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Abstract

A method has been developed to identify proteins required for the biogenesis of non-coding RNA
in yeast, using a microarray to screen for aberrant patterns of RNA processing in mutant strains,
and new proteins involved in the processing of ribosomal and non-coding RNAs have been found.
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Functional genomics and proteomics
Yeast is widely used as a eukaryotic model system to study

protein function because of its relative simplicity and the

availability of powerful genetic tools. The completion of the

genome sequence of the yeast Saccharomyces cerevisiae in

1996 [1] allowed researchers to analyze a eukaryotic organism

on a genomic scale for the first time. This has greatly acceler-

ated the development of technologies for performing large-

scale proteomic and functional-genomic studies. Many of the

initial studies in yeast were focused on the use of DNA

microarray chips to measure expression profiles of large sets

of genes in mutant strains or under varying growth conditions

[2], but recent studies have mainly focused on large-scale

proteomic experiments, including genome-wide two-hybrid

protein-protein interaction screens [3-5], high-throughput

affinity-purification of protein complexes [6,7], large-scale

protein localization experiments [8] and even proteome chips

[9]. Another recent study examined the growth phenotypes of

yeast strains with gene deletions; approximately 96% of the

annotated open reading frames (ORFs) were covered by this

deletion collection [10]. Most recently, Peng et al. [11] have

used a plethora of mutant yeast strains and microarray tech-

nology to screen for proteins involved in the synthesis and

processing of ribosomal and other non-coding RNAs.

Synthesis and processing of rRNA and small
non-coding RNAs
Strikingly, over 95% of the nucleic acid in yeast cells is

non-coding RNA [12]. Most of these RNAs are ribosomal

RNAs (mostly cytoplasmic rRNAs but including some

mitochondrial rRNAs); indeed, a large portion of the cell’s

energy is devoted to the synthesis of ribosomes and rRNA, a

process that requires hundreds of trans-acting factors [13].

Ribosome biogenesis takes place in a subnuclear cellular

compartment, the nucleolus. Here, three of the four rRNAs

are transcribed by RNA polymerase I as a single precursor or

pre-rRNA. The nascent pre-rRNA is processed in a series of

cleavage reactions to produce the mature 18S, 5.8S and

25S-28S rRNAs. Interestingly, processing of the nascent

pre-rRNA in yeast has recently been shown to require the

assembly of a pre-rRNA ribonucleoprotein (RNP) complex

(the small subunit (SSU) processome, or 90S complex) that

is about the size of a ribosome itself [14-16], underscoring

the complexity of ribosome biogenesis. Using affinity-tag

purification procedures several laboratories have isolated a

number of other large pre-rRNA RNP complexes [6,7,14-

20]. Also, an organelle-scale proteomic analysis of the

human nucleolus has revealed the human homologs of many

of these proteins as well as new ones [21]. In general, much

remains to be discovered about the exact function of the

proteins involved in ribosome biogenesis in the nucleolus.

Moreover, the precise mechanism by which the endo-

nucleolytic steps in pre-rRNA processing occur is not yet

clear. It is not even known, in most cases, whether cleavage

involves the activity of (as yet unidentified) endonucleases. 

Apart from rRNAs the other non-coding RNAs comprise a

long list of abundant, small RNAs, including small nucleolar



RNAs (snoRNAs), small nuclear RNAs (snRNAs), transfer

RNAs (tRNAs), telomerase RNA, signal-recognition-particle

RNAs and the RNA components of the RNase P and RNase

MRP endonucleases. Most snoRNAs are involved in cotran-

scriptional chemical modification of pre-rRNA, particularly

2�-O-ribose methylation (in the case of ‘box-C/D’ snoRNAs)

and base pseudouridylation (for ‘box-H/ACA’ snoRNAs;

reviewed in [22]). The snRNAs are probably the catalysts for

pre-mRNA splicing, and their association with each other and

the pre-mRNA leads to the formation of the spliceosome [23].

As is the case for rRNAs, the mechanism by which many

small non-coding RNAs are matured is not yet completely

understood. Interestingly, it appears that several components

of the machinery responsible for the cleavage and polyadeny-

lation of mRNAs are also involved in the maturation of

snRNAs and snoRNAs [24-26]. This is one of many examples

of the way in which processing machineries are shared by dif-

ferent biogenesis pathways for non-coding-RNA. 

Using microarrays to probe the yeast RNA-
processing proteome
Comparative bioinformatic analyses [27,28] of protein-

interaction data from several studies has revealed hundreds

of uncharacterized protein-coding genes that are predicted

to have a role in RNA processing and/or RNP biogenesis;

many of these have not been detected or validated in large-

scale proteomic studies. To test these predictions experi-

mentally, Peng and colleagues [11] set out to measure

defects in the biogenesis of non-coding RNA using oligonu-

cleotide microarrays. The microarrays contained 212 differ-

ent oligonucleotides that recognized unprocessed mRNAs

and partially processed and mature products of a wide array

of non-coding RNA species. These arrays were hybridized to

steady-state RNA harvested from a set of strains, from each

of which a protein was depleted or otherwise mutated. The

mutant strains tested were chosen from the yeast deletion

collection [10], from mutant strains previously collected by

others, or constructed by the authors [11] using the tetO7

system, which allows regulation of the protein of interest by

tetracycline. The microarray showed which particular RNAs

were depleted or overrepresented in each strain; strains

with aberrant patterns were taken to have mutations in a

gene involved in RNA biogenesis. To their credit, the

authors sought to validate their microarray findings indi-

vidually by northern blotting, greatly strengthening their

conclusions.

The authors used a variety of sources to choose which can-

didate ORFs to test for in the mutant strains using their

new methodology. A total of 413 ORFs (making up 7% of

the yeast genome) had been previously characterized as

having a role in non-coding-RNA biogenesis (Table 1).

From comparative analyses of other genome-wide studies

(such as [4-8,21]) the authors [11] then predicted an addi-

tional 919 ORFs to be involved in non-coding RNA biogen-

esis (to bring the total to 1,332 ORFs). Of the 919 addi-

tional ORFs implicated in non-coding RNA biogenesis, 578

were annotated in the databases as ‘biological process

unknown’ and 341 were annotated with unrelated func-

tions (see Table 1). A higher proportion than expected of

the 413 previously characterized ORFs was encoded by

essential genes (253/413 or 61%, and these represent

nearly one quarter of all the essential genes in the whole

genome; Table 1). Of the 1,332 ORFs implicated in non-

coding-RNA biogenesis, 39% were encoded by essential

genes (Table 1), again higher than a random sampling of

the yeast genome would predict.

Of the pool of proteins implicated in non-coding RNA bio-

genesis, 468 were selected (of which 41% are essential) and

the effects of their deletion or conditional depletion were

analyzed by microarray (Table 2). These included 169

strains in which the proteins could be conditionally

depleted (using the tetO7 system; 36% of the tested pro-

teins). From the microarray results, a computational clas-

sification technique was used to generate a score in the

range of 1-5 for each protein; a score of 5 was considered

‘positive’ (that is, the protein functions in the processing of

non-coding RNA). Surprisingly, using this classification

system only 53% the proteins known to be involved in non-

coding RNA processing, 74% of the proteins known to be

involved in ribosome biogenesis and 36% of the proteins

involved in snRNA/snoRNA/mRNA biogenesis were con-

sidered positive (Table 2). This is probably due to the fact

that very stringent criteria were used to designate a posi-

tive; perusal of the supplementary data to the article [11]

suggests that many with lower scores are indeed true posi-
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Table 1

Generating ORFs to test for their involvement in non-coding-
RNA metabolism

Total Ratio Percentage

Total ORFs annotated* 6,200†

Known role in RNA metabolism 413 413/6,200 7%

Essential genes 1,050† 1,050/6,200 17%

Essential RNA-metabolism genes 253 253/6,200 4%

Total non-coding-RNA 1,332
biogenesis

Previously characterized ORFs 413 413/1,332 31%

Predicted ORFs [11] 919 919/1,332 69%

GO: biological process unknown 578 578/1,332 43%

GO: unrelated function 341 341/1,332 26%

Essential ORFs 525 525/1,332 39%

Overview of the available data used by Peng et al. [11] from the databases.
*From the Saccharomyces Genome Database [33]; other numbers and
percentages were generated from the supplemental data to [11].
†Approximate numbers. GO, gene ontology terms. 



tives. Investigation of the proteins not previously impli-

cated in non-coding-RNA biogenesis revealed that 32% of

the ORFs annotated as ‘biological process unknown’ were

positive, as were 21% of the ORFs annotated as having

unrelated functions (Table 2). 

Uncovering new proteins required for RNA
maturation and ribosome biogenesis
The results presented by Peng et al. [11] clearly prove the

usefulness of their methodology in assigning function to pro-

teins required for ribosome biogenesis. Unexpectedly, 20

ORFs annotated in the databases as ‘biological process

unknown’ appeared to be involved in pre-rRNA processing

but their mutant strains did not show a recognizable alter-

ation in the pattern of RNA-processing defects on the

microarray. Unfortunately, most of the processing defects

for this subset of mutants were not investigated in more

detail. As the authors have themselves stated [11], these

proteins are very attractive candidates for further study. 

Notably, many proteins that were annotated with functions in

unrelated cellular processes appeared to (also) have a

primary role in RNA biogenesis (21% of the ‘unrelated’ class;

Table 2). One example is YOR145c, otherwise referred to as

Pno1p. This protein had previously been shown to be required

for biogenesis of the yeast proteasome [29], but both the

microarray and the subsequent northern blot analysis of pre-

RNA intermediates [11] strongly suggest a role in 18S rRNA

synthesis. A second example is Lrp1p, which was previously

described to be involved in non-homologous DNA end-joining

[30]. Peng et al. [11] have shown that it is required for correct

processing of the 5.8S rRNA and that it is a component of the

yeast exosome complex, a protein complex that is involved in

3�-end trimming of many RNA species and involved in

mRNA degradation ([31] and references therein). 

One of the problems encountered by the authors [11] was

that alterations in the processing of low-abundance

non-coding RNAs (such as many snoRNAs and snRNAs)

were difficult to detect with their methods. Indeed, only

about 36% of the proteins already known to be involved in

the biogenesis of tRNA, snoRNA or snRNA were classified

as positive in their screen (Table 2). The analyses did iden-

tify Bcd1p, a protein that is essential for stable accumula-

tion of box-C/D-type snoRNAs, however. In vivo depletion

of Bcd1p resulted in a dramatic reduction of box-C/D

snoRNA steady-state levels, while box-H/ACA snoRNA

levels appeared to be unaffected [11]. Thus, Bcd1p is likely

to be involved in the biogenesis of box-C/D snoRNAs; it

thus has a function similar to Naf1p, which is required for

stable accumulation of box-H/ACA snoRNAs [32]. More

detailed studies on Bcd1p will probably provide significant

new insights into box-C/D snoRNA maturation.

Surprisingly, the methodology [11] was sufficiently sensitive

to detect nucleotide modifications in pre-tRNAs. Deletion of

the non-essential tRNA dihydrouridine synthetase Dus1p

resulted in increased hybridization of oligonucleotides to the

5� ends of tRNA, which was shown to be due to an increase

in hybridization of the same amount of tRNA, rather than

increased levels of the tRNA. This increased microarray

hybridization signal correlated with a lack of covalent

uridine modifications in a dus1 deletion strain. This result

represents the first time that covalent modifications have

been detected in a microarray experiment. 

The various genome-wide proteomic and functional

genomic studies to date have provided a large amount of

information that has allowed researchers to envisage con-

nections between many protein and pathways. Peng et al.

[11] have now developed some innovative tools to test pre-

dictions of protein function in non-coding-RNA biogenesis

on a proteomic scale. There are now many new proteins to

be analyzed and functions to be assigned.
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The numbers and percentages were generated from the supplemental
data to Peng et al. [11]. GO, gene ontology terms.
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