotein cholesterol; TG: triglycerides; METs: metabolic
equivalents.
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GWAS-identified or well-established lipid-related genetic
loci into a weighted GRS explained no more than 11% of
the blood lipid oscillations in major ethnic groups living in

the United States, with no evidence of interactions between
GRS and ethnicity [49]. In a cross-sectional study, 4 weighted
GRS of lipid-associated SNPs accounted for 8% (TC), 7%

TC
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Figure 1: Venn diagram showing the number of SNPs associated with blood lipid levels. TC: total cholesterol; TG: triglycerides; LDL-c: low-
density lipoprotein cholesterol; HDL-c: high-density lipoprotein cholesterol.

Table 2: Best multiple linear regression models explaining blood lipid levels as dependent variables.

TC LDL-c HDL-c TG
Predictors β PC2 β PC2 β PC2 β PC2

Age (years) 0.80± 0.19 0.06 0.58± 0.18 0.04 0.22± 0.07 0.04

Sex 4.51± 1.98 0.02

Energy intake (100 kcal) 0.38± 0.21 0.01 0.18± 0.12 0.009

Protein intake (%) 0.93± 0.30 0.04

Cholesterol intake (mg) −0.01± 0.004 0.02

Alcohol 5.83± 2.05 0.03 −19.21± 9.33 0.02

TFAT (kg) −1.14± 0.42 0.03

VFAT (kg) −5.22± 1.05 0.09 30.95± 3.92 0.20

GRS_TC 6.55± 0.83 0.18

GRS_LDL-c 6.79± 0.87 0.18

GRS_HDL-c −1.12± 0.27 0.06

GRS_TG 4.20± 0.97 0.07

Constant 93.40± 12.99 45.74± 11.43 42.72± 7.71 61.58± 17.31
R2 0.2578 0.2217 0.3394 0.2828

Adj. R2 0.2501 0.2160 0.3192 0.2715

Optimism correction coefficient for R2 0.0112 0.0083 0.0373 0.0211

Optimism correction coefficient for adj. R2 0.0113 0.0084 0.0384 0.0214

Optimism-corrected R2 0.2466 0.2134 0.3021 0.2617

Optimism-corrected adj. R2 0.2388 0.2076 0.2808 0.2501

Data are expressed as β values ± standard errors. The best models for each lipid phenotype were TC (BSRP, AIC/AICC); LDL-c (BSRP, BIC); HDL (BSRP,
AICC); TG (BSM). BSRP: best subset regression procedure; AIC: akaike information criterion; AICC: corrected akaike information criterion; BIC: bayesian
information criterion; BSM: bootstrapping stepwise method; PC2: squared partial correlation; TC: total cholesterol; LDL-c: low-density lipoprotein
cholesterol; HDL-c: high-density lipoprotein cholesterol; TG: triglycerides; TFAT: total body fat; VFAT: visceral fat; GRS_TC: genetic risk score for total
cholesterol; GRS_LDL-c: genetic risk score for low-density lipoprotein cholesterol; GRS_HDL-c: genetic risk score for high-density lipoprotein cholesterol;
GRS_TG: genetic risk score for triglycerides.
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(HDL-c), 6% (LDL-c), and 5% (TG) of the total variance
in two Danish cohorts [50]. Furthermore, the highest
quartile (more than 8 risk alleles) of a calculated GRS
from obesity-predisposing variants was significantly associ-
ated with lower HDL-c levels compared to the lowest GRS
quartile (lower than 4 risk alleles) in women with type 2
diabetes mellitus [51].

To date, most available studies analyzing the associa-
tion of GRS with dyslipidemia and cardiovascular risk
use an additive model of allele risk codification (0, 1, 2) across
a number of genetic variants [48–51]. In this investigation,
no additive effects in any included SNP were detected, so

GRS were constructed according to different genotype
categories. Interestingly, heterozygous genotypes of some
SNPs were associated with the most favorable blood lipid
phenotype compared to both homozygous groups, includ-
ing rs8192678 (PPARGC1A), rs1052700 (PLIN1), rs894160
(PLIN1), rs7799039 (LEP), rs6567160 (MC4R), rs3813929
(HTR2C), rs11091046 (AGTR2), rs1386835 (PPARG), and
rs1805081 (NPC1). This finding, known as heterozygote
advantage, is a genetic condition in which heterozygous indi-
viduals for a locus have greater biological efficacy than the
homozygous ones for the same locus [52]. Indeed, quantita-
tive genetics theory predicts that this phenomenon, related
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to individual genetic diversity, should influence the variation
in genetic predisposition to metabolic risks that show domi-
nance variance. Therefore, it has been suggested that hetero-
zygosity must be considered in genetic epidemiological
studies concerning common disease traits [53].

Excessive adiposity is generally accompanied by unfavor-
able blood lipid patterns, which may depend upon regional
fat distribution [54]. Here, VFAT has been associated with
high TG levels but negatively correlated with HDL-c levels.
Instead, TFAT increases tended to diminish circulating TG.
In agreement with our findings, visceral adiposity has been
shown to have a detrimental effect on plasma lipids, even
after adjusting for abdominal subcutaneous adipose tissue
[55]. For example, central fat accumulation showed a stron-
ger association with metabolic risks than total fat mass in
normal-weight Chinese adults [56].

Besides the genetic background, modifiable environmen-
tal factors may also influence serum lipids and related cardio-
vascular risk [5]. In this research, protein intake and alcohol
drinking were positively associated with circulating HDL-c
but negatively correlated with dietary cholesterol. Consis-
tently, higher HDL-c concentrations have been reported in
people consuming high-protein diets, accounting for a lower
risk of developing cardiometabolic disease [57, 58]. Also,
most available randomized-controlled trials have reported
modest but significant increases in serum HDL-c concentra-
tions after cholesterol supplementation with eggs [59]. Addi-
tionally, favorable lipid outcomes (higher levels of HDL-c)
have been linked to moderate ethanol consumption, provid-
ing indirect evidence for a protective effect of alcohol on car-
diovascular risk [60, 61].

The main strengths of this investigation include the anal-
ysis of the genetic influence on blood lipids using GRS from
obesity-related SNPs instead of conventional lipid-protein
genes as well as the use of different multiple linear regression
tests to evaluate the contribution of genetic and lifestyle fac-
tors to plasma lipid profiles. Although SNPs were located on
obesity-related genes, some of the genes also have a direct
role in lipid metabolism including PPARG, FABP2, PLIN1,
NPC1, ACSL5, and FAAH, suggesting relationships between
genetics, adiposity, and plasma lipid profiles. Also, the results
found in this research are unlikely to be confounded by pop-
ulation stratification since the studied sample was ethnically
homogeneous (Spanish individuals of European ancestry)
as revealed by AMOVA analyses. As for drawbacks, our find-
ings may be not generalizable to other ethnic groups and
populations, especially those who are exposed to different
gene-environmental interactions. Moreover, this study
enrolled subjects with excessive body weight-for-height; thus,
further research is needed concerning the analysis of lean
individuals. In addition, type I and type II errors cannot be
completely ruled out, especially those related to the selection
of SNPs to be introduced into the GRS. However, as previ-
ously reviewed [62], genomic profile risk scoring analyses
can tolerate, at balance, some of these biases due to the use
of less stringent P value thresholds compared to association
studies of single variants. Likewise, although all linear regres-
sion models were internally validated by the bootstrapping
method, it is not likely that the overfitting problem is totally

ruled out. Also, because our findings were not assessed in
an independent validation data set, replications in external
populations may be required in a further study. Another
way of validation could consist in splitting the original data
set into two subsets, separating a discovery sample (training)
and a target sample (testing), but given the relatively low
sample analyzed, the statistical power of the study concern-
ing main outcomes would be lowered. Furthermore, the role
of new SNPs associated with excessive adiposity and accom-
panying metabolic alterations through a GRS approach needs
to be explored. As a final point, while several gene-gene or
gene-environment interactions in relation to lipid traits have
been reported [5], no relevant relationships were found in
this study.

In conclusion, our results suggest that multiple obesity-
related genetic variants are important predictors of blood
lipid phenotypes, in addition to environmental influences
in subjects with excessive body weight-for-height. Together,
these insights may contribute to design and implement preci-
sion lifestyle strategies to the control of lipid disorders.
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