$\beta = 113.959 \ (3)^{\circ}$ 

Z = 4

 $V = 3973.3 (12) \text{ Å}^3$ 

Mo  $K\alpha$  radiation

 $0.28 \times 0.24 \times 0.22$  mm

10176 measured reflections

3683 independent reflections

3035 reflections with  $I > 2\sigma(I)$ 

 $\mu = 0.60 \text{ mm}^{-1}$ 

T = 293 K

 $R_{\rm int} = 0.031$ 

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

# *trans*-Tetraaquabis[1,3-bis(4-pyridyl)propane-*kN*]cobalt(II) biphenyl-4,4'disulfonate monohydrate

#### Guang-Xiang Liu\* and Xu-Yong Xu

School of Chemistry and Chemical Engineering, Anqing Normal University, Anqing 246003, People's Republic of China Correspondence e-mail: liugx@aqtc.edu.cn

Received 15 April 2011; accepted 26 April 2011

Key indicators: single-crystal X-ray study; T = 293 K; mean  $\sigma$ (C–C) = 0.005 Å; R factor = 0.054; wR factor = 0.133; data-to-parameter ratio = 13.4.

In the title compound,  $[Co(C_{13}H_{14}N_2)_2(H_2O)_4](C_{12}H_8O_6S_2)$ - $H_2O$ , the cation, anion and uncoordinated water molecule have crystallographically imposed twofold symmetry. The cobalt(II) atom exhibits a slightly distorted octahedral coordination geometry provided by two N atoms from two 1,3-bis(4-pyridyl)propane ligands and the O atoms from four water molecules. The dihedral angle between the pyridine rings in the ligand is 86.14 (11)°, whereas the dihedral angle formed by the symmetry-related benzene rings in the anion is 35.81 (12)°. In the crystal, cations, anions and water molecules are linked into layers parallel to the *ac* plane by  $O-H\cdots O$ and  $O-H\cdots N$  hydrogen-bond interactions. The layers are further connected into a three-dimensional network by C–  $H\cdots O$  hydrogen bonds.

#### **Related literature**

For applications of bipyridine ligands and the 4,4'-biphenyldisulfonate dianion in coordination chemistry, see: Lu *et al.* (2006); Ghoshal *et al.* (2003); Brandys & Puddephatt (2001); Tong *et al.* (2002); Wang *et al.* (2005); Suresh & Bhadbhade (2001); Mago *et al.* (1997); Pan *et al.* (2001); Chen, Cai, Feng & Chen (2002); Chen, Cai, Liao *et al.* (2002); Lian, Cai & Chen (2007); Lian, Cai, Chen & Luo (2007); Liu *et al.* (2010).



#### Experimental

#### Crystal data

$$\begin{split} & [\mathrm{Co}(\mathrm{C}_{13}\mathrm{H}_{14}\mathrm{N}_{2})_2(\mathrm{H}_{2}\mathrm{O})_4] - \\ & (\mathrm{C}_{12}\mathrm{H}_8\mathrm{O}_6\mathrm{S}_2)\cdot\mathrm{H}_2\mathrm{O} \\ & M_r = 857.84 \\ & \mathrm{Monoclinic}, \ C2/c \\ & a = 15.555 \ (3) \ \mathrm{\AA} \\ & b = 18.983 \ (3) \ \mathrm{\AA} \\ & c = 14.725 \ (3) \ \mathrm{\AA} \end{split}$$

#### Data collection

Bruker SMART APEX CCD areadetector diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2000)  $T_{min} = 0.850, T_{max} = 0.879$ 

#### Refinement

| $R[F^2 > 2\sigma(F^2)] = 0.054$ | H atom                    |
|---------------------------------|---------------------------|
| $wR(F^2) = 0.133$               | indep                     |
| S = 1.04                        | refine                    |
| 3683 reflections                | $\Delta \rho_{\rm max}$ = |
| 274 parameters                  | $\Delta \rho_{\min} =$    |

# II stores too to d bu a mintura

| H atoms treated by a mixture of                           |  |
|-----------------------------------------------------------|--|
| independent and constrained                               |  |
| refinement                                                |  |
| $\Delta \rho_{\rm max} = 0.53 \text{ e } \text{\AA}^{-3}$ |  |
| $\Delta \rho_{min} = -0.22 \text{ e} \text{ Å}^{-3}$      |  |

#### Table 1 Hydrogen-bond geo

| Hydrogen-bond | geometry | (Å, | °). |
|---------------|----------|-----|-----|
|---------------|----------|-----|-----|

| $D - H \cdot \cdot \cdot A$             | D-H      | $H \cdots A$ | $D \cdots A$ | $D - \mathbf{H} \cdots A$ |
|-----------------------------------------|----------|--------------|--------------|---------------------------|
| $O1W-H1WA\cdots O3^{i}$                 | 0.81 (4) | 2.60 (4)     | 3.008 (4)    | 113 (3)                   |
| $O1W-H1WA\cdots O1^{i}$                 | 0.81(4)  | 2.01 (5)     | 2.812 (4)    | 169 (4)                   |
| O2W−H2WA···N2 <sup>ii</sup>             | 0.86 (5) | 1.93 (5)     | 2.779 (4)    | 167 (5)                   |
| $O1W - H1WB \cdot \cdot \cdot O3^{iii}$ | 0.71(4)  | 2.01 (5)     | 2.687 (4)    | 160 (5)                   |
| $O2W - H2WB \cdot \cdot \cdot O2^{iii}$ | 0.78 (4) | 2.01(4)      | 2.795 (4)    | 179 (4)                   |
| $O3W - H3W \cdot \cdot \cdot O1^{iv}$   | 0.87 (6) | 2.05 (6)     | 2.924 (4)    | 174 (7)                   |
| $C10-H10\cdots O2^{v}$                  | 0.93     | 2.56         | 3.360 (4)    | 144                       |
| $C16-H16\cdots O3W^{vi}$                | 0.93     | 2.54         | 3.311 (5)    | 141                       |
|                                         | 1 (***)  |              | 1 (          | . 3 (1.)                  |

Symmetry codes: (i)  $x, -y, z - \frac{1}{2}$ ; (ii)  $-x + 1, y, -z + \frac{1}{2}$ ; (iii)  $-x + 2, y, -z + \frac{3}{2}$ ; (iv)  $-x + 1, y, -z + \frac{3}{2}$ ; (v)  $-x + \frac{3}{2}, -y + \frac{1}{2}, -z + 1$ ; (vi)  $-x + \frac{1}{2}, -y + \frac{1}{2}, -z + 1$ .

Data collection: *SMART* (Bruker, 2000); cell refinement: *SAINT* (Bruker, 2000); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

This work was supported by the National Natural Science Foundation of China (No. 20971004), the Key Project of the Chinese Ministry of Education (No. 210102) and the Natural Science Foundation of Anhui Province of China (No. 11040606M45).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RZ2587).

#### References

- Brandys, M. C. & Puddephatt, R. J. (2001). Chem. Commun. pp. 1508–1509.Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Chen, C. H., Cai, J. W., Feng, X. L. & Chen, X. M. (2002). *Polyhedron*, **21**, 689–695.
- Chen, C. H., Cai, J. W., Liao, C. Z., Feng, X. L., Chen, X. M. & Ng, S. W. (2002). Inorg. Chem. 41, 4967–4974.
- Ghoshal, D., Maji, T. K., Mostafa, G., Lu, T. H. & Chaudhuri, N. R. (2003). *Cryst. Growth Des.* **3**, 9–11.

- Lian, Z. X., Cai, J. W. & Chen, C. H. (2007). Polyhedron, 26, 2647-2654.
- Lian, Z. X., Cai, J. W., Chen, C. H. & Luo, H. B. (2007). CrystEngComm, 9, 319-327.
- Liu, G. X., Huang, R. Y. & Ren, X. M. (2010). *Chin. J. Inorg. Chem.* **26**, 1680–1684.
- Lu, W. G., Jiang, L., Feng, X. L. & Lu, T. B. (2006). Cryst. Growth Des. 6, 564–571.
- Mago, G. J., Hinago, M., Miyasaka, H., Matsumoto, N. & Okawa, H. (1997). *Inorg. Chim. Acta*, **254**, 145–150.
- Pan, L., Woodlock, E. B., Wang, X., Lam, K. C. & Rheingold, A. L. (2001). *Chem. Commun.* pp. 1762–1763.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Suresh, E. & Bhadbhade, M. M. (2001). CrystEngComm, 3, 50-52.
- Tong, M. L., Wu, Y. M., Ru, J., Chen, X. M., Chang, H. C. & Kitagawa, S. (2002). Inorg. Chem. 41, 4846–4848.
- Wang, Y. L., Yuan, D. Q., Bi, W. H., Li, X., Li, X. J., Li, F. & Cao, R. (2005). Cryst. Growth Des. 5, 1849–1855.

supplementary materials

Acta Cryst. (2011). E67, m651-m652 [doi:10.1107/S1600536811015819]

### *trans*-Tetraaquabis[1,3-bis(4-pyridyl)propane-*KN*]cobalt(II) biphenyl-4,4'-disulfonate monohydrate

#### G.-X. Liu and X.-Y. Xu

#### Comment

Bipyridine ligands with certain spacers between the two terminal coordination groups, for example 4,4-bipyridine (bpy), 1,2-bis(4-pyridyl)ethane (bpe), 1,2-di(4-pyridyl)ethylene (dpe), and 1,3-bi(4-pyridyl)propane (bpp), have been employed to construct novel metal-organic coordination polymers with beautiful aesthetics and useful functional properties. (Lu *et al.*, 2006; Ghoshal *et al.*, 2003; Brandys & Puddephatt, 2001; Tong *et al.*, 2002; Wang *et al.*, 2005; Suresh & Bhadbhade, 2001; Mago *et al.*, 1997; Pan *et al.*, 2001). The 4,4'-biphenyldisulfonate dianion (BPDS<sup>2-</sup>), which possesses six oxygen atoms, has been also employed either as a ligand with multiple binding sites available to construct coordination polymers with varying dimensionalities, or as a counter ion, forming extensive hydrogen-bonding interaction with the water molecules (Chen, Cai, Feng & Chen, 2002; Chen, Cai, Liao & Feng, 2002; Lian, Cai & Chen 2007; Lian, Cai, Chen & Luo 2007; Liu *et al.*, 2010). In the present work, we report a cobalt(II) complex,  $[Co(C_{13}H_{14}N_2)_2(H_2O)_4](C_{12}H_8O_6S_2).H_2O$  (I), with a two-dimensional H-bonding network structure created by the sulfonate dianions acting as hydrogen-bond acceptors.

In the title compound, cation, anion and uncoordinated water molecule have all crystallographically imposed twofold axis. As shown in Fig. 1, four water molecules coordinate to the cobalt(II) ion in the equatorial positions with Co—O bonds ranging from 2.059 (3) to 2.110 (2) Å, while two bpp ligands coordinate to the metal through N atoms [Co—N = 2.1772 (2) Å] in the axial positions to complete a slightly distorted octahedral coordination geometry. The dihedral angle between the two pyridyl planes in the cation is 86.14 (11)°, and the N…N separation is 10.169 (3) Å. The BPDS dianion does not coordinate to the cobalt(II) ion, but balances the charge. The dihedral angle formed by the symmetry-related benzene rings in the anion is 35.81 (12)°. Hydrogen bonds play an important role for enhancing the stability of the solid-state structure (Table 1). Two intermolecular hydrogen bonds are formed between oxygen atoms of the two coordinated water molecules with two oxygen atoms of sulfonate groups. Additional intermolecular hydrogen bond are formed between the uncoordinated N atom of bpp and the coordinated O2W atom. All these intermolecular hydrogen bonds result in a two-dimensional layer structure (Fig. 2) parallel to the *ac* plane. The layers are further linked *via* C—H…O hydrogen bonds to give rise to a three-dimensional network (Fig. 3).

#### **Experimental**

A mixture containing  $Co(NO_3)_2.6H_2O$  (0.1 mmol), bpp (0.1 mmol), H<sub>2</sub>BPDS (0.1 mmol), NaOH (0.2 mmol) dissolved in water (15 ml) was sealed in a 25 ml Teflon lined stainless steel container and heated at 160 °C for 120 h. Orange crystals of (I) suitable for X-ray analysis were collected by filtration and washed with water and ethanol several times (yield 56%).

#### Refinement

The water H atoms were located in a difference Fourier map and refined freely. All other H atoms were positioned geometrically, with C—H = 0.93 and 0.97 Å for aromatic and methylene H atoms, respectively, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C), where x = 1.5 for methyl H and x = 1.2 for all other H atoms.

#### **Figures**



Fig. 1. The structure of the title compound, showing 50% probability displacement ellipsoids. Hydrogen atoms are omitted for clarity [symmetry codes: (A) 2-x, y, 0.5-z; (B) 1-x, y, 1.5-z].

Fig. 2. The two-dimensional network formed by hydrogen-bonding interactions (green dotted lines). For clarity, the bpp ligands and hydrogen atoms attached to carbon atoms are omitted.

Fig. 3. The three-dimensional network of the title complex. Hydrogen bonds are shown as blue dotted lines.

#### trans-Tetraaquabis[1,3-bis(4-pyridyl)propane-κN]cobalt(II) biphenyl-4,4'-disulfonate monohydrate

Crystal data

F(000) = 1796[Co(C13H14N2)2(H2O)4](C12H8O6S2)·H2O  $M_r = 857.84$  $D_{\rm x} = 1.434 {\rm Mg m}^{-3}$ Monoclinic, C2/c Hall symbol: -C 2yc  $\theta = 2.6 - 24.3^{\circ}$ *a* = 15.555 (3) Å b = 18.983 (3) Å  $\mu = 0.60 \text{ mm}^{-1}$ T = 293 Kc = 14.725 (3) Å  $\beta = 113.959 (3)^{\circ}$ Block, orange  $V = 3973.3 (12) \text{ Å}^3$  $0.28\times0.24\times0.22~mm$ Z = 4

Mo K $\alpha$  radiation,  $\lambda = 0.71073$  Å Cell parameters from 2386 reflections

#### Data collection

| Bruker SMART APEX CCD area-detector diffractometer                   | 3683 independent reflections                                              |
|----------------------------------------------------------------------|---------------------------------------------------------------------------|
| Radiation source: sealed tube                                        | 3035 reflections with $I > 2\sigma(I)$                                    |
| graphite                                                             | $R_{\rm int} = 0.031$                                                     |
| $\phi$ and $\omega$ scans                                            | $\theta_{\text{max}} = 25.5^{\circ}, \ \theta_{\text{min}} = 1.8^{\circ}$ |
| Absorption correction: multi-scan<br>( <i>SADABS</i> ; Bruker, 2000) | $h = -17 \rightarrow 18$                                                  |
| $T_{\min} = 0.850, T_{\max} = 0.879$                                 | $k = -22 \rightarrow 22$                                                  |
| 10176 measured reflections                                           | $l = -17 \rightarrow 7$                                                   |
|                                                                      |                                                                           |

#### Refinement

| Least-squares matrix: fullSecondary atom site location: difference Fourier in<br>Hydrogen site location: inferred from neighbourin $R[F^2 > 2\sigma(F^2)] = 0.054$ Hydrogen site location: inferred from neighbourin | lirect |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| $R[F^2 > 2\sigma(F^2)] = 0.054$ Hydrogen site location: inferred from neighbourin                                                                                                                                    | r map  |
| sites                                                                                                                                                                                                                | ring   |
| $wR(F^2) = 0.133$ H atoms treated by a mixture of independent and constrained refinement                                                                                                                             | d      |
| S = 1.04<br>$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0615P)^{2} + 4.820P]$<br>where $P = (F_{o}^{2} + 2F_{c}^{2})/3$                                                                                                       |        |
| 3683 reflections $(\Delta/\sigma)_{max} < 0.001$                                                                                                                                                                     |        |
| 274 parameters $\Delta \rho_{max} = 0.53 \text{ e} \text{ Å}^{-3}$                                                                                                                                                   |        |
| 0 restraints $\Delta \rho_{min} = -0.22 \text{ e} \text{ Å}^{-3}$                                                                                                                                                    |        |

#### Special details

**Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on  $F^2$ , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative  $F^2$ . The threshold expression of  $F^2 > \sigma(F^2)$  is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(\hat{A}^2)$ 

|     | x            | у            | Ζ            | $U_{\rm iso}$ */ $U_{\rm eq}$ |
|-----|--------------|--------------|--------------|-------------------------------|
| Col | 1.0000       | 0.10016 (3)  | 0.2500       | 0.03592 (19)                  |
| N1  | 0.84781 (16) | 0.10664 (12) | 0.17038 (19) | 0.0407 (6)                    |
| N2  | 0.1777 (2)   | 0.16402 (18) | 0.1131 (3)   | 0.0666 (9)                    |
| 01  | 0.89574 (17) | 0.10255 (13) | 0.81063 (19) | 0.0630 (7)                    |
| O2  | 0.89650 (16) | 0.17146 (13) | 0.9492 (2)   | 0.0681 (7)                    |
| O3  | 0.90540 (17) | 0.04433 (14) | 0.95901 (19) | 0.0716 (8)                    |

# supplementary materials

| O1W  | 1.0095 (2)   | 0.01810 (16) | 0.3451 (2)   | 0.0617 (7)  |
|------|--------------|--------------|--------------|-------------|
| O2W  | 0.98303 (18) | 0.17352 (12) | 0.34914 (19) | 0.0451 (5)  |
| O3W  | 0.0000       | 0.2072 (3)   | 0.7500       | 0.112 (2)   |
| S1   | 0.87135 (6)  | 0.10569 (5)  | 0.89562 (7)  | 0.0539 (3)  |
| C1   | 0.7473 (2)   | 0.10062 (17) | 0.8458 (2)   | 0.0466 (8)  |
| C2   | 0.7022 (2)   | 0.04003 (18) | 0.8521 (3)   | 0.0574 (9)  |
| H2   | 0.7370       | 0.0004       | 0.8826       | 0.069*      |
| C3   | 0.6055 (2)   | 0.03761 (17) | 0.8134 (3)   | 0.0567 (9)  |
| H3   | 0.5756       | -0.0041      | 0.8170       | 0.068*      |
| C4   | 0.5519 (2)   | 0.09623 (16) | 0.7691 (2)   | 0.0445 (7)  |
| C5   | 0.5987 (2)   | 0.15679 (17) | 0.7616 (3)   | 0.0507 (8)  |
| H5   | 0.5643       | 0.1966       | 0.7307       | 0.061*      |
| C6   | 0.6954 (2)   | 0.15851 (17) | 0.7994 (3)   | 0.0515 (8)  |
| H6   | 0.7258       | 0.1993       | 0.7934       | 0.062*      |
| C7   | 0.7907 (2)   | 0.05321 (18) | 0.1656 (3)   | 0.0565 (9)  |
| H7   | 0.8170       | 0.0115       | 0.1984       | 0.068*      |
| C8   | 0.6940 (2)   | 0.0570 (2)   | 0.1141 (3)   | 0.0654 (10) |
| H8   | 0.6570       | 0.0183       | 0.1132       | 0.079*      |
| C9   | 0.6524 (2)   | 0.11739 (19) | 0.0644 (2)   | 0.0511 (8)  |
| C10  | 0.7116 (2)   | 0.17249 (19) | 0.0707 (3)   | 0.0524 (8)  |
| H10  | 0.6873       | 0.2149       | 0.0389       | 0.063*      |
| C11  | 0.8070 (2)   | 0.16508 (17) | 0.1241 (2)   | 0.0460 (8)  |
| H11  | 0.8453       | 0.2036       | 0.1278       | 0.055*      |
| C12  | 0.5483 (2)   | 0.1237 (2)   | 0.0040 (3)   | 0.0688 (11) |
| H12A | 0.5263       | 0.0803       | -0.0329      | 0.083*      |
| H12B | 0.5376       | 0.1612       | -0.0441      | 0.083*      |
| C13  | 0.4892 (2)   | 0.1383 (2)   | 0.0618 (3)   | 0.0536 (8)  |
| H13A | 0.5115       | 0.1808       | 0.1010       | 0.064*      |
| H13B | 0.4953       | 0.0995       | 0.1070       | 0.064*      |
| C14  | 0.3862 (2)   | 0.1472 (2)   | -0.0086 (3)  | 0.0632 (10) |
| H14A | 0.3810       | 0.1894       | -0.0477      | 0.076*      |
| H14B | 0.3687       | 0.1077       | -0.0543      | 0.076*      |
| C15  | 0.3155 (2)   | 0.15246 (17) | 0.0364 (3)   | 0.0479 (8)  |
| C16  | 0.3368 (2)   | 0.1742 (2)   | 0.1314 (3)   | 0.0616 (10) |
| H16  | 0.3985       | 0.1860       | 0.1727       | 0.074*      |
| C17  | 0.2674 (3)   | 0.1787 (2)   | 0.1659 (3)   | 0.0712 (11) |
| H17  | 0.2846       | 0.1931       | 0.2313       | 0.085*      |
| C18  | 0.1574 (2)   | 0.1424 (2)   | 0.0216 (4)   | 0.0766 (12) |
| H18  | 0.0951       | 0.1313       | -0.0179      | 0.092*      |
| C19  | 0.2225 (2)   | 0.1352 (2)   | -0.0194 (3)  | 0.0673 (11) |
| H19  | 0.2039       | 0.1187       | -0.0842      | 0.081*      |
| H3W  | 0.029 (5)    | 0.177 (3)    | 0.728 (5)    | 0.16 (3)*   |
| H2WB | 1.017 (3)    | 0.1727 (17)  | 0.405 (3)    | 0.044 (10)* |
| H2WA | 0.928 (4)    | 0.172 (2)    | 0.351 (3)    | 0.107 (17)* |
| H1WB | 1.020 (3)    | 0.028 (2)    | 0.395 (3)    | 0.078 (18)* |
| H1WA | 0.972 (3)    | -0.014 (2)   | 0.328 (3)    | 0.080 (14)* |

|     | $U^{11}$    | $U^{22}$    | $U^{33}$    | $U^{12}$     | $U^{13}$    | $U^{23}$     |
|-----|-------------|-------------|-------------|--------------|-------------|--------------|
| Col | 0.0247 (3)  | 0.0405 (3)  | 0.0428 (3)  | 0.000        | 0.0139 (2)  | 0.000        |
| N1  | 0.0272 (12) | 0.0478 (15) | 0.0476 (15) | 0.0026 (10)  | 0.0157 (12) | -0.0015 (12) |
| N2  | 0.0409 (17) | 0.098 (2)   | 0.068 (2)   | 0.0096 (15)  | 0.0292 (17) | 0.0128 (19)  |
| 01  | 0.0485 (14) | 0.0777 (17) | 0.0678 (17) | 0.0072 (12)  | 0.0288 (13) | -0.0025 (13) |
| O2  | 0.0400 (13) | 0.0750 (17) | 0.0736 (17) | 0.0078 (11)  | 0.0070 (12) | -0.0204 (14) |
| 03  | 0.0547 (15) | 0.0849 (18) | 0.0633 (16) | 0.0308 (13)  | 0.0116 (13) | 0.0095 (14)  |
| O1W | 0.0676 (18) | 0.0586 (17) | 0.0534 (18) | -0.0231 (13) | 0.0188 (15) | 0.0049 (14)  |
| O2W | 0.0320 (12) | 0.0611 (14) | 0.0438 (14) | 0.0003 (10)  | 0.0169 (12) | -0.0048 (11) |
| O3W | 0.087 (4)   | 0.079 (3)   | 0.174 (6)   | 0.000        | 0.058 (4)   | 0.000        |
| S1  | 0.0357 (4)  | 0.0678 (6)  | 0.0518 (5)  | 0.0141 (4)   | 0.0112 (4)  | -0.0087 (4)  |
| C1  | 0.0363 (17) | 0.0576 (19) | 0.0421 (17) | 0.0101 (14)  | 0.0118 (14) | -0.0053 (15) |
| C2  | 0.049 (2)   | 0.053 (2)   | 0.068 (2)   | 0.0172 (16)  | 0.0222 (18) | 0.0098 (17)  |
| C3  | 0.052 (2)   | 0.0467 (19) | 0.073 (2)   | 0.0044 (15)  | 0.0274 (19) | 0.0087 (18)  |
| C4  | 0.0389 (17) | 0.0501 (18) | 0.0433 (18) | 0.0015 (14)  | 0.0154 (15) | -0.0009 (15) |
| C5  | 0.0373 (17) | 0.0504 (18) | 0.054 (2)   | 0.0036 (14)  | 0.0082 (16) | 0.0064 (16)  |
| C6  | 0.0368 (17) | 0.0532 (19) | 0.056 (2)   | -0.0008 (14) | 0.0104 (16) | 0.0042 (16)  |
| C7  | 0.0337 (17) | 0.056 (2)   | 0.072 (2)   | -0.0003 (14) | 0.0130 (17) | 0.0088 (18)  |
| C8  | 0.0369 (18) | 0.070 (2)   | 0.081 (3)   | -0.0160 (17) | 0.0149 (19) | 0.000(2)     |
| C9  | 0.0286 (16) | 0.079 (2)   | 0.0449 (18) | 0.0056 (15)  | 0.0143 (15) | -0.0078 (17) |
| C10 | 0.0373 (17) | 0.065 (2)   | 0.057 (2)   | 0.0164 (15)  | 0.0209 (16) | 0.0097 (17)  |
| C11 | 0.0336 (16) | 0.0495 (18) | 0.057 (2)   | 0.0038 (13)  | 0.0212 (15) | 0.0021 (15)  |
| C12 | 0.0317 (18) | 0.117 (3)   | 0.056 (2)   | 0.0058 (19)  | 0.0162 (17) | -0.009 (2)   |
| C13 | 0.0322 (17) | 0.078 (2)   | 0.052 (2)   | 0.0041 (16)  | 0.0180 (16) | 0.0006 (18)  |
| C14 | 0.0362 (18) | 0.098 (3)   | 0.056 (2)   | 0.0070 (18)  | 0.0194 (17) | -0.001 (2)   |
| C15 | 0.0307 (16) | 0.0598 (19) | 0.0523 (19) | 0.0049 (14)  | 0.0160 (15) | 0.0025 (16)  |
| C16 | 0.0310 (17) | 0.095 (3)   | 0.056 (2)   | -0.0018 (17) | 0.0149 (16) | -0.009 (2)   |
| C17 | 0.051 (2)   | 0.109 (3)   | 0.056 (2)   | 0.010(2)     | 0.025 (2)   | -0.002 (2)   |
| C18 | 0.0328 (19) | 0.111 (3)   | 0.087 (3)   | -0.007 (2)   | 0.025 (2)   | -0.004 (3)   |
| C19 | 0.0372 (19) | 0.100 (3)   | 0.063 (2)   | -0.0022 (19) | 0.0182 (18) | -0.016 (2)   |

# Atomic displacement parameters $(Å^2)$

## Geometric parameters (Å, °)

| Co1—O1W <sup>i</sup> | 2.059 (3) | С5—Н5   | 0.9300    |
|----------------------|-----------|---------|-----------|
| Co1—O1W              | 2.059 (3) | С6—Н6   | 0.9300    |
| Co1—O2W              | 2.110 (2) | С7—С8   | 1.385 (4) |
| Co1—O2W <sup>i</sup> | 2.110 (2) | С7—Н7   | 0.9300    |
| Co1—N1 <sup>i</sup>  | 2.177 (2) | C8—C9   | 1.373 (5) |
| Co1—N1               | 2.177 (2) | С8—Н8   | 0.9300    |
| N1-C11               | 1.322 (4) | C9—C10  | 1.371 (5) |
| N1—C7                | 1.331 (4) | C9—C12  | 1.503 (4) |
| N2—C18               | 1.318 (5) | C10-C11 | 1.376 (4) |
| N2—C17               | 1.321 (5) | С10—Н10 | 0.9300    |
| O1—S1                | 1.449 (3) | C11—H11 | 0.9300    |
| O2—S1                | 1.443 (3) | C12—C13 | 1.511 (4) |
|                      |           |         |           |

# supplementary materials

| O3—S1                                  | 1.451 (3)   | C12—H12A      | 0.9700    |
|----------------------------------------|-------------|---------------|-----------|
| O1W—H1WB                               | 0.71 (4)    | C12—H12B      | 0.9700    |
| O1W—H1WA                               | 0.81 (4)    | C13—C14       | 1.524 (4) |
| O2W—H2WB                               | 0.78 (4)    | C13—H13A      | 0.9700    |
| O2W—H2WA                               | 0.86 (5)    | С13—Н13В      | 0.9700    |
| O3W—H3W                                | 0.87 (6)    | C14—C15       | 1.501 (5) |
| S1—C1                                  | 1.766 (3)   | C14—H14A      | 0.9700    |
| C1—C2                                  | 1.370 (5)   | C14—H14B      | 0.9700    |
| C1—C6                                  | 1.371 (4)   | C15—C16       | 1.364 (5) |
| C2—C3                                  | 1.376 (5)   | C15—C19       | 1.382 (4) |
| С2—Н2                                  | 0.9300      | C16—C17       | 1.371 (5) |
| C3—C4                                  | 1.384 (4)   | C16—H16       | 0.9300    |
| С3—Н3                                  | 0.9300      | C17—H17       | 0.9300    |
| C4—C5                                  | 1.388 (4)   | C18—C19       | 1.381 (5) |
| C4—C4 <sup>ii</sup>                    | 1.479 (6)   | C18—H18       | 0.9300    |
| C5—C6                                  | 1.376 (4)   | С19—Н19       | 0.9300    |
| O1W <sup>i</sup> —Co1—O1W              | 81.7 (2)    | N1—C7—C8      | 122.8 (3) |
| O1W <sup>i</sup> —Co1—O2W              | 167.14 (11) | N1—C7—H7      | 118.6     |
| O1W—Co1—O2W                            | 91.35 (12)  | С8—С7—Н7      | 118.6     |
| O1W <sup>i</sup> —Co1—O2W <sup>i</sup> | 91.35 (12)  | C9—C8—C7      | 120.5 (3) |
| O1W—Co1—O2W <sup>i</sup>               | 167.14 (11) | С9—С8—Н8      | 119.8     |
| O2W—Co1—O2W <sup>i</sup>               | 97.41 (13)  | С7—С8—Н8      | 119.8     |
| O1W <sup>i</sup> —Co1—N1 <sup>i</sup>  | 99.86 (11)  | С10—С9—С8     | 116.3 (3) |
| O1W—Co1—N1 <sup>i</sup>                | 85.08 (11)  | C10—C9—C12    | 120.8 (3) |
| O2W—Co1—N1 <sup>i</sup>                | 90.24 (10)  | C8—C9—C12     | 122.9 (3) |
| O2W <sup>i</sup> —Co1—N1 <sup>i</sup>  | 85.48 (10)  | C9—C10—C11    | 120.0 (3) |
| O1W <sup>i</sup> —Co1—N1               | 85.08 (11)  | С9—С10—Н10    | 120.0     |
| O1W—Co1—N1                             | 99.86 (11)  | C11—C10—H10   | 120.0     |
| O2W—Co1—N1                             | 85.48 (10)  | N1—C11—C10    | 124.1 (3) |
| O2W <sup>i</sup> —Co1—N1               | 90.24 (10)  | N1-C11-H11    | 117.9     |
| N1 <sup>i</sup> —Co1—N1                | 173.52 (13) | C10-C11-H11   | 117.9     |
| C11—N1—C7                              | 116.3 (3)   | C9—C12—C13    | 115.9 (3) |
| C11—N1—Co1                             | 120.9 (2)   | C9—C12—H12A   | 108.3     |
| C7—N1—Co1                              | 122.8 (2)   | C13—C12—H12A  | 108.3     |
| C18—N2—C17                             | 115.1 (3)   | C9—C12—H12B   | 108.3     |
| Co1—O1W—H1WB                           | 116 (4)     | C13—C12—H12B  | 108.3     |
| Co1—O1W—H1WA                           | 121 (3)     | H12A—C12—H12B | 107.4     |
| H1WB—O1W—H1WA                          | 110 (5)     | C12—C13—C14   | 110.4 (3) |
| Co1—O2W—H2WB                           | 120 (2)     | C12—C13—H13A  | 109.6     |
| Co1—O2W—H2WA                           | 113 (3)     | C14—C13—H13A  | 109.6     |
| H2WB—O2W—H2WA                          | 103 (4)     | С12—С13—Н13В  | 109.6     |
| O2—S1—O1                               | 113.57 (17) | C14—C13—H13B  | 109.6     |
| 02—S1—O3                               | 113.29 (16) | H13A—C13—H13B | 108.1     |
| 01—S1—O3                               | 111.55 (15) | C15—C14—C13   | 117.6 (3) |
| O2—S1—C1                               | 106.38 (14) | C15—C14—H14A  | 107.9     |
| O1—S1—C1                               | 105.30 (15) | C13—C14—H14A  | 107.9     |

| O3—S1—C1                     | 105.96 (16) | C15-C14-H14B    | 107.9      |
|------------------------------|-------------|-----------------|------------|
| C2—C1—C6                     | 119.5 (3)   | C13—C14—H14B    | 107.9      |
| C2C1S1                       | 121.4 (2)   | H14A—C14—H14B   | 107.2      |
| C6—C1—S1                     | 119.1 (3)   | C16—C15—C19     | 116.3 (3)  |
| C1—C2—C3                     | 120.3 (3)   | C16—C15—C14     | 123.8 (3)  |
| C1—C2—H2                     | 119.9       | C19—C15—C14     | 119.9 (3)  |
| С3—С2—Н2                     | 119.9       | C15—C16—C17     | 119.9 (3)  |
| C2—C3—C4                     | 121.0 (3)   | С15—С16—Н16     | 120.1      |
| С2—С3—Н3                     | 119.5       | С17—С16—Н16     | 120.1      |
| С4—С3—Н3                     | 119.5       | N2—C17—C16      | 124.8 (4)  |
| C3—C4—C5                     | 118.0 (3)   | N2—C17—H17      | 117.6      |
| C3—C4—C4 <sup>ii</sup>       | 122.3 (2)   | С16—С17—Н17     | 117.6      |
| C5-C4-C4 <sup>ii</sup>       | 119.8 (2)   | N2-C18-C19      | 124.4 (4)  |
| C6—C5—C4                     | 120.6 (3)   | N2              | 117.8      |
| С6—С5—Н5                     | 119.7       | C19—C18—H18     | 117.8      |
| C4—C5—H5                     | 119.7       | C18—C19—C15     | 119.4 (4)  |
| C1—C6—C5                     | 120.6 (3)   | C18—C19—H19     | 120.3      |
| С1—С6—Н6                     | 119.7       | C15—C19—H19     | 120.3      |
| С5—С6—Н6                     | 119.7       |                 |            |
| O1W <sup>i</sup> —Co1—N1—C11 | -121.1 (3)  | C11—N1—C7—C8    | 1.1 (5)    |
| O1W—Co1—N1—C11               | 158.2 (2)   | Co1—N1—C7—C8    | -179.3 (3) |
| O2W—Co1—N1—C11               | 67.6 (2)    | N1—C7—C8—C9     | 0.3 (6)    |
| O2W <sup>i</sup> —Co1—N1—C11 | -29.8 (2)   | C7—C8—C9—C10    | -1.2 (5)   |
| O1W <sup>i</sup> —Co1—N1—C7  | 59.3 (3)    | C7—C8—C9—C12    | 177.6 (3)  |
| O1W—Co1—N1—C7                | -21.4 (3)   | C8—C9—C10—C11   | 0.6 (5)    |
| O2W—Co1—N1—C7                | -112.0 (3)  | C12—C9—C10—C11  | -178.2 (3) |
| O2W <sup>i</sup> —Co1—N1—C7  | 150.6 (3)   | C7—N1—C11—C10   | -1.7 (5)   |
| O2—S1—C1—C2                  | -134.6 (3)  | Co1—N1—C11—C10  | 178.6 (2)  |
| O1—S1—C1—C2                  | 104.6 (3)   | C9—C10—C11—N1   | 0.9 (5)    |
| O3—S1—C1—C2                  | -13.7 (3)   | C10—C9—C12—C13  | -100.7 (4) |
| O2—S1—C1—C6                  | 45.8 (3)    | C8—C9—C12—C13   | 80.6 (5)   |
| 01—S1—C1—C6                  | -75.0 (3)   | C9—C12—C13—C14  | 177.0 (3)  |
| O3—S1—C1—C6                  | 166.7 (3)   | C12—C13—C14—C15 | 172.0 (3)  |
| C6—C1—C2—C3                  | -0.9 (5)    | C13—C14—C15—C16 | 23.9 (6)   |
| S1—C1—C2—C3                  | 179.5 (3)   | C13—C14—C15—C19 | -156.5 (4) |
| C1—C2—C3—C4                  | -1.2 (6)    | C19—C15—C16—C17 | -0.8 (6)   |
| C2—C3—C4—C5                  | 2.3 (5)     | C14—C15—C16—C17 | 178.8 (4)  |
| C2—C3—C4—C4 <sup>ii</sup>    | -177.1 (4)  | C18—N2—C17—C16  | 1.4 (6)    |
| C3—C4—C5—C6                  | -1.5 (5)    | C15—C16—C17—N2  | -0.8 (7)   |
| C4 <sup>ii</sup> —C4—C5—C6   | 178.0 (4)   | C17—N2—C18—C19  | -0.3 (7)   |
| C2-C1-C6-C5                  | 1.7 (5)     | N2-C18-C19-C15  | -1.3 (7)   |
| S1—C1—C6—C5                  | -178.7 (3)  | C16—C15—C19—C18 | 1.8 (6)    |
| C4—C5—C6—C1                  | -0.5 (5)    | C14—C15—C19—C18 | -177.8 (4) |

Symmetry codes: (i) -x+2, y, -z+1/2; (ii) -x+1, y, -z+3/2.

### Hydrogen-bond geometry (Å, °)

| D—H···A                      | <i>D</i> —Н | $H \cdots A$ | $D \cdots A$ | D—H··· $A$ |
|------------------------------|-------------|--------------|--------------|------------|
| O1W—H1WA···O3 <sup>iii</sup> | 0.81 (4)    | 2.60 (4)     | 3.008 (4)    | 113 (3)    |
| O1W—H1WA…O1 <sup>iii</sup>   | 0.81 (4)    | 2.01 (5)     | 2.812 (4)    | 169 (4)    |
| O2W—H2WA···N2 <sup>iv</sup>  | 0.86 (5)    | 1.93 (5)     | 2.779 (4)    | 167 (5)    |
| O1W—H1WB···O3 <sup>v</sup>   | 0.71 (4)    | 2.01 (5)     | 2.687 (4)    | 160 (5)    |
| O2W—H2WB···O2 <sup>v</sup>   | 0.78 (4)    | 2.01 (4)     | 2.795 (4)    | 179 (4)    |
| O3W—H3W···O1 <sup>ii</sup>   | 0.87 (6)    | 2.05 (6)     | 2.924 (4)    | 174 (7)    |
| C10—H10…O2 <sup>vi</sup>     | 0.93        | 2.56         | 3.360 (4)    | 144        |
| C16—H16···O3W <sup>vii</sup> | 0.93        | 2.54         | 3.311 (5)    | 141        |

Symmetry codes: (iii) x, -y, z-1/2; (iv) -x+1, y, -z+1/2; (v) -x+2, y, -z+3/2; (ii) -x+1, y, -z+3/2; (vi) -x+3/2, -y+1/2, -z+1; (vii) -x+1/2, -y+1/2, -z+1.











Fig. 3