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Abstract

Background: Artificial intelligence algorithms could be used to risk-stratify thyroid nodules and 
may reduce the subjectivity of ultrasonography. One such algorithm is AIBx which has shown 
good performance. However, external validation is crucial prior to clinical implementation.
Materials and methods: Patients harboring thyroid nodules 1–4 cm in size, undergoing 
thyroid surgery from 2014 to 2016 in a single institution, were included. A histological 
diagnosis was obtained in all cases. Medullary thyroid cancer, metastasis from other 
cancers, thyroid lymphomas, and purely cystic nodules were excluded. Retrospectively, 
transverse ultrasound images of the nodules were analyzed by AIBx, and the results 
were compared with histopathology and Thyroid Imaging Reporting and Data System 
(TIRADS), calculated by experienced physicians.
Results: Out of 329 patients, 257 nodules from 209 individuals met the eligibility criteria. 
Fifty-one nodules (20%) were malignant. AIBx had a negative predictive value (NPV) of 
89.2%. Sensitivity, specificity, and positive predictive values (PPV) were 78.4, 44.2, and 
25.8%, respectively. Considering both TIRADS 4 and TIRADS 5 nodules as malignant 
lesions resulted in an NPV of 93.0%, while PPV and specificity were only 22.4 and 19.4%, 
respectively. By combining AIBx with TIRADS, no malignant nodules were overlooked.
Conclusion: When applied to ultrasound images obtained in a different setting than 
used for training, AIBx had comparable NPVs to TIRADS. AIBx performed even better 
when combined with TIRADS, thus reducing false negative assessments. These data 
support the concept of AIBx for thyroid nodules, and this tool may help less experienced 
operators by reducing the subjectivity inherent to thyroid ultrasound interpretation.

Introduction

Risk stratification of thyroid nodules uses ultrasound 
features predictive of benign or malignant disease 
to identify nodules that should undergo biopsy.  

Biopsy is an invasive procedure and may not yield 
a final diagnosis one out of seven times (1). Thus, 
reducing unnecessary biopsies may have a clinical  
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impact by reducing the number of diagnostic  
surgical procedures.

Systems used to classify thyroid nodules include, for 
example, Thyroid Imaging Reporting and Data System 
(TIRADS) created by the American College of Radiology 
(ACR), the American Thyroid Association classification 
system, the French TIRADS, k-TIRADS, and the EU-TIRADS 
(2, 3, 4, 5, 6). These systems are based on a subjective 
assessment of the nodule and have sub-optimal specificity 
and positive predictive values (PPV) (7). In addition, 
TIRADS may be inferior to the personal judgment by 
experts (8), and the same nodule may yield different 
risk estimates across different systems (9). A reliable, 
explainable, less subjective, and noninvasive technique to 
address this problem is desirable.

AIBx is an artificial intelligence (AI) model which 
might overcome these challenges (10). The AIBx algorithm 
retrieves images from an image library similar to the test 
image, and the associated diagnosis is displayed to the 
physician for decision-making. In the initial internal 
validation study of AIBx, the negative predictive value 
(NPV) of the AIBx was 93.2%, while sensitivity, specificity, 
PPV, and accuracy of the model were 87.8, 78.5, 65.9, and 
81.5%, respectively (10). When compared to TIRADS, AIBx 
had comparable NPV with better sensitivity, specificity, 
and PPV (7, 11).

AIBx was developed using images from a single 
healthcare system and different ultrasound machine 
manufacturers. However, AI software created in one 
healthcare system may not provide similar results when 
applied to different populations and imaging machines 
(12). In addition, unrecognized biases and confounding 
factors could influence the results. Hence, it is essential 
to demonstrate the robustness of healthcare AI systems in 
different settings (13).

The primary aim of this study was to evaluate the 
performance of AIBx for risk stratification of thyroid nodules 
based on ultrasound images collected retrospectively from 
a different institution. The secondary aim was to assess 
the performance of AIBx applied to thyroid nodules with 
indeterminate cytology.

Materials and methods

This was a single-center retrospective study wherein 
existing ultrasound images of thyroid nodules and 
corresponding histological diagnosis were used to 
validate AIBx. The original images were collected for a 
prospective study previously described (clinicaltrial.gov 

registration no: NCT02150772) (14). In brief, adult patients 
undergoing thyroid surgery were included between 
January 2014 and February 2016 at the Department of 
Otorhinolaryngology, Head & Neck Surgery, Aarhus 
University Hospital, Denmark. Preoperatively, the 
majority of patients underwent fine-needle aspiration 
of the nodule. Bethesda categories (I–VI) were used 
to describe the cytopathological diagnosis (15). A 
histologically verified diagnosis, according to the WHO 
classification (16), was obtained in all patients based on 
the surgical specimen.

Image acquisition

For the present study, nodules were excluded if the 
dimension was <10 mm or >40 mm, or if the whole nodule 
was not completely visible in one ultrasound image. 
Ultrasound images containing annotations, markings, 
writings, or crosshairs within the nodule were excluded. 
Multinodular goiters without a separable nodule on the 
ultrasound image, medullary thyroid cancer, metastasis 
from other cancers, thyroid lymphomas, and purely cystic 
nodules were also excluded (Fig. 1).

All ultrasound images were acquired by two 
experienced physicians using SuperSonic Aixplorer 
(Supersonic, Aix en Provence, France). Images were 
obtained in the transverse plane and stored as JPEG files. 
Based on ultrasound features suggestive of malignancy, 
a TIRADS score was prospectively assigned, based on the 
EU-TIRADS criteria (4).

AIBx

One anonymized B-mode image from each nodule was 
transferred from Aarhus University Hospital, Denmark, to 
Mercy Hospital, USA. The images were analyzed using AIBx, 
while blinding the investigators toward the cytological 
and histological diagnoses, as well as the TIRADS score. In 
total, 2025 images were available in the reference library 
obtained on ultrasound machines manufactured by GE, 
Siemens, Philips, and Sonosite (10). Diagnosis of the first 
similar image by AIBx was considered as the diagnostic 
output of the algorithm.

Outcomes

The AIBx results were returned to Aarhus University 
Hospital for comparison with the true diagnoses (i.e. 
histopathological results) and the TIRADS scores. Accuracy, 
sensitivity, specificity, PPV, NPV, and area under the curve 
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(AUC) were calculated from a confusion matrix using 
python programming language. A subgroup analysis was 
done on cytologically indeterminate nodules.

The study complies with the World Medical Association 
Declaration of Helsinki. The prospective collection of 
ultrasound images was approved by the Ethics committee 
of Region Midt, Denmark, for which the participants gave 
their written informed consent. Approval was given by 
the Ethics committee of Region Midt, Denmark to pass 
on the anonymous images from the prospective study, 
without obtaining further consent from the participants. 
The prospective study was registered at ClinicalTrials.gov 
(NCT02150772). A waiver of Consent/Assent and waiver 
of Health Insurance Portability and Accountability Act 
Authorization were granted for this study from Mercy 
Hospital. Institutional review board approval was obtained 
from Mercy Hospital.

Results

The original dataset contained 413 nodules from 
329 patients. In total, 257 nodules from 209 patients 
were eligible for the study (females/males: 161/48; age 
(mean ± s.d.) 55.7 ± 13.2 years). All but 51 nodules 
underwent a biopsy. There were 206 benign (80%) and 51 
malignant nodules (20%). The latter were all differentiated 
thyroid carcinomas, including 10 follicular thyroid 
carcinoma (FTC), 9 follicular variant papillary thyroid 
carcinoma (FvPTC), 29 classical PTC, and 3 tall cell variant 
PTC. When data were grouped based on the Bethesda 
classification, 56% of the nodules that underwent biopsy 
were assigned an indeterminate diagnosis, that is category 
III, IV, or V, with the majority (32%) being category IV 
(suspicious for follicular neoplasm) (Fig. 2).

Diagnostic performance

Diagnostic assessments are shown in Table 1 alongside 
the results of AIBx and TIRADS assessment. Overall, AIBx 
performed with an NPV of 89.2%. Sensitivity, specificity, 
and PPV were 78.4, 44.2, and 25.8%, respectively, while 
AUC was 0.61. For TIRADS, 190 nodules (74%) were in 
TIRADS 5 category, and 24 nodules (9%) were in TIRADS 4, 
resulting in a higher false-positive rate and a lower accuracy 
than obtained by AIBx. When restricting the analyses to 
PTC, AIBx had an NPV of 96% and an AUC of 0.65, while 
the corresponding values for TIRADS were 93% and 0.55, 
respectively. If only TIRADS 5 nodules were considered 
malignant, the NPV was 89.6%.

Concordance rates

The concordance rate between AIBx and TIRADS was 58%. 
Eleven malignant nodules (five FTC, two FvPTC, three 

Figure 1
Patient selection flowchart. US, ultrasonography.

Figure 2
BSRTC category according to histological diagnosis. BSRTC, Bethesda 
system for reporting thyroid cytopathology; FNAB, fine-needle  
aspiration biopsy.

https://etj.bioscientifica.com © 2022 The authors
https://doi.org/10.1530/ETJ-21-0129 Published by Bioscientifica Ltd.

This work is licensed under a Creative Commons 
Attribution-NonCommercial-NoDerivatives 4.0 
International License.

https://doi.org/10.1530/ETJ-21-0129
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/


e210129K Z Swan et al. AIBx for thyroid nodule risk 
stratification

11:2

classical PTC, and one tall cell PTC) were falsely negative 
by AIBx but correctly diagnosed by TIRADS. The biopsies 
were categorized as Bethesda IV (n  = 7), V (n  = 3), or VI 
(n  = 1). Three malignant nodules, all PTC and classified 
as Bethesda category I, II, or V, were falsely negative by 
TIRADS but correctly diagnosed by AIBx. No malignant 
nodules were falsely negative by both AIBx and TIRADS. If 
both methods predicted the nodule to be malignant, the 
prevalence of malignancy was 28%.

Nodules with indeterminate cytological diagnoses

There were 115 nodules assigned Bethesda category III, IV, 
or V, representing indeterminate cytological diagnoses. 
The diagnoses for this subgroup assessed by histology, 
AIBx, and TIRADS score are shown in Table 1. The 27 
malignant nodules included ten FTC, eight follicular 
variant PTC, and nine classical PTC. All nodules in the 
Bethesda category III (n  = 16) were falsely predicted to be 
malignant by TIRADS (1 nodule assigned TIRADS 4 and 
15 nodules assigned TIRADS 5). In contrast, only 25% of 
nodules in the Bethesda category III were predicted to be 
malignant by AIBx. Considering only TIRADS 5 nodules as 
malignant, the accuracy increased to 37% with a decrease 
in sensitivity and NPV to 82 and 81%, respectively.

Discussion

AIBx showed comparable performance to existing risk 
stratification methods as reflected by an NPV of 89%, 
increasing to 96% when restricting the analysis to PTC 
cancers only. On comparing AIBx to the assigned TIRADS 
score, AIBx performed with higher specificity and PPV 
but lower sensitivity and NPV. However, when including 
only PTC in the malignant group, the NPV of AIBx was 

higher than achieved by TIRADS. In our study, the thyroid 
ultrasound and the assessment of the TIRADS score were 
made by experts. It is likely, but remains to be proven, 
that AIBx will perform even better than conventional risk 
stratifications made by non-experts (17).

Overall, AIBx categorized fewer benign nodules as 
malignant (false positive) than TIRADS, thus potentially 
reducing the number of biopsies needed. On the other 
hand, AIBx categorized a higher fraction of malignant 
nodules as benign (false negative) compared with TIRADS, 
potentially overlooking more cancers. This pinpoints 
the major challenge in the risk stratification of thyroid 
nodules, of which only few are malignant (3). Therefore, 
clinicians must balance the risk of overlooking malignancy 
while reducing the number of unnecessary biopsies in 
order to avoid overtreatment of benign nodules. If a 
biopsy is categorized as indeterminate, this usually leads to 
diagnostic surgery or molecular testing due to a malignancy 
risk in the range of 6–60% (15).

The false-negative rates of AIBx and TIRADS were 22 
and 6%, respectively. Importantly, no malignant nodule 
was overlooked when both methods deemed it benign. 
Thus, combining AIBx with TIRADS may have clinical 
relevance in order to avoid unnecessary biopsies. The 
majority of nodules presenting with false-negative AIBx 
results were of follicular origin, but these were all correctly 
assessed by TIRADS. On the contrary, all three PTC classified 
as benign by TIRADS were assessed malignant by AIBx. Two 
of these were also cytopathologically overlooked (Bethesda 
I or II). The shortcomings of TIRADS were confirmed in 
a large study, in which ACR TIRADS misclassified 32% of 
malignant nodules (18).

In the indeterminate categories (Bethesda III, IV, 
and V), NPV of TIRADS was similar to that found in the 
whole cohort, while NPV of AIBx decreased to 81.5%. This 
is probably explained by the relatively higher fraction 

Table 1 Diagnostic and ultrasonographic assessment of included nodules.

Test
Result

Malignant, n (%) Benign, n (%) Sens (%) Spec (%) NPV (%) PPV (%) Accuracy (%)

All included nodules (n  = 257)
  Histologya 51 (20) 206 (80) – – – – –
  AIBx 155 (60) 105 (40) 78.4 44.2 89.2 25.8 51.0
  TIRADS 214 (83) (43 (17) 94.1 19.4 93.0 22.4 34.2
Nodules with an indeterminate cytological diagnosis (BSRTC: III, IV, V) (n  = 115)
  Histologya 27 (23) 88 (77) – – – – –
  AIBx 61 (53) 54 (47) 63.0 50.0 81.5 27.9 53.0
  TIRADS 103 (90) 12 (10) 96.3 12.5 91.7 25.2 32.2

aReference diagnosis.
BSRTC, Bethesda system for reporting thyroid cytopathology; NPV, negative predictive value; PPV, positive predictive value; Sens, sensitivity; Spec, specificity.
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of FTC and FvPTC in this subgroup, while PTC was the 
predominant malignancy in the reference library (10). 
Thus, AIBx performed better when assessing PTC only. In 
Bethesda III nodules, all being histopathologically benign, 
AIBx performed superior to TIRADS, categorizing only 25% 
as malignant, while TIRADS deemed all nodules malignant.

In the internal validity study (10), the accuracy of 
AIBx was 81.5%, as compared with 51.0% in this study. 
This is mostly explained by a higher rate of false-positive 
results for AIBx in this external cohort, as reflected by 
higher specificity and PPV in the internal validity study. 
The NPV and sensitivity were also slightly higher in the 
internal validity study (10), but not to the same extent. The 
fraction of FTC in the present cohort was higher than in 
the reference library, and this type of thyroid carcinoma 
is generally more difficult to identify by ultrasound, as 
compared to PTC (3, 4, 19).

Facial recognition technology trained on a subset of 
population fails to recognize faces of another subset (20). 
Similarly, medical algorithms based on images from one 
machine may not work well on images obtained from 
another machine (12). The images from the SuperSonic 
Aixplorer machine used in the present study had different 
textures and were generally larger than the images 
used in the initial study (10). In addition, iodine status, 
environmental factors, and access to healthcare could 
affect the size and morphology of the thyroid nodule, 
and at which stage it comes to medical attention. Even 
with these differences, AIBx demonstrated a good NPV. It 
might be possible that the performance could be further 
improved by adding images from the SuperSonic Aixplorer 
or other machines to the AIBx reference library.

A recent review suggested that AI algorithms are 
able to match the accuracy provided by radiologists and 
pathologists (21). AIBx has several advantages. Unlike 
other automated black box algorithms, the operators 
are involved in each step of the algorithm, from image 
selection to assessing similar image categories. The operator 
can thereby counterbalance the potential problems posed 
by AI models. The system uses a technology similar to face 
recognition (10), which has some analogy with the pattern 
recognition upon which the various TIRADS are designed. 
Similar images from a large database are presented to the 
operator, thus supporting decision-making. For the less 
skilled operator, the library compensates for the lack of 
experience by presenting similar images and may prove to 
be a valuable teaching tool.

There are a few limitations of our study. This was a 
retrospective study, and only one image of each nodule was 

available. The image selected was the most representative 
of the nodule. However, another image from the same 
nodule might present different ultrasound features, and 
thus be scored differently by AIBx. Preferably, an image 
obtained in the longitudinal plane, and not only in the 
transversal plane, should be included for risk assessment. 
In addition, the performance of AIBx might have been 
further improved by including dynamic cine loops for 
the selection of representative images. In a Chinese 
retrospective study (22), a deep convolutional neural 
network model, that included sets of thyroid images, 
showed improved specificity in identifying thyroid 
cancer patients, as compared with a judgment by skilled 
radiologists. As for AIBx, future studies are needed to clarify 
the ideal setup.

Our patients represented a selected surgical cohort 
with a relatively high fraction of cancer. The NPV would 
probably increase in a cohort of patients harboring 
more benign nodules (23). However, to confirm the 
benign nature surgical removal of all nodules would be 
needed, which is rarely indicated in unselected patients. 
Microcarcinomas were not included in our study 
and should probably be investigated separately from  
larger cancers.

Ultrasonography is a method increasingly used for 
the morphological evaluation of thyroid nodules (3). 
This results in the identification of many nodules that 
otherwise would remain undetected. Most of these lesions 
are benign but will elicit a diagnostic work up to rule out 
malignancy. The huge number of thyroid images makes it 
possible to train and sophisticate the AI algorithms. Some 
of the initial algorithms were based on features extracted by 
physicians (21). Subsequently, thyroid ultrasound images 
were used directly to train deep learning models. Further 
studies are needed to identify the optimal use of AIBx and 
to increase its performance. This involves adding images 
from other institutions and ultrasound machines to the 
reference database. Optimal workflow for incorporating 
AIBx into clinical use is another issue that needs  
to be addressed.

We conclude that AIBx had comparable NPV to 
TIRADS, when applied to ultrasound images obtained in 
a different setting than used for training. AIBx performed 
even better than TIRADS in Bethesda category III and PTC. 
Combining AIBx with TIRADS may be highly valuable in 
clinical practice, by reducing unnecessary biopsies while 
still identifying thyroid cancer with high accuracy. Our 
study proves the concept of AIBx for thyroid nodules, 
and this tool may help less experienced operators by 
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reducing the subjectivity inherent to thyroid ultrasound 
interpretation.
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