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Introduction
The emergence of mutations in the severe acute respiratory 
syndrome coronavirus 2 (SARS-CoV-2) genome is a deter-
mining factor in the emergence of epidemic waves. It is 
important to point out that even though it has a genetic-
revision mechanism,1 the virus has not been able to contain 
more than 25 000 mutations already reported.2 Mutations 
may enhance transmissibility, pathogenicity, and host 
immune escape; however, some substitutions may not change 
the viral phenotype.3

Among the regions of the viral genome, the gene encoding 
the Spike (S) protein continues to be a major center of modifi-
cation. The Gamma and Delta variants, previously circulating 
variants of concern (VOCs), and the more recent Omicron 

variant have as their main characteristic the gradual increase in 
mutations in the Spike region and the subsequent increase in 
the number of cases of the disease.4

The VOC Gamma (P.1), identified in November 2020 in 
Amazonas State/Brazil,5,6 was responsible for the second wave 
of infections and deaths, and brought as characteristic muta-
tions: (a) L18F, T20N, P26S, D138Y, and R190S in the 
N-terminal domain (NTD); (b) K417T, E484K, and N501Y in 
the receptor-binding domain (RBD); (c) D614G and H655Y 
in the C-terminus of S1; and (d) T1027I and V1176F in S2. 
The K417T, E484K, and N501Y mutations were of greater 
concern due to their location on the angiotensin-converting 
enzyme 2 (ACE2) contact surface, which may provide escape 
from neutralizing antibodies.7
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group. In conclusion, the study showed a temporal increase in mutations and subvariants for characterized strains. Furthermore, the vaccination 
profile did not impact significant changes in the mutational profile yet remains a determining factor for severe disease.
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The Delta (B.1.617.2) variant was reported in India in 
October 2020, possessing 11 characteristic mutations being 
T19R, T95I, G142D, Δ156-157, R158G, L452R, T478K, 
D614G, P681R, and D950N in the Spike protein, showing high 
case numbers; however, no significant impacts in severe cases.8-10

The Omicron variant (BA) was first described in Africa in 
November 2021 and has the largest number of mutations 
described among all the variants, accumulating approximately 
34 in the S protein alone. However, 2 of these mutations 
(N501Y and Q498R) can increase the transmissibility of the 
SARS-CoV-2 with the capacity to intensify the interaction 
with the ACE2 receptor.11

Considering the economic, social, and health impacts caused 
by virus mutations, this study aims to show the mutations in 
the gene encoding the Spike (S) protein of SARS-CoV-2 in 
different variants, comparing the result between vaccinated and 
unvaccinated populations in western Amazonia.

Materials and Methods
Ethical aspects and biological samples of SARS-
CoV-2

This study was conducted in the Laboratório de Virologia 
Molecular at Fiocruz/RO, with approval from the Research 
Ethics Committee of the Research Center for Tropical Medicine 
of Rondônia-CEPEM/RO 4.000.086 and was performed in 
accordance with the ethical principles stipulated by the 1975 
World Medical Assembly and the Ministry of Health (Resolution 
466). All experiments were performed in accordance with the rel-
evant guidelines and regulations, and were exempt from informed 
consent requirements due to their retrospective design.

A total of 1497 SARS-CoV-2 positive individuals were 
selected by convenience from primary care clinics and reference 
centers in different municipalities of the Rondônia state from 
April 2021 to July 2022 for genome sequencing. SARS-CoV-2 
diagnosis was conducted in Laboratório Central de Saúde 
Pública de Rondônia (LACEN/RO) by real-time quantitative 
reverse transcription PCR (RT-qPCR) with One-Step/
COVID-19 kits (IBMP, Brazil). Epidemiological data and 
vaccination status were collected from medical records in the 
GAL/RO, SIVEP-Gripe, and E-SUS databases.

Extraction of Viral RNA

A total of 140 µL of samples were collected with combined 
swabs; then, viral RNA was extracted using QIAamp® Viral 
RNA Mini Kits (QIAGEN, Germany) according to the man-
ufacturer’s instructions. The RNA was eluted in 60 µL of 
Elution Buffer (AVE) for viral load and inference tests.

SARS-CoV-2 amplif ication and sequencing

A Multiplex One-Step RT-qPCR assay for the detection of 
SARS-CoV-2 as developed by Queiroz et al12 was used for the 

viral load measurement. The sequencing of SARS-CoV-2 
complete genome was performed with the support of the 
FIOCRUZ Genomic Surveillance Network at Fiocruz unit in 
Manaus, Amazonas State. Samples with Ct values less than 25 
were selected for high coverage. Nucleotide sequencing was 
performed using Illumina MiSeq or NextSeq 1000 platforms 
using COVIDSEQ Kit (Illumina, San Diego, CA, USA), as 
previously reported.13

Mutation analysis

SARS-CoV-2 genomes were classified into lineages using the 
available software Pangolin (version v4.2, pangolin-data ver-
sion v1.18.1.1),14 and mutations were analyzed with Nextclade 
Beta (version 2.13.0).15 Nextclade implements several quality 
controls (QCs) to flag potentially problematic sequences due 
to errors during sequencing or assembly. Sequences that pro-
duced mediocre and poor metrics were excluded from muta-
tion analyses.

Maximum likelihood phylogenetic reconstruction

High-quality (>29 kb) whole reference genomes (<1% of N) 
of VOCs Gamma, Delta, and Omicron sampled in Brazil 
(n = 47) were downloaded from the GISAID EpiCoV database 
on September 11, 2022.16 The sequences generated in this 
study (n = 1412) and the retrieved sequences were aligned using 
MAFFT v.7.487.17 The best model of nucleotide substitution 
was measured (GTR + G + I) using ModelFinder,18 and the 
phylogenetic tree was reconstructed using the maximum likeli-
hood method in the program IQ-TREE v.2.1.3.19 Branch sup-
port values were obtained using Ultrafast Bootstrap with 1000 
replicates. The tree was visualized and edited with FigTree 
v.1.4.4.20

Statistical analysis

Descriptive analyses were represented through central ten-
dency and dispersion measurements. A chi-square test was 
used for statistical inference with a significance level of 5% 
(P < .05). Statistical analysis was performed, and graphics were 
generated using R software v4.0.3.

Results
A total of 1497 samples from individuals infected with SARS-
CoV-2 from April 2021 to July 2022 were analyzed. All sam-
ples were characterized as to variant and subvariant; Figure 1 
demonstrates the maximum likelihood phylogeny inference in 
relation to the classification of the major clades of the identi-
fied Gamma (P.), Delta (AY.), and Omicron (BA.) variants and 
their respective subvariants.

The Gamma variant showed the highest numbers corre-
sponding to 52.91% (792/1497), followed by the Delta variant 
with 24.38% (384/1497) and the Omicron VOC with 20.38% 



Sgorlon et al 3

(321/1497) of the cases reported in this cohort. The map dem-
onstrates the geographical distribution of the variants in the 7 
health regions of the state of Rondônia with a marked preva-
lence of Gamma in the Madeira-Mamoré Health Region, 
Delta in the Jamari Valley (81%) and Guaporé Valley (72%) 
regions, and Omicron with greater distribution in the Zona da 
Mata (43%) (Figure 2).

The Omicron VOC had the highest number of subvariants 
(n = 19), followed by Delta (n = 12) and Gamma (n = 5) circulat-
ing in the state of Rondônia during the study period.

In the first genomic surveillance periods, in mid-April, 
there was a prevalence of VOC Gamma, where the subvari-
ants with the highest number of cases were P.1 and P.1.4, 
with 84.60% (670/792) and 11.87% (94/792). In August 
2021, with the emergence and circulation of VOC Delta in 
the state, the subvariants with the highest number of infected 
individuals were AY.99.2 with 46.61% (179/384) and AY.43 
with 46.09% (177/384) of cases. VOC Omicron was first 
detected on December 20, 2021 and has since been the only 
VOC detected through July 2022, with BA.1 showing 47.04% 
(151/321) and BA.1.1 with 15.89% (51/321) of characterized 
cases (Figure 3).

The viral load of the individuals presented a median of 7.33 
(SD = 1.07) log10 copies/mL. Regarding the period of viral 
load detection, the study population showed a median of 4 days 
of symptoms (SD 2.7, Min 1 day and Max 16 days). There was 
no significant difference when each detected variant was indi-
vidually evaluated.

Regarding the vaccination profile evaluated, 61.92% 
(927/1497) belong to the unvaccinated and partially vaccinated 
group (includes unvaccinated and first dose only) and 38.08% 
(570/1497) to the fully vaccinated group (includes second dose 
and boosters). Within the unvaccinated and partially vacci-
nated group, VOC Gamma had the highest number of infected 
individuals with 74.76% (693/927). Within the fully vacci-
nated group, the prevalence of the VOC Omicron was 44.74% 
(255/570) in relation to the period studied.

Among the infected, the priority groups (age group > 60 years 
and with comorbidities) had a higher vaccination coverage. 
Among the groups listed in Table 1, the analyses showed that 
vaccination was a significant protective factor against 
hospitalization.

A total of 1412 were quality for mutation analysis according 
to Nextclade metrics, and mutations with a frequency above 
2% in the S gene region were recorded and analyzed. The Delta 
variant had 16 mutations in this region, Gamma had 17, and 
the Omicron variant had 38 mutations in this gene. It was pos-
sible to verify that the VOC Omicron and Gamma shared 4 
mutations with high frequency, being E484K, H655Y, N501Y, 
and N679K, and to a lesser extent the Delta and Omicron vari-
ant shared the T478K and T95I mutations (Figure 4).

Figure 5 shows the mutation profile for each variant in rela-
tion to the unvaccinated/partially (no dose or first dose only) 
and fully vaccinated (second dose or booster doses) groups. The 
variants were circulated at different times from the inclusion of 
vaccination doses and in the evaluation, it was possible to see 

Figure 1. Maximum likelihood phylogenetic tree showing 1412 sequences with “good” quality in NEXTCLADE obtained in this study and 47 reference 

genomes retrieved from GISAID.
The tree was rooted with the most ancestral sequence (EPI_ISL_402123). Gamma, Omicron, and Delta clades are shaded in yellow, blue, and green, respectively.
AY. indicates Delta; BA., Omicron; P., Gamma; GISAID, Global Initiative on Sharing All Influenza Data.
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Figure 2. Dispersion map of cases per variant in the 7 health regions in the state of Rondônia.

Figure 3. Area plot showing the distribution of subvariants during the study period.
AY. indicates Delta; BA., Omicron; P., Gamma.
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that the vaccination profile had no impact on the change in 
mutational profile.

Discussion
The distribution of the variants detected shows the temporal 
context of SARS-CoV-2 infections, demonstrating 3 distinct 
periods of infections in the state of Rondônia, initially charac-
terized by the dominance of VOC Gamma, followed by Delta 
and finally Omicron.

The phylogenetic tree of the study corroborated with the 
clade structure currently proposed for SARS-CoV-2,15 show-
ing a large accumulation of Gamma variant cases.21,22 The 
Gamma variant was quickly replaced in Rondônia by the Delta 
variant; however, it was not responsible for new waves of cases 
like those previously reported.23,24 A smaller number of indi-
viduals appear related to the Omicron variant reported lately as 
an alert.25

In Rondônia, the rate of sequenced samples was satisfactory 
in all health regions compared with other regions of the coun-
try, keeping genomic surveillance levels active.26,27 The replace-
ment of variants possibly demonstrates the contribution of the 
vaccine spectrum in the state, considering that the Madeira-
Mamoré region is responsible for housing the largest number 
of inhabitants and only reflected the highest prevalence for 
Gamma compared with Delta and Omicron during all ana-
lyzed periods. According to the sample selection criterion, 
which is based on the quality of the genomic sequencing, the 
viral load level of the study population was expected to be high, 
as it proved to be, because it is the main influencer on the suc-
cess of the sequencing.28,29

We observed that fully vaccinated individuals composed 
most of the individuals who became infected with Omicron, as 
the circulation occurred after the period when vaccination was 
already fully included in the study population.30

Table 1. Profile of vaccination groups with respect to severity, variants, and epidemiological data.

OUTCOME

FEATURES NOT/PARTIALLY 
IMMUNIZED

FULLY 
IMMUNIZED

ORC (CI 95%) P ORAD (CI 95%) P

Sex  

Female 472 (50.9) 322 (56.5) 0.799 (0.644-0.990) 0.0376* - -

Male 455 (49.1) 248 (43.5)

Age (years)  

<30 276 (29.8) 133 (23.3) 1 - - -

31-40 229 (24.7) 140 (24.6) 1.268 (0.944-1.704) .1138 - -

41-50 215 (23.2) 103 (18.1) 0.994 (0.726-1.360) .9707 - -

51-60 127 (13.7) 92 (16.1) 1.503 (1.071-2.109) .0183* - -

>60 80 (8.6) 102 (17.9) 2.645 (1.848-3.786) .0001* 3.309 (2.162-5.0605) .0003*

Comorbities  

No 869 (93.7) 508 (89.1) 1.827 (1.235-2.708) .0016* - -

Yes 58 (6.3) 62 (10.9)

Symptoms  

No 249 (26.9) 48 (8.4) 3.990 (2.853-5.672) .0002* 3.285 (2.280-4.732) .0001*

Yes 678 (73.1) 522 (91.6)

Hospitalization  

No 841 (90.7) 556 (97.5) 0.246 (0.127-0.441) .0005* 0.141 (0.069-0.289) .0007*

Yes 86 (9.3) 14 (2.5)

VOC  

No omicron 861 (92.9) 315 (55.3) 10.541 (7.761-14.465) .0002* 10.570 (7.713-14.483) .0002*

Omicron 66 (7.1) 255 (44.7)

Abbreviations: CI, confidence interval; VOC, variants of concern; ORc, Odds Ratio Crude; ORad, Odds Ratio Adjusted.
* and bold indicates significance value.
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Several studies revealed that VOC Omicron has a higher 
transmissibility compared with the previous variants and, thus, 
demonstrates the potential of the variant in the vaccine 
escape.31-34 However, the results showed that individuals with 
full vaccination had a lower risk of hospitalization compared 
with those who were not vaccinated or who received only 1 
dose. In fact, vaccines against COVID-19 have direct efficacy 
in decreasing the transmissibility and especially the severity of 
the disease.35-37 In addition, other studies indicate the booster 
dose is essential in controlling the disease.38-40

Some mutations already described may promote resistance 
to immunization,41 but according to our evaluations, there were 

no significant changes in the frequency of mutations in the S 
gene compared with the characterized groups (vaccinated and 
unvaccinated/partially).

The D614G mutation reported since the beginning of the 
pandemic3 showed high prevalence in the Gamma, Delta, and 
Omicron VOCs in the analyses performed. This mutation is 
closely linked to a higher affinity in the binding of variants for 
the ACE2 receptor, due to the presence of the alteration in the 
RBD conformation, thus increasing its transmission rate.42,43 
In addition, other signature mutations, such as E484K, H655Y, 
N501Y, and N679K, were shared between the Omicron and 
Gamma VOCs, linked to neutralizing antibody resistance to 

Figure 4. Mutations located in the S gene region in the Gamma, Delta, and Omicron variants.
A frequency above 2% was set for visualization of the graph.
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SARS-CoV-2, suggesting that viral evolution is also linked to 
vaccine-resistant mutations.44

In conclusion, the data demonstrated the temporal dissemi-
nation of the 3 main VOCs characterized in the state of 
Rondônia, in the Western Amazon region in the year 2021 
(April) to 2022 ( July), verifying the accumulation of mutations 
for each variant, resulting in an increase in the number of sub-
variants. Moreover, the immunization profile did not impact 
the change in mutational profile but was a determining factor 
for the control in the evolution to severe cases.

It is important to note that other mutations with lower fre-
quency were described in this study in the different periods. 
These mutations presented with lower frequency may become 
possible signature mutations with potential for higher viru-
lence or transmissibility rate as occurred with VOC Omicron, 
especially with mutations in the S gene.
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