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Abstract  

An approach towards heterogeneous neuroscience 

dataset integration is proposed that uses Natural 

Language Processing (NLP) and a knowledge-

based phenotype organizer system (PhenOS) to link 

ontology-anchored terms to underlying data from 

each database, and then maps these terms based on 

a computable model of disease (SNOMED CT®). 

The approach was implemented using sample data-

sets from fMRIDC, GEO and Neuronames and al-

lowed for complex queries such as “List all disor-

ders with a finding site of brain region X, and then 

find the semantically related references in all par-

ticipating databases based on the ontological mod-

el of the disease or its anatomical and morphologi-

cal attributes”. Precision of the NLP-derived cod-

ing of the unstructured phenotypes in each datasets 

was 88% (n=50), and precision of the semantic 

mapping between these terms across datasets was 

98% (n=100). To our knowledge, this is the first 

example of the use of both semantic decomposition 

of disease relationships and hierarchical informa-

tion found in ontologies to integrate heterogeneous 

phenotypes across clinical and molecular datasets.   

Introduction   

Increasingly, there is an understanding that well-

managed, comprehensive databases and their inter-

operability will be necessary for important further 

advancement in neuroscience [1]. However,    in con-

trast to the reliance on and advancements of infor-

matics in other biosciences, such as molecular biol-

ogy and genomics,  for which data is primarily text-

based, the tremendous complexity of neuroscience 

data is a major impediment in consistent informat-

ics integration and implementation [2]. There have 

been many proposed solutions to this problem, 

most of which rely on the labor-intensive and time-

consuming development of compatible metadata 
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models of phenotypes that formally describe enti-

ties, attributes and the relationships between them 

in the underlying data (see 

http://phenos.bsd.uchicago.edu/public/supplement-

1-AMIA2009.doc, hereafter referred to as supple-

ment).       One promising and complementary ap-

proach has been to use Ontologies employing De-

scription Logic (DL), such as those that have been 

introduced into biomedical domains, as a flexible 

and powerful way to capture and classify biological 

concepts and potentially be used for making infer-

ences from biological data [3, 4]. 

 

A major challenge to the use of DL ontologies in 

mediating between diverse databases is the differ-

ences in concepts and terms used to describe the 

underlying data in each database [5]. This has been 

addressed by the development of automated meth-

ods for the lexical mapping of terminologies and 

medical vocabularies onto a major medical DL on-

tology used to link disparate information systems, 

typically the UMLS [6-8], but also SNOMED as 

was recently done for ontology-based query of tis-

sue microarray data [9].  

 

The current effort differs from previous approaches 

because we are mapping very distinct datasets (that 

may not share many concepts) to SNOMED, which 

allows for the use of both hierarchical relationships 

and semantic decomposition between the anatomies 

and morphologies related to a disease to find rele-

vant relationships across scales of biology.  In ef-

fect, the proposed approach is also more effectively 

utilizing a ‘reference model’ of disease, such as that 

contained in SNOMED.   

Materials and Methods  

This paper presents a query model that can be 

thought of as an equivalent of a mediated schema 

[10] (described in supplement) that was created for 

the genetics domain, but one adapted for higher 
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relevance and utility for neuroscience. Given the 

wide range of biological scales, heterogeneous data 

types and contexts in neuroscience, it would be too 

difficult to map out all relevant entities and the rela-

tionships between them as was done for mediated 

schema. Instead, we chose to adapt a pre-existing, 

comprehensive ontology as our semantic model and 

explored how to best utilize it to allow for flexible 

and useful query formulation in neuroscience appli-

cations. SNOMED CT® is a comprehensive clini-

cal terminology consisting over 366,000 concepts 

with unique meanings and formal logic-based defi-

nitions organized into hierarchies covering a broad 

range of human pathologies and anatomies and the 

relationships between them. We chose to use 

SNOMED CT® due to its depth of biological scale 

and comprehensiveness in human pathologies in 

general and specifically in psychiatric disorders 

[11, 12].   

 

The current method employed five general steps 

(described further below): 1) conceptualization of 

the general query model, that defines the travers-

able paths (hierarchical relationships and semantic 

switches) used in mapping relationships between 

terms contained in each database 2) mapping of 

database terms to SNOMED via NLP and coding 3) 

mapping rules of relatedness (according to the gen-

eral query model) and 4) query construction and 

implementation and 5) evaluation. Mapping of da-

tabase terms to SNOMED was conducted using 

PhenOS, a knowledge-based phenotype organizer 

system [13], which was also used in assigning phe-

notypic context to Gene Ontology Annotations 

[14].  The architecture is outlined in Figure 1.  

Database 1 Database 2

Relevant mapping and 

rules of relatedness 
(SNOMED-CT) 

(….)

(…)

(….)Primary data

Secondary 

data 

(derived)

NLP & Coding

SNOMED-Coded 

Phenotypes, 
Heterogeneous 

Semantic Classes

SNOMED-Coded 

Phenotypes, 
Heterogeneous 

Semantic Classes

Terms 

mapped, 
related 

and 
returned 

to user

User-specified

query and other
inputs

Figure 1. Overall scheme for heterogeneous data-

base integration. Natural Language Processing & 

Coding (PhenOS) was first used to assign terms 

(and their corresponding SNOMED codes) to un-

derlying data (Primary data) for each of the partici-

pating databases. These were organized into tables 

(Secondary data) whose fields were then related 

and mapped using ancestor-descendant and transla-
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tion tables generated from SNOMED-CT (Data 

mapping). 

 

1) Query Model. For simplicity we focused on 

three main classes within the SNOMED ontology: 

Anatomy (i.e. cingulate gyrus, hypothalamus), Ab-

normal Morphology (i.e. neoplasia, inflammation) 

and Disease (i.e. Alzheimer’s, encephalitis), abbre-

viated by A, M and D, respectively. Formally these 

classes are descendants of three nodes of the 

SNOMED ontology: brain tissue structure, dis-

eases of brain and morphologically abnormal 

structure. Diseases (D) can be related to Anatomies 

(A) through the linkage concept “has finding site”, 

and Diseases (D) can be related to Abnormal Mor-

phology (M) through “has associated morphology”.  

The general query model is depicted in Figure 2. 

 

The query model is flexible and general enough to 

allow for many different types of loosely defined 

queries. In essence, all queries possible within the 

model are delineated by traversing the edges on the 

‘x-y plane’, and databases to be included are cho-

sen along the ‘z-axis’. Up and down arrows connect 

more broad and more specific concepts within a 

class through ‘is a’ (or ‘part of’ for anatomy) par-

ent-child relationships. Horizontal arrows represent 

possible semantic switches and connect the three 

different classes with each other (D connected to A 

through ‘has finding site’, D connected to M 

through ‘has associated morphology’) and these can 

be traversed in both left and right directions. Table 

1 (supplement) depicts all possible query types 

along the ‘x-axis’ and their potential utility. 

Figure 2. General Query Model. The SNOMED 

ontology extends along the ‘y-axis’; parent nodes 

are ‘most positive’. The relatable semantic classes 

extend along the ‘x-axis’; Anatomies (A) can be 

related to Diseases (D), which can be related to 

Abnormal Morphologies (M). Participating data-

bases extend down along the ‘z-axis’. Each axis can 

be extended further; extension down the ‘y-axis’ is 

accomplished as more specific terms are added to 

SNOMED with upcoming revisions, relatable se-

mantic classes could be added along the ‘x-axis’ 
 



(i.e. Disease can also be related to class ‘Organism’ 

through linkage concept “causative agent”), and 

more databases can be added along the ‘z-axis’.  
 

2) NLP and Coding.    For each database a table was 

created (via PhenOS) which consisted of database 

terms linked to a SNOMED ID code and their ac-

cession numbers to underlying data (‘secondary 

data’ in Figure 1). This was done for Brain, Neu-

ronames, fMRIdc and GEO. (Note: for ‘Brain’, 

which consisting mostly of brain disease terms, no 

accession numbers were included. Example entries 

from two tables are given in Table 2 (supplement).   

 

3) Mapping rules of relatedness. An ancestor-

descendant table (Table 3 - supplement) was gener-

ated that included all SNOMED concepts under 

three nodes: brain tissue structure, diseases of 

brain and morphologically abnormal structure and 

the distances between them. A translation table 

(Table 4 - supplement) was also generated in which 

each disease under the node disease of brain was 

mapped to its Finding Site (Anatomy) and/or Asso-

ciated Morphology (Morphology).  In addition, a 

table (Table 5 - supplement) mapping all SNOMED 

IDs to their descriptions was generated (to be used 

in carrying out class-based queries.) 

 

4) Query implementation. All of the above tables 

were imported into Microsoft Access 2003 and 

were used to recreate seven queries, or navigation 

paths, possible within the framework outlined by 

the general query model (Figure 1).  Two general 

types of queries are described: 1) ‘pair-wise map-

ping query’, whereby all terms (and accession 

numbers to underlying data) between two databases 

that meet the criteria for the specified relationship 

type are returned and 2) ‘class-based query’ where-

by a user can input a term (either an anatomical, 

disease or morphology concept), specify the rela-

tionship (type of mapping) and retrieve terms that 

fit the specified mapping from one or more selected 

databases. An example ‘pair-wise mapping query’ 

is depicted in Figure 3A (supplement), and answers 

the query ‘Find Anatomy and Abnormal Morphol-

ogy terms in fMRIDC that are associated with dis-

eases and/or their subtypes that are included in 

Brain’ (‘fMRIDdc to Brain A,M→D↓’).  This was 

done for each permutation of possible pair-wise 

mappings between all participating databases, and 

for seven types of semantic relationships. The num-

bers of unique pair-wise mappings generated be-

tween each database and for seven types of rela-

tionships (total 5,497) were used to populate Table 

6 (supplement), the main point of which is to show 

the increase in relatedness between databases as 

more types of relationships are mapped. 
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The major utility of such a system is in ‘class-based 

queries’. A schematic example of the class-based  

query “List all diseases with Finding Site ‘temporal 

lobe’ and then find references to these diseases 

(identical or subsuming) in all participating data-

bases”, with its navigation path traced over the 

General Query Model, is shown Figure 4.  Figure 5 

depicts in more detail the navigation path through 

SNOMED, used in returning a result for this query. 

The MS Access query setup for this query is given 

in Figure 3B with results 3C (supplement).  In fu-

ture implementations of the system, class-based 

queries would be generated for each type of speci-

fied relationship on a web interface. 

 
Figure 4. Graphical depiction of the class-based 

query: “List all diseases with Finding Site ‘temporal 

lobe’ and then find references to these diseases 

(identical or subsuming) in all participating data-

bases.” In this example, ‘temporal lobe epilepsy’ is 

directly referenced in GEO, but must be expanded 

to subsuming ancestor term ‘epilepsy’ to find the 

closet match in fMRIDC.  

Figure 5. ‘Close-up’ depiction of semantic naviga-

tion path through the SNOMED ontology in an-

swering the class-based query “List all diseases 

with Finding Site ‘temporal lobe’ and then find 

references to these disease (identical or subsuming) 

in all participating databases.” Solid arrows are 

query navigation path, and dashed arrows are 

SNOMED directed relationships (“has finding site” 

and “is a”). “temporal lobe epilepsy” is found to be 

referenced in GEO, whereas only  the more general 

term “epilepsy” was found in fMRIDC. 

5) Evaluation. The evaluation was conducted on a 

set of 100 randomly chosen mappings (25 from 
 7



each datasource), as well as on 50 randomly se-

lected mappings (Table 7-supplement) from step 1 

of the approach (NLP & PhenOS). Precision was 

measured as the number of true mappings divided 

by the total number sampled, TP/(TP+FP). 95% 

confidence intervals (CI) were also calculated using 

the binomial formula (p±Zc√p(1-p)/n).   

 

Results 

 

5,497 unique pair-wise mappings were generated 

for seven types of relationships between each of the 

datasets: 1) Identity - terms are identical or similar 

between one dataset and another 2) Subsuming – 

terms in the one dataset subsume terms in the sec-

ond 3) Subsumed – terms in one dataset are sub-

sumed by terms in the second 4) A,M→D↑ - terms 

in one dataset are either an Anatomical Structure or 

Abnormal Morphology and terms in the second 

dataset are Diseases that subsume diseases that 

have as finding site or associated morphology the 

term in the first dataset 5) A,M→D↓ - terms in one 

dataset are either an Anatomical Structure or Ab-

normal Morphology and terms in the second dataset 

are Diseases that are subsumed by diseases that 

have as finding site or associated morphology the 

term in the first dataset 6) D→A,M↑ - terms in one 

dataset are Diseases and terms in the second dataset 

are either an Anatomical Structure or Abnormal 

Morphology that subsume finding sites or associ-

ated morphologies of terms in the first dataset 7) 

D→A,M↓ - terms in one dataset are Diseases and 

terms in the second dataset are either an Anatomi-

cal Structure or Abnormal Morphology that are 

subsumed by finding sites or associated morpholo-

gies of terms in the first dataset. Table 6 (supple-

ment) shows the number of mappings for each rela-

tionship between each pair of datasets. 

 

Based on 100 randomly selected mappings from 

Table 6 (25 to each datasource), the precision of 

the method was 98±2.7%.  Based on 50 (12-13 

from each datasource) randomly selected mappings 

from tables generated through NLP and PhenOS, 

precision for stage 1 of the method was 88±9%.  

Table 8 (supplement) shows reasons for common 

errors (homonymy, correct relations) and examples.  

 

In a sample class query the term “mass” was used 

to retrieve all subsumed terms and underlying ac-

cession numbers from the GEO dataset. Using the 

symbols from above, this query can be written as: 

“mass”→ M↓ to GDS.  This query resulted in 28 

unique term and accession number pairs from the 

GEO dataset (Table 9). 
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GEO term GEO accession 

leukemia GDS 461 

glioma GDS 493 

astrocytoma GDS 506 

cancer GDS 512 

medulloblastoma GDS 526 

Table 9.  Five example results (of 28) from the 

general class query: “mass”→ M↓ to GDS. This 

query retrieved all GDS terms and underlying ac-

cession numbers subsumed by the term “mass”. 

 

Discussion 

 
Seamless integration of complex data types (i.e. 

imaging, microarrays) is the goal of many brain 

information resources and databases [15]. How-

ever, the technical, theoretical and computational 

challenges of imaging informatics currently prevent 

this and will do so for quite a while [16]. Mean-

while, there are efforts to standardize neuroscience 

data and meta-data models so that heterogeneous 

data can be joined across many disparate participat-

ing databases. An alternative approach has been 

proposed that bypasses the need for compatible 

data models and maps metadata between disparate 

participating databases on a semantic level.  An 

additional advantage of the approach is that it util-

izes the comprehensive knowledge encapsulated in 

the SNOMED ontology to enable queries that here-

tofore had no method for being answered.  

 

More studies are emerging that attempt to find and 

interpret correlations between biomarkers (i.e. al-

leles), imaging, and neuropsychological markers 

with disease [17].  Ideally, these studies could be 

extended with questions such as: 1) where in the 

brain are biomarker-related genes expressed 2) 

what other genes are coexpressed with these genes 

and how do they vary by brain region 3) are these 

genes differentially expressed in tissues undergoing 

a pathological process (i.e. abnormal morphology 

such as inflammation or neuronal degeneration) 

related to the disease and 4) how do the above ob-

servations compare across related disorders? To 

address these questions the proposed approach 

could be used to quickly survey and retrieve rele-

vant data from online databases. Furthermore, as 

meta-analysis of microarray and neuroimaging data 

become more feasible [18], this approach could 

help organize and retrieve such data in order to 

facilitate comparisons across tissues and according 

to the diseases and abnormal morphologies (patho-

logical processes) that affect them in order to iden-

tify novel relationships that may elucidate the gene-

sis of psychiatric diseases and disorders.   

 

In addition to the inherent limitations of mapping 

only on the semantic level, the approach is also 

limited by mismapping due to the inherent risks in 
 8



NLP and text mining. This is further amplified by 

potential mismapping of the knowledge source 

(SNOMED) as we explore many more relationships 

than usual in a DAG.  In future studies, we plan to 

use the BiomedLEE NLP [19] and a more formal 

schema for representing NLP-derived results [20] 

that has higher accuracy than text-mining.  

 

Conclusion 

 
The current work presents a novel method for query 

implementation that first provides structure over 

unstructured metadata of fMRI and gene expression 

datasets through NLP and coding, and then makes 

use of the modeling in SNOMED to decompose 

semantic information allowing for mapping be-

tween anatomies or morphologies related to dis-

ease.  This allows for the integration of heterogene-

ous data with different biological scales, such as 

arrays and imaging, because the decomposition of a 

diagnosis or disease to its cell type, anatomical 

and/or morphological component allows for the 

spanning of more biological scales than the diagno-

sis would alone.  To our knowledge, this is the first 

comprehensive implementation of the model of 

SNOMED’s diseases that exploit their semantic 

decomposition in their otherwise implicit sub-

phenotypes (histological, anatomical, morphologi-

cal) that can further be mapped to the histologi-

cal/morphological/anatomical metadata found in 

other scales in datasets such as microarrays.  
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