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Abstract: Advanced maternal age (≥35 years) increases the risk of vascular complications in preg-
nancy that can result in fetal growth restriction and preeclampsia. Endoplasmic reticulum (ER)
stress has been linked to adverse pregnancy outcomes in these complicated pregnancies. However,
the role of ER stress in advanced maternal age is not known. We hypothesize that increased ER
stress contributes to altered vascular function and poor pregnancy outcomes, and that treatment
with the ER-stress inhibitor TUDCA will improve pregnancy outcomes. First, young and aged
non-pregnant/pregnant rats were used to assess ER stress markers in mesenteric arteries; mesenteric
artery phospho-eIF2α and CHOP expression were increased in aged dams compared to young dams.
In a second study, young and aged control and TUDCA-treated dams were studied on gestational day
(GD) 20 (term = 22 days). TUDCA treatment was provided via the drinking water throughout preg-
nancy (GD0-GD20; calculated dose of 150 mg/kg/day TUDCA). ER stress markers were quantified
in mesenteric arteries, blood pressure was measured, pregnancy outcomes were recorded, mesenteric
and main uterine arteries were isolated and vascular function was assessed by wire myography. Aged
dams had increased phospho-eIF2α and CHOP expression, reduced fetal weight, reduced litter size,
and impaired uterine artery relaxation. In the aged dams, TUDCA treatment reduced phospho-eIF2α
and CHOP expression, reduced blood pressure, improved fetal body weight, and tended to improve
uterine artery function compared to control-treated aged dams. In conclusion, our data illustrate the
role of ER stress, as well as TUDCA as a potential therapeutic that may benefit pregnancy outcomes
in advanced maternal age.

Keywords: advanced maternal age; pregnancy outcomes; endoplasmic reticulum stress; taurour-
sodeoxycholic acid; wire myography; endothelium-dependent relaxation

1. Introduction

Advanced maternal age is defined as maternal age ≥ 35 years at the time of delivery.
Pregnancy at an advanced age is becoming increasingly more common in developed coun-
tries, accounting for 14–18% of total live births in North America [1–3]. Several studies
have shown that advanced maternal age increases the risk of pregnancy complications,
such as fetal growth restriction, preeclampsia, hypertension, gestational diabetes, preterm
birth, small for gestational age infants, and stillbirth [4–6]. It is known that maternal
vascular adaptations to pregnancy play an essential role in normal fetal growth and devel-
opment [7–10]. In a rat model of advanced maternal age, we have demonstrated adverse
pregnancy outcomes and a reduced capacity to sustain a pregnancy, reduced fetal weight,
altered vascular function in systemic arteries, and increased active myogenic responses in

Antioxidants 2022, 11, 1275. https://doi.org/10.3390/antiox11071275 https://www.mdpi.com/journal/antioxidants

https://doi.org/10.3390/antiox11071275
https://doi.org/10.3390/antiox11071275
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/antioxidants
https://www.mdpi.com
https://orcid.org/0000-0002-2914-7693
https://orcid.org/0000-0002-8024-4413
https://doi.org/10.3390/antiox11071275
https://www.mdpi.com/journal/antioxidants
https://www.mdpi.com/article/10.3390/antiox11071275?type=check_update&version=1


Antioxidants 2022, 11, 1275 2 of 17

both mesenteric and uterine arteries from aged dams compared to young dams [11,12]. In
addition, other animal models of advanced maternal age (mouse and vervet/African green
monkey) have also shown impaired vascular adaptations during pregnancy with advanced
maternal age, that were associated with poor pregnancy outcomes and altered vascular
function [13,14]. Although pregnancies at advanced maternal age are considered high-risk
clinically, the underlying pathophysiological molecular mechanisms associated with the
adverse pregnancy outcomes, particularly related to vascular dysfunction in advanced
maternal age are not well established.

It is known that the process of aging is associated with impaired vascular endothelial
function [15]. Among the various complex mechanisms, emerging studies show that an
increase in endoplasmic reticulum (ER) stress and increased levels of reactive oxygen
species (ROS) are associated with subsequent endothelial dysfunction in (non-pregnant)
aging vessels [16,17]. The ER is a major site for the folding and trafficking of both intracel-
lular and secretory proteins, and any disturbance in the protein-folding environment can
lead to the accumulation of misfolded or unfolded proteins, triggering the evolutionarily
conserved unfolded protein response (UPR). The main purpose of the UPR is to restore
ER homeostasis for cell survival (adaptive/survival pathway) by increasing the synthesis
of molecular chaperones involved in protein folding and/or degradation of misfolded
proteins. The UPR is initiated via activation of one of the three signaling pathways/sensor
proteins: protein kinase RNA-like endoplasmic reticulum kinase (PERK), inositol-requiring
enzyme-1α (IRE1α), or activating transcription factor 6α (ATF6). These three sensors are
held in an inactive state under normal conditions by binding glucose-regulated protein 78
(GRP78), a master regulator of ER stress. When ER stress occurs, GRP78 uncaps from the
three sensors leading to the activation of UPR signaling pathways, initiating a downstream
signaling cascade causing autophosphorylation of the sensor molecules PERK and IRE-1α.
PERK activation leads to phosphorylation of eukaryotic translation-initiation factor 2α
(eIF2α), eventually reducing global protein synthesis [18,19]. Similarly, IRE1α activation
causes splicing of X-box binding protein-1 (XBP-1), a transcription factor that upregulates
gene transcription for proteins involved in ER homeostasis [20,21]. ATF6 activation leads
to its translocation to the Golgi apparatus, where it is cleaved and translocates to the
nucleus to regulate the transcription of C/EBP homologous protein (CHOP) and XBP-1 [22].
However, if the adaptive/survival pathway fails, then prolonged ER stress leads to the
accumulation of unfolded proteins, which may activate signaling pathways leading to
apoptosis (PERK via CHOP or IRE-1α via c-Jun N-terminal kinase pathways). Thus, any
cellular stress that interrupts protein folding can be a threat to cell viability [16].

Several studies have reported ER stress to play a role in adverse outcomes during
pregnancy. For example, increased ER stress negatively affects blastocyst formation and
decreases blastocyst development [23], and reduced mammalian and porcine oocyte matu-
ration and embryo development in an in vitro culture system [24]. Further, increased pla-
cental ER stress has been associated with fetal growth restriction and early-onset preeclamp-
sia [25,26]. In addition, ER stress is tightly linked to oxidative stress. Protein folding in
the ER requires a tightly controlled redox environment and excess ROS generation can
severely impact cellular homeostasis [22,26]. There are several intracellular processes that
lead to ROS generation, but one of the key enzymes involved in ROS production in aging
dams is NADPH oxidases (NOX) [27,28]. NOX was also shown to be the primary source
of ROS associated with vascular dysfunction in resistance arterioles [29]. Accumulating
research showed that ER stress increases ROS production via the NOX family (especially
the NOX-2 and NOX-4 isoforms) [30–32]. Further, NOX-induced oxidative stress is also
recognized as a key factor in the pathogenesis of adverse pregnancy outcomes such as fetal
growth restriction and preeclampsia [33,34]. Overall, these studies suggest that ER and
oxidative stress can have a negative effect on pregnancy. However, whether increased ER
stress also contributes to impaired pregnancy outcomes and altered vascular adaptations
in pregnancies at advanced maternal age is not known.
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In the current study, we first assessed if maternal aging was associated with increased
vascular ER stress, followed by a second set of experiments to evaluate the potential
benefit of an ER stress inhibitor; tauroursodeoxycholic acid (TUDCA) on vascular function
and pregnancy outcomes in a rat model of advanced maternal age. TUDCA is a bile acid
derivative that occurs naturally in the body and is used to treat cholelithiasis and cholestatic
liver disease [35,36]. Both in vitro and in vivo studies have shown a beneficial effect of
TUDCA on embryo survival [37,38]. TUDCA treatment improved the rate of two-cell
embryo development to blastocysts by attenuating the expression of active XBP-1 [39].
Further, mouse embryos cultured in the presence of TUDCA and transferred to pseudo-
pregnant foster mothers had improved implantation rates and the number of live pups
per surrogate mouse compared to the control group [40]. However, whether treatment
with TUDCA can improve pregnancy outcomes in advanced maternal age has not been
investigated. Therefore, we hypothesized that (1) impaired vascular function is due to
increased ER stress in advanced maternal age and (2) TUDCA treatment will improve
vascular function and pregnancy outcomes in a rat model of advanced maternal age by
reducing ER stress.

2. Materials and Methods
2.1. Animal Model and Experimental Design

Female and male (for breeding) Sprague Dawley rats (n = 8–10 /group) were pur-
chased from Charles River (St Constant, QC, Canada) at 3 months of age, allowed to
acclimatize for one week, and were housed in an animal care facility in a 14:10 h light: dark
cycle and at an ambient temperature of 22 ± 1 ◦C. We used an established rat model of
advanced maternal age [13], which utilizes young (3 to 4 months of age) and aged rats (9 to
10 months of age, corresponding to ~35 years of age in humans; considering milestones
such as reproductive senescence, weaning, skeletal, and sexual maturity). Young rats were
maintained on ad libitum access to standard rat chow, while aging rats were maintained
on a controlled diet until pregnancy, which consist of 6 pellets of standard chow/day
based on National Research Council recommendations, to prevent age-related obesity
as a confounding factor [41,42]. For the pregnant groups, young and aged female rats
(3–5 months and 9–10 months) were mated overnight with young male rats (3–5 months),
and pregnancy was confirmed by the presence of sperm in a vaginal smear, which was
considered as gestational day (GD) 0, after which all dams were maintained on ad libitum
standard diet [13].

Two different experimental designs were used. The first study assessed the expression
level of ER stress markers and NOX (NOX-2 and NOX-4 isoforms) in systemic arteries of
young and aged groups. The experimental groups consisted of young non-pregnant and
pregnant dams and aged non-pregnant and pregnant rats. On GD20 (term = 21–22 days),
pregnant rats and aged-matched non-pregnant rats were euthanized using isoflurane (4%
in oxygen) followed by exsanguination via cardiac puncture. The mesenteric arteries
were excised and placed in ice-cold HEPES-buffered Physiological Saline Solution (PSS;
in mmol/L: 142 NaCl, 1.56 CaCl2, 4.7 KCl, 1.17 MgSO4, 10 HEPES, 1.18 KH2PO4, and
5.5 glucose, pH 7.4), following which the mesenteric arteries were isolated for Western blot
analysis. In the second study, we assessed if the ER stress inhibitor, TUDCA, could improve
pregnancy outcomes and vascular function in pregnancy. For this study, pregnant young
and aged rats, either control or TUDCA treated rats, were used. TUDCA treatment was
provided via the drinking water throughout pregnancy (GD0-GD20; to a calculated dose of
~150 mg/kg/day TUDCA, based on previous studies [43–45]). The dose was calculated
based on the average weight of the rats and their average daily water consumption. The
control groups received regular drinking water. All TUDCA-treated rats were closely
monitored for any signs of adverse drug reactions during the study period. On GD20
(term = 21–22 days), blood pressure was measured (see below), after which the rats were
anesthetized using isoflurane and euthanized by exsanguination via cardiac puncture. The
number of pups and resorption sites were recorded. Fetal biometrics, including crown-
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rump length (CR), abdominal girth (AG), body weight, and placental weight were collected.
The mesenteric arcade and main uterine arteries were immediately excised and placed in
ice-cold HEPES-buffered PSS for ex vivo vascular function (both uterine and mesenteric
arteries) and Western blot analysis (mesenteric arteries), as described below.

2.2. Blood Pressure Measurements

In the TUDCA treatment study, on GD20, blood pressure was assessed by tail-cuff
plethysmography (CODA High Throughput System, Kent Scientific, Torrington, CT, USA).
Before pregnancy, all rats were trained in restraint nose cone holders for one week for
acclimatization. On the day of the experiments, rats were placed in the restraint holders,
and the occlusion tail cuff and volume pressure recording sensor cuff were placed close
to the base of the tail. After a 20 min. acclimatization period, at least 10 consecutive
blood pressure measurements (mean arterial pressure, systolic, and diastolic pressure) were
recorded and averaged for each rat [46].

2.3. Mesenteric and Uterine Artery Vascular Function by Wire Myography

In the TUDCA treatment study, vascular function was assessed ex vivo in mesen-
teric and uterine arteries using wire myography. The mesenteric and uterine vasculature
were studied, for distinct reasons. Small resistance mesenteric arteries are important in
regulating overall peripheral vascular resistance, whereas the uterine artery is known
to undergo extensive remodeling during pregnancy and is critical in supporting normal
growth and development. Second-order mesenteric and main uterine arteries were iso-
lated in ice-cold PSS and mounted on an isometric myograph system (620 M Danish Myo
Technology, Copenhagen, Denmark) using 40 µm tungsten wires. LabChart software (AD
Instruments; Colorado Springs, CO, USA) was used to record the isometric tension of the
arteries. Normalization of the arteries was performed via a series of stepwise increases
in diameter to determine their optimal resting tension, set to 0.8 × IC100; 13.3 kPa for
mesenteric arteries and 7.32 kPa for uterine arteries (the internal circumference equiva-
lent to a transmural pressure of 100 mmHg). Following normalization, vascular integrity
of the arteries was confirmed by exposing the vessels to a single dose of phenylephrine
(10 µmol/L; Sigma-Aldrich, St Louis, MO, USA) for 5 min. Following a washout period
with PSS, arteries were allowed to rest for 10 min, after which they were exposed to a second
single dose of phenylephrine (10 µmol/L followed by a single dose of methylcholine (MCh;
3 µmol/L; Sigma-Aldrich). After this wakeup procedure, the vessels were allowed to rest
for 30 min, and endothelium-dependent vascular responses to MCh were investigated
using a cumulative dose-response curve to MCh (0.003 to 3 µmol/L) after pre-constriction
with phenylephrine (3 µmol/L) to produce 80% of the maximal response. To assess the
contribution of nitric oxide (NO) to vasodilation, part of the arteries was pre-incubated with
the pan-NO synthase inhibitor N(G)-nitro-L-arginine methyl ester hydrochloride (L-NAME;
100 µmol/L; Sigma-Aldrich) 30 min prior to the start of the cumulative dose-response curve
to MCh. Concurrently, in a separate vessel segment, endothelium-independent relaxation
responses to sodium nitroprusside (SNP; a NO donor; 0.003 to 2 µmol/L: Sigma-Aldrich)
were assessed. At the end of each experiment, all arteries were exposed to a 124 mmol/L
potassium chloride solution (high KCl buffer; containing in mmol/L: 24 NaCl, 4.9 CaCl2,
124 KCl, 2.4 MgSO4, 10 HEPES, 1.18 KH2PO4, and 5.5 glucose; pH 7.4) to determine max-
imum vasoconstriction responses. All data was recorded using LabChart software (AD
Instruments; Colorado Springs, CO, USA) and were summarized as maximum vasodilation
responses to MCh/SNP (Emax), sensitivity to MCh/SNP, defined as the negative log of the
mean effective concentration that produces 50% of the maximal response (pEC50), the area
under the curve (AUC), and ∆AUC. GraphPad Prism 9 (GraphPad Software, San Diego,
CA, USA) was used to analyze the data.
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2.4. Expression of Oxidative and ER Stress Markers Using Western Blot Analysis

Snap frozen mesenteric arteries were homogenized using cell lysis buffer (concentra-
tion in mmol/L: 5 EDTA, 10 sodium pyrophosphates tetrabasic, 100 sodium, 9-fluoride
with 1% Nonidet P-40, and 20 Tris, pH 7.4) containing phosphatase inhibitor (2 mmol/L
sodium orthovanadate, Sigma), 1 mmol/L Phenylmethylsulfonyl fluoride (PMSF; Fluka
Biochemika, St. Louis, MO, USA), and a protease inhibitor cocktail (Thermo Scientific,
Waltham, MA, USA). A bicinchoninic acid assay (Pierce, Rockford, IL, USA) was used to
determine the total protein concentration of the samples. Based on total protein concentra-
tion, tissue homogenates (50 µg of protein) were loaded and separated on 10% and 12%
SDS-polyacrylamide gels and transferred to a nitrocellulose membrane (100 V, 2 h: 0.2 µm,
Bio-Rad, Hercules, CA, USA). For normalization, total protein quantification was per-
formed using LI-COR Revert 700 Total Protein Stain and imaged using the LI-COR Odyssey
system. Followed by incubating the membranes with BlockOut®-Universal Blocking Buffer
(Rockland, PA, USA) for 1 h. All membranes were incubated overnight at 4 ◦C with pri-
mary antibodies for NOX-2 (1:500 mouse monoclonal, Santa Cruz Biotechnology, Dallas,
TX, USA), NOX-4 (1:500 rabbit polyclonal, Proteintech), GRP78 (1:1000 rabbit polyclonal,
Cell Signaling Technology, Danvers, MA, USA), phospho-eIF2α (1:500 rabbit polyclonal,
Cell Signaling Technology), Total-eIF2α (1:500 mouse monoclonal, Santa Cruz Biotechnol-
ogy), CHOP (1:500 mouse monoclonal, Cell Signaling Technology), sXBP1 (1:500 rabbit
polyclonal, Cell Signaling Technology), or ATF-6 (1:1000 mouse monoclonal, Santa Cruz
Biotechnology) in phosphate-buffered saline with Tween-20 (PBST in mmol/L; 2.7 KCl,
137 NaCl, 1.8 KH2PO4, 10 Na2HPO4, and Tween® 20: 0.1% (w/v); Thermo Scientific). The
following day, membranes were incubated with their corresponding secondary antibodies:
IRDye donkey anti-rabbit IgG (NOX-2, NOX-4, GRP78, phopsho-eIF2α, sXBP-1) and IRDye
donkey anti-mouse IgM (for Total-eIF2α, CHOP, and ATF-6) at 1:10,000 dilution in PBST
buffer. At the end, blots were washed several times and were visualized with an LI-COR
Odyssey Bioimager (LI-COR Biosciences, Lincoln, NE, USA) and quantified using ImageS-
tudioLite software (LI-COR Biosciences). All data were normalized to total protein (except
phosph-eIF2α, which was normalized to total-eIF2α) and expressed as percent change
compared to the respective control group (young non-pregnant or young pregnant rats).

2.5. Statistical Analyses

All data were plotted and analyzed using GraphPad Prism 9 (GraphPad Software,
San Diego, CA, USA) or Stata (StataCorp LLC, College Station, TX, USA) and presented
as mean ± SEM. Statistical differences were tested using a two-way ANOVA with either
planned contrast analysis or Sidak’s post-hoc test for multiple comparisons; p < 0.05 was
considered statistically significant.

3. Results
3.1. Increased Expression of ER Stress Markers and NOX-4 in Aged Non-Pregnant and
Pregnant Rats

In the first study, we assessed if the expression of ER stress markers and NOX in
systemic (mesenteric) arteries was increased in advanced maternal age pregnancies. Both
GRP78 and phosph-eIF2α expression were increased in the aged groups with no effect of
pregnancy (Figure 1A,B). CHOP expression was increased in the aged groups, while the
expression of CHOP was reduced in young pregnant rats compared to young non-pregnant
rats, without differences between aged pregnant and non-pregnant rats (significant in-
teraction; Figure 1C). sXBP-1 protein levels were higher only in the aged non-pregnant
rats compared to the young non-pregnant group (Figure 1D). There were no changes in
the expression of ATF-6 among the groups (data not shown). As ER stress increases ROS
production via NOX, we measured the expression of two key isozymes NOX-2 and NOX-4
isoforms. There were no differences in NOX-2 protein expression between the groups
(Figure 1E). However, NOX-4 protein expression was higher in aged non-pregnant rats
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compared to young non-pregnant rats and tended to be higher in aged dams compared to
young dams (Figure 1F).

Antioxidants 2022, 11, x FOR PEER REVIEW 6 of 17 
 

compared to young non-pregnant rats and tended to be higher in aged dams compared 
to young dams (Figure 1F). 

 
Figure 1. Increased expression of ER stress markers and NOX-4 in aged non-pregnant and pregnant 
rats. Expression levels of (A) GRP78, (B) phosph-eIF2⍺ (Ser51), (C) CHOP, (D) sXBP-1, (E) NOX-2, 
and (F) NOX-4 proteins normalized to total protein in mesenteric arteries of young (3–4 months; in 
red) and aged (9–10 months; in blue) pregnant (gestational day 20; closed circles) and non-pregnant 
(age-matched; open circles) rats. Representative blots are shown above the graphs, and data are 
presented as mean ± SEM and expressed as a percentage of the control (i.e., the mean of the young 
non-pregnant group); analyzed by two-way ANOVA with Sidak’s multiple comparisons post-hoc 
test; n = 6–9/group. The number of asterisks defines the level of statistical significance observed 
among the data in the graphs: * p < 0.05, ** p < 0.01, *** p < 0.001, and **** p < 0.0001; main ANOVA 
effects are depicted below the x-axis (aging) or beside the legend (pregnancy); post-hoc test results 
are shown within the graphs. YG-NP = Young non-pregnant; YG-PG = Young pregnant; AG-NP = 
Aged non-pregnant; AG-PG= Aged pregnant. 

3.2. Reduced ER Stress Protein Expression in TUDCA-Treated Aged Dams 
The second study was designed to assess if treatment with the ER stress inhibitor 

TUDCA could reduce the ER stress that had been shown to be increased in the systemic 
vasculature of the aged dams, as well as improve pregnancy outcomes and vascular func-
tion. No changes were seen in the expression of GRP78 protein between young and aged 
control and TUDCA-treated groups (Figure 2A). However, phospho-eIF2⍺ and CHOP ex-
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ment in the young dams (Figure 2B,C). NOX-4 expression was increased in the aged dams 
compared to young saline-treated dams, and this aging effect was no longer significant in 
the TUDCA-treated control compared to TUDCA-treated aged dams (significant interac-
tion; Figure 2D). 

Figure 1. Increased expression of ER stress markers and NOX-4 in aged non-pregnant and pregnant
rats. Expression levels of (A) GRP78, (B) phosph-eIF2α (Ser51), (C) CHOP, (D) sXBP-1, (E) NOX-2,
and (F) NOX-4 proteins normalized to total protein in mesenteric arteries of young (3–4 months; in
red) and aged (9–10 months; in blue) pregnant (gestational day 20; closed circles) and non-pregnant
(age-matched; open circles) rats. Representative blots are shown above the graphs, and data are
presented as mean ± SEM and expressed as a percentage of the control (i.e., the mean of the young
non-pregnant group); analyzed by two-way ANOVA with Sidak’s multiple comparisons post-hoc
test; n = 6–9/group. The number of asterisks defines the level of statistical significance observed
among the data in the graphs: * p < 0.05, ** p < 0.01, *** p < 0.001, and **** p < 0.0001; main ANOVA
effects are depicted below the x-axis (aging) or beside the legend (pregnancy); post-hoc test results are
shown within the graphs. YG-NP = Young non-pregnant; YG-PG = Young pregnant; AG-NP = Aged
non-pregnant; AG-PG = Aged pregnant.

3.2. Reduced ER Stress Protein Expression in TUDCA-Treated Aged Dams

The second study was designed to assess if treatment with the ER stress inhibitor
TUDCA could reduce the ER stress that had been shown to be increased in the systemic
vasculature of the aged dams, as well as improve pregnancy outcomes and vascular
function. No changes were seen in the expression of GRP78 protein between young and
aged control and TUDCA-treated groups (Figure 2A). However, phospho-eIF2α and CHOP
expression was increased in aged control dams compared to young control dams, and this
was reduced by TUDCA treatment in the aged dams, without the effect of TUDCA treatment
in the young dams (Figure 2B,C). NOX-4 expression was increased in the aged dams
compared to young saline-treated dams, and this aging effect was no longer significant in
the TUDCA-treated control compared to TUDCA-treated aged dams (significant interaction;
Figure 2D).

3.3. Reduced Blood Pressure in Aged TUDCA-Treated Dams

TUDCA treatment reduced blood pressure (systolic, diastolic, and mean arterial
pressure) in only the aged dams (Figure 3A–C).
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Figure 2. Reduced expression of ER stress markers in TUDCA-treated aged dams. Expression levels of
(A) GRP78, (B) phosph-eIF2α (Ser51), (C) CHOP, and (D) NOX-4 proteins normalized to total protein
in mesenteric arteries of young (3–4 months; in red) and aged dams (9–10 months; in blue) with
(open squares) or without (closed circles) TUDCA-treatment on gestational day 20. Representative
blots are shown above the graphs, and data are presented as mean ± SEM and expressed as a
percentage of control (i.e., the mean of the young control dams); analyzed by two-way ANOVA with
Sidak’s multiple comparisons post-hoc test; n = 6/group. The number of asterisks defines the level of
statistical significance observed among the data in the graphs: * p < 0.05, ** p < 0.01, and *** p < 0.001;
main ANOVA effects are depicted below the x-axis (aging) or beside the legend (TUDCA); post-
hoc test results are shown within the graphs. YG-CTL = Young control dams; YG-TD = Young
TUDCA-treated dams; AG-CTL = Aged control dams; AG-TD = Aged TUDCA-treated dams.

3.4. Mesenteric Artery Vascular Function Was Not Impacted by Age or TUDCA Treatment

In mesenteric arteries, no differences in MCh-induced endothelium-dependent vasodi-
lation responses were observed between the groups (Figure 4A,B). In addition, there were
no differences in endothelium-independent relaxation responses to SNP (Figure 4C,D). As
NO is a potent vasodilator and plays an important role in regulating blood flow during preg-
nancy, we evaluated NO contribution using L-NAME and showed that NO contribution
was similar in all the groups (Figure 5A–C).
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Figure 3. Blood pressure was reduced in TUDCA-treated aged dams. (A) Systolic, (B) diastolic, and
(C) mean arterial blood pressure of young control (3–4 months; in red) and aged dams (9–10 months;
in blue) with (open squares) or without (closed circles) TUDCA-treatment on gestational day 20.
Data presented as mean ± SEM; analyzed by two-way ANOVA with Sidak’s multiple comparisons
post-hoc test; n = 8–9/group. The number of asterisks defines the level of statistical significance
observed among the data in the graphs: * p < 0.05 and ** p < 0.01; main ANOVA effects are depicted
below the x-axis (aging) or beside the legend (TUDCA); post-hoc test results are shown within
the graphs.
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Figure 4. No differences in the endothelium-dependent or endothelium-independent vasodilation
responses in mesenteric arteries between the groups. Endothelium-dependent vasodilation responses
to increasing doses of (A) MCh or (C) SNP in mesenteric arteries of young control (3–4 months; in
red) and aged dams (9–10 months; in blue) with (open squares) or without (closed circles) TUDCA-
treatment on gestational day 20. (B,D) Data summaries of the sensitivity to MCh and SNP (pEC50).
Data are presented as mean± SEM; analyzed by two-way ANOVA with Sidak’s multiple comparisons
post-hoc test; n = 8–9/group.
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Figure 5. TUDCA did not change the contribution of nitric oxide to vasodilation in mesenteric
arteries. (A,B) Endothelium-dependent vasodilation responses to increasing doses of MCh in the
presence or absence of L-NAME in mesenteric arteries of young control (3–4 months; in red) and
aged dams (9–10 months; in blue) with (open squares) or without (closed circles) TUDCA-treatment
on gestational day 20. (C) Data summary of A + B, as differences in area under the curve (∆AUC)
in the presence or absence of L-NAME. Data are presented as mean ± SEM; analyzed by two-way
ANOVA with Sidak’s multiple comparisons post-hoc test; n = 8–9/group.

3.5. Increased Fetal Body Weight in Aged TUDCA-Treated Dams

Fetal body weight was lower in control aged dams, while TUDCA treatment increased
fetal body weight in the aged dams without any changes in the young control dams
(Figure 6A). Placental weights were not different among the groups (Figure 6B). The
fetal/placental weight ratio was decreased in control aged dams compared to young dams
(Figure 6C). No differences in the crown-rump length/abdominal girth (CR/AG) ratio
was observed between the groups (Figure 6D). Litter sizes were significantly reduced in
control, but not TUDCA-treated aged compared to young dams (Figure 6E). The number of
fetal resorptions was higher in the aged dams, which tended to be reduced with TUDCA
treatment (Figure 6F).
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Figure 6. TUDCA treatment increased fetal body weight in aged dams. Pregnancy outcomes such as
(A) fetal body weight, (B) placental weight, (C) fetal/placental weight ratio, (D) fetal crown-rump
(CR)/abdominal girth (AG) ratio, (E) litter size, and (F) number of resorptions in young control
(3–4 months; in red) and aged dams (9–10 months; in blue) with (open squares) or without (closed
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circles) TUDCA-treatment on gestational day 20. Data are presented as mean ± SEM; analyzed by
two-way ANOVA with Sidak’s multiple comparisons post-hoc test; n = 9–10/group. The number of
asterisks defines the level of statistical significance observed among the data in the graphs: * p < 0.05,
** p < 0.01, and *** p < 0.001; main ANOVA effects are depicted below the x-axis (aging) or beside the
legend (TUDCA); post-hoc test results are shown within the graphs.

3.6. TUDCA Treatment Tended to Improve Uterine Artery Function in Aged Dams

MCh-induced maximum vasodilation responses were reduced in uterine arteries of
aged control dams compared to young control dams, whereas TUDCA treatment tended to
increase maximum vasodilation responses in aged dams, without effect in uterine arteries
of the young dams (Figure 7A,B). There were no changes in uterine artery endothelium-
independent vasodilation responses to SNP between the groups (Figure 7C,D). More-
over, pre-incubation with L-NAME revealed a similar NO contribution among the groups
(Figure 8A–C).
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Figure 7. TUDCA tended to improve uterine artery endothelium-dependent vasodilation responses
in aged dams. Endothelium-dependent and endothelium-independent vasodilation responses to
increasing doses of (A) MCh or (C) SNP in uterine arteries of young control (3–4 months; in red) and
aged dams (9–10 months; in blue) with (open squares) or without (closed circles) TUDCA-treatment
on gestational day 20. (B,D) Data summaries of maximal vasodilation responses to MCh and SNP
(Emax). Data are presented as mean ± SEM; analyzed by two-way ANOVA with Sidak’s multiple
comparisons post-hoc test; n = 8–9/group. The number of asterisks defines the level of statistical
significance observed among the data in the graphs: * p < 0.05; main ANOVA effects are depicted
below the x-axis (aging) or beside the legend (TUDCA); post-hoc test results are shown within
the graphs.
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Figure 8. No effect of TUDCA treatment on nitric oxide contribution to vasodilation in uterine
arteries between the groups. (A,B) Endothelium-dependent vasodilation responses to increasing
doses of MCh in the presence or absence of the pan nitric oxide synthase inhibitor L-NAME in uterine
arteries of young control (3–4 months; in red) and aged dams (9–10 months; in blue) with (open
squares) or without (closed circles) TUDCA-treatment on gestational day 20. (C) Data summary of
A + B, as differences in area under the curve (∆AUC) in the presence or absence of L-NAME. Data
are presented as mean ± SEM; analyzed by two-way ANOVA with Sidak’s multiple comparisons
post-hoc test; n = 8–9/group.

4. Discussion

The main objective of the current study was to evaluate whether ER stress contributes
to impaired vascular adaptations and pregnancy outcomes in advanced maternal age, and
to assess whether targeting ER stress using TUDCA could reduce ER stress and improve
vascular function and pregnancy outcomes. Our data showed that TUDCA treatment in a
rat model of advanced maternal age reduced ER stress in mesenteric arteries, decreased
blood pressure, increased fetal body weight, and tended to improve vasodilation responses
in uterine arteries, suggesting a beneficial effect.

In a previous study, we observed altered vascular to pregnancy in mesenteric arteries
of aged dams compared to young dams [14]. Given the association of ER stress with adverse
pregnancy outcomes ([27,47], we speculated that ER stress may be involved in mediating
this vascular dysfunction. In the current study, we assessed the expression of various
ER stress markers and observed a higher expression of GRP78 in the aged rats compared
to the young rats (main effect), but no changes in aged non-pregnant rats compared to
young non-pregnant rats. Further, we observed an increased expression of phospho-eIF2α,
CHOP, and sXBP-1 from aged non-pregnant rats compared to young non-pregnant rats. In
general, under conditions of ER stress, GRP78 is released from the UPR sensors activating
the downstream signaling pathways to regain ER homeostasis. One way of achieving
homeostasis is by increasing the expression of phospho-eIF2α (to reduce the global protein
synthesis) via the PERK pathway, however, prolonged ER stress leads to activation of
pro-apoptotic factors such as CHOP. In the current study, a possible explanation for the
differential expression of ER stress proteins (i.e., no changes in GRP78, but increased
phospho-eIF2α and CHOP) could be that there was an increased expression of GRP78 at
an earlier stage of the pregnancy, which eventually returned to basal conditions once it
activated the downstream targets (the UPR response, phospho-eIF2α, and CHOP). This
has been previously reported, for example, Kumar et al. observed differential regulation of
ER stress markers (no changes in the expression of GRP78 together with increased CHOP
expression) in anterior ischemic optic neuropathy in adult mice (1). Similarly, Karaskov et al.
observed no changes in the levels of GRP78 but increased expression of phospho-eIF2α,
CHOP, ATF4, and XBP1protein in INS-1 pancreatic β-cells exposed to palmitate (a known
ER stress inducer) (2). An increased expression of ER stress proteins in aged non-pregnant
rats is in line with aging literature [48–51] (i.e., an age-related increase in vascular ER stress).
In addition, elevated levels of phospho-eIF2α and CHOP in aged dams compared to young
dams suggest that the age-related increase in ER stress persists in pregnancy and could
contribute to vascular dysfunction and impair pregnancy outcomes. Interestingly, CHOP
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expression was reduced in young pregnant dams compared to their non-pregnant controls,
which was not seen in the aged rats, suggesting this may be a pregnancy adaptation that
did not occur with advanced maternal age.

Evidence in the literature supports a strong interplay between ER and ROS, their
association with vascular changes in aging vasculature [17,49,50], and NOX as the pri-
mary source of ROS [17,30,49,50]. Galan et al. showed an increased expression of ER
stress proteins (phospho-eIF2α, CHOP, and ATF6), and NOX-2 and NOX-4 were associated
with vascular dysfunction in mesenteric arteries and aortas using C57BL/6J (control) and
p47phox−/− mice (NOX lacking) injected with tunicamycin (an ER stress inducer) [51].
In addition, Lee et al. using C57BL/6J mice, and the NOX-4 KO mice model showed an
increased expression of IRE1α and NOX-4 could be linked to vascular dysfunction in ag-
ing [52]. Thus, the increased expression of NOX-4 in the aged groups suggests upregulation
of NOX-4 under ER stress conditions that could contribute to altered vascular function.

After finding signs of systemic vascular ER stress, together with (previously reported)
impaired pregnancy outcomes and altered vascular function [14]; we wanted to assess if
pregnancy outcomes and vascular function could be improved by ameliorating ER stress.
To the best of our knowledge, we are the first to assess the effect of an ER stress inhibitor,
such as TUDCA, on pregnancy outcomes and vascular function in a rat model of compli-
cated pregnancy. TUDCA is a naturally occurring bile acid, and chemically, TUDCA is a
taurine conjugate of ursodeoxycholic acid (UDCA), which is approved by the Food and
Drug Administration for the treatment of primary biliary cholangitis and is also safely
used in pregnancy to treat intrahepatic cholestasis [53–55]. Compared to UDCA, TUDCA
is better absorbed by the intestine and liver because of its higher water solubility at various
pHs [38,55]. In addition to its anti-cholestatic properties, it has been shown that TUDCA
is an effective inhibitor of ER stress [56,57]. For instance, TUDCA improved endothelial
dysfunction in both animal (hypertension and diabetic mouse models) [56,57] and clinical
studies (Type 2 diabetes mellitus) [58]. Here, we showed that TUDCA treatment in aged
dams reduced the expression of phospho-eIF2α, CHOP, and NOX-4 in systemic arteries.
This is in line with other studies in both rats and mice which showed that endothelial dys-
function is associated with upregulation of pelF2α/ATF4/CHOP in mesenteric resistance
arteries and aortas, albeit these studies were not performed during pregnancy [44,59,60].
Moreover, others have previously shown that TUDCA treatment improved vascular func-
tion by reducing ER stress and NOX-2 and NOX-4 expression in mesenteric arteries and
aortas in a hypertension and diabetic mouse model (non-pregnant mice) [31,44,51]. Collec-
tively, our data suggest that ER stress may contribute to impaired vascular adaptations in
aged dams and that TUDCA treatment may have beneficial effects on ER/oxidative stress
in the systemic vasculature.

Mesenteric resistance arteries play a significant role in the systemic circulation, regu-
lating overall peripheral vascular resistance during normal pregnancy [61,62]. However,
our data showed no differences in mesenteric artery endothelium-dependent vasodilation
responses or NO contribution between the groups. These findings contrast with other
studies, which showed that TUDCA increased NO bioavailability by reducing ER stress
and improved vascular function in mesenteric arteries and aorta from tunicamycin-treated
mice and in db/db mice [44,56]. A potential explanation for these differences in vascu-
lar outcomes after TUDCA treatment could be that the other studies were conducted in
non-pregnant rodents, and chemically induced ER stress causes pronounced vascular en-
dothelial dysfunction with reduced NO, which is not what we observed with advanced
maternal age rats [14]. Further, the rat age of our model may not be sufficiently old enough
to affect endothelium-dependent relaxation in mesenteric arteries, as it is possible that
age-related vascular changes are ongoing. The latter was more evident in uterine arteries,
with reduced uterine artery maximum vasodilation response and fetal growth restric-
tion in the offspring (discussed below), implying that the vascular changes could be at a
subthreshold level.
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TUDCA reduced blood pressure in aged dams compared to untreated aged dams,
such that blood pressure was similar to that of young dams. Although the effects of TUDCA
on blood pressure in pregnancy are not well established, research in non-pregnant animal
models has demonstrated that TUDCA, by alleviating ER stress (i.e., reduced expression of
markers such as GRP78, phospho-eIF2α, CHOP, IRE1, XBP1, and ATF6) decreases blood
pressure, reduces arterial stiffness, and improves endothelial dysfunction in spontaneously
hypertensive rats [56,63,64]. It may be speculated that the reduction in ER stress that we
observed contributed to the decrease in blood pressure by TUDCA in aged dams.

We hypothesized that TUDCA may be able to improve pregnancy outcomes in aged
dams. Indeed, TUDCA treatment increased fetal body weight and tended to reduce the
number of fetal resorptions in aged dams, suggesting that TUDCA can have a beneficial
effect on pregnancy outcomes with advanced maternal age. Moreover, there was no (neg-
ative) impact of TUDCA on pregnancy outcomes in the young dams. Of note, TUDCA
improved fetal body weight in aged dams without changes in the placental weight. In
general, the major determinant of fetal growth is the ability of the placenta to supply nutri-
ents and oxygen via simple diffusion and/or using various transporter-mediated systems,
such as glucose and amino acid transport system [65–68]. Indeed, there are numerous
studies demonstrating placental insufficiency (inability of the placenta to supply sufficient
nutrients and oxygen to the fetus) as the primary cause of fetal growth restriction [66,69,70].
Studies showed that ER stress and ROS can directly impact mammalian targets of ra-
pamycin and O-GlcNAc transferase pathways, two key nutrient-sensing proteins involved
in amino-acid and glucose transport, causing fetal growth restriction [27,71–73]. By re-
ducing placental ER and oxidative stress, TUDCA could thus indirectly control these key
nutrient sensors in aged dams to improve fetal weight, however, this remains to be studied
in future experiments.

The higher number of fetal resorptions in aged control dams could be attributed to
various reasons; impaired decidualization or reduced uterine prostaglandins synthesis that
may affect trophoblast cells invasion and eventually reduce the ability of the blastocyst
implantation [74,75]. Further, in vitro studies showed that ER stress negatively affects
blastocyst formation, decreases blastocyst development, and reduces oocyte maturation and
embryo development [25,26,76]. Lin et al. demonstrated that the TUDCA supplementation
of the embryo culture medium improved the rate of implantation/number of livebirth
rates of transferred mouse embryos in surrogate mice [40]. Thus, increased ER stress could
be linked to the higher number of resorptions observed in aged dams, and the reduced
resorption rate in aged dams after TUDCA treatment suggests that reducing ER stress may
(partially) prevent fetal resorptions.

One of the most important physiological changes for normal pregnancy outcomes is
the remodeling of the uterine arteries to supply well-oxygenated blood to the developing
fetus [77–80]. Previously, using our advanced maternal age rat model, we demonstrated
changes in uterine artery vascular function in advanced maternal age compared to young
dams [13]. In the current study, TUDCA tended to improve endothelium-dependent vasodi-
lation responses in aged dams (without effect in young dams), suggesting increased uterine
artery ER stress may have impaired uterine artery vascular function. Further, TUDCA may
have improved the uterine artery function by reducing the ER stress, similar to what was
observed in the mesenteric arteries, but due to the limited tissue amount of the uterine
arteries, we could not measure the levels of ER stress markers. ER stress has been shown to
impair uterine artery function. For instance, Hu et al. showed that ER stress suppresses
Ca2+ sparks/STOCs and increases myogenic tone in uterine arteries in an animal model of
pregnant sheep acclimatized to high altitude, which was reversed using TUDCA/PERK
inhibitor (GSK2606414) [81]. In addition, no changes in vascular responsiveness to the
NO-donor SNP (endothelium-independent response) were found between the groups,
suggesting the effect of TUDCA treatment was endothelium-dependent. However, there
were no differences in NO contribution which suggests that the improved uterine artery
relaxation in aged dams after TUDCA treatment is not NO-dependent and may be due
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to adaptations in other endothelial vasodilatory pathways (an area that remains to be
investigated). Overall, our data indicates that TUDCA improved uterine artery vascular
function and adverse pregnancy outcomes in complicated pregnancies.

5. Conclusions

Advanced maternal age is associated with an increased risk of pregnancy compli-
cations such as fetal growth restriction, preeclampsia, preterm birth, and stillbirth. Our
study demonstrated the presence of ER stress in mesenteric arteries from rats of advanced
maternal age, and that inhibition of ER stress by TUDCA reduced expressions of ER stress
proteins in the mesenteric vasculature. TUDCA treatment also reduced blood pressure,
improved fetal body weight, and uterine artery function in aged dams, signifying its bene-
ficial role in advanced maternal age pregnancies. Clinically, maternal aging is frequently
associated with co-morbidities, such as hypertension, diabetes, obesity, or cardiovascu-
lar disease-associated endothelial dysfunction, therefore, designing future studies that
include a second hit (such as high salt or high-fat diet or chemically induced ER stress)
are warranted to confirm the potential benefit of TUDCA in these complex pregnancies.
In summary, our studies are the first to illustrate the role of ER stress in pregnancies at
an advanced maternal age, and for TUDCA as a potential therapeutic that may benefit
pregnancy outcomes in this high-risk population.
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