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Introduction
The mandibular canal houses the inferior alveolar artery, 

vein, and nerve,1 the last of which provides motor inner-
vation to the facial muscles and sensory innervation to the 
lower teeth, chin, and lower lip. Injury to the inferior alveo-
lar nerve can lead to partial numbness or a total loss of sen-
sation in the lower lip, tongue, chin, and buccal mucosa.2,3 
To prevent such complications, it is necessary to precisely 
determine the location of the mandibular canal, which en-
cases the nerve within a thin layer of cortical bone.4,5 

To identify this anatomical structure, radiographic im-
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ABSTRACT

Purpose: The objective of this study was to propose a deep-learning model for the detection of the mandibular canal 
on dental panoramic radiographs.
Materials and Methods: A total of 2,100 panoramic radiographs (PANs) were collected from 3 different machines: 
RAYSCAN Alpha (n = 700, PAN A), OP-100 (n = 700, PAN B), and CS8100 (n = 700, PAN C). Initially, an oral 
and maxillofacial radiologist coarsely annotated the mandibular canals. For deep learning analysis, convolutional 
neural networks (CNNs) utilizing U-Net architecture were employed for automated canal segmentation. Seven 
independent networks were trained using training sets representing all possible combinations of the 3 groups. These 
networks were then assessed using a hold-out test dataset.
Results: Among the 7 networks evaluated, the network trained with all 3 available groups achieved an average 
precision of 90.6%, a recall of 87.4%, and a Dice similarity coefficient (DSC) of 88.9%. The 3 networks trained 
using each of the 3 possible 2-group combinations also demonstrated reliable performance for mandibular canal 
segmentation, as follows: 1) PAN A and B exhibited a mean DSC of 87.9%, 2) PAN A and C displayed a mean DSC 
of 87.8%, and 3) PAN B and C demonstrated a mean DSC of 88.4%.
Conclusion: This multi-device study indicated that the examined CNN-based deep learning approach can achieve 
excellent canal segmentation performance, with a DSC exceeding 88%. Furthermore, the study highlighted the 
importance of considering the characteristics of panoramic radiographs when developing a robust deep-learning 
network, rather than depending solely on the size of the dataset. (Imaging Sci Dent 2024; 54: 81-91)
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aging techniques are necessary. Panoramic radiography, 
in particular, is readily accessible and can be used to de-
tect and locate anatomical structures using straightforward 
methods at a comparatively low cost.6 Furthermore, it can 
produce images of a quality sufficient for most dental ra-
diographic needs and enable a holistic assessment of the 
maxillomandibular complex while exposing patients to rel-
atively low levels of ionizing radiation.6,7 

Manual detection of the path of the mandibular canal 
is time-consuming and labor-intensive. Panoramic radio-
graphs typically display low contrast due to the inclusion 
of excessive non-target tissue during the image reconstruc-
tion process, which can impact inter-observer variability.8 
Consequently, an automated mandibular canal segmenta-
tion system must be developed to alleviate the burden on 
radiologists.

In efforts to address these limitations, several recent 
studies have been published regarding deep learning-based 
canal segmentation. Previous research has applied deep 
learning methods to automatically segment the mandibular 
canal on panoramic dental images. These studies have been 
focused on various aspects, including ambiguity classifi-
cation, visualization of impacted third molars, and panop-
tic segmentation of the mandibular canal along with other 
structures using deep learning.9-11

However, these investigations have not considered the 
mental foramen region during training and/or have not 
employed datasets representing over 2,000 participants.9-11 
The mental foramen is a critical anatomical landmark that 
must be accurately identified and preserved to avoid com-
plications.12 Consequently, incorporating the mental fora-
men into mandibular canal segmentation tasks could great-
ly contribute to diagnosis and analysis.

To ensure the development of a reliable deep-learning 
model, it is essential not only to construct a substantial set 
of image data but also to train the network with a diverse 
array of panoramic dental images. The shape, size, and 
contrast of the mandibular canal as observed on images 
can vary due to factors such as the detector of the imaging 
device, post-processing techniques, and other related vari-
ables. Consequently, it is important to classify the types of 
imaging devices used to acquire the training dataset and to 
analyze their impact on network performance. In consid-
eration of these characteristics, several multicenter studies 
have focused on generalizing deep learning networks.13-15 
These studies have demonstrated the potential applicability 
of deep learning networks in clinical practice.

However, to the best of the authors’ knowledge, no 
multi-device research has been conducted on the use of 

deep learning for canal segmentation on dental panoram-
ic radiographs. Consequently, the aim of this study was to 
develop an automated method for segmenting the mandib-
ular canal on panoramic radiographs obtained with various 
devices using deep learning techniques. The primary con-
tributions of this research are twofold, as it represents: 1) a 
study carried out using data from 3 distinct devices, includ-
ing an analysis of network performance across these de-
vices to enhance the generalizability and robustness of the 
method, and 2) an investigation into an appropriate training 
strategy for a deep learning network, aimed at increasing 
the reliability of an artificial intelligence-based approach 
for automated canal segmentation on dental panoramic ra-
diographs.

Materials and Methods
The study received approval from the institutional review 

board (IRB) of Seoul National University Dental Hospital, 
Dental Life Science Research Institute, based on the results 
of their deliberation (IRB No. ERI23015).

Data acquisition and preprocessing
A total of 2,100 panoramic images from patients who 

visited Seoul National University Dental Hospital between 
January 2021 and February 2023 were collected and cate-
gorized into 3 groups: PAN A consisted of panoramic ra-
diographs from 350 male and 350 female patients, acquired 
using the RAYSCAN Alpha machine (Ray Corp, Seoul, 
Korea); PAN B comprised panoramic radiographs from 
another set of 350 male and 350 female patients, obtained 
with the OP-100 device (Imaging Instrumentarium, Tuusu-
la, Finland); and PAN C included panoramic radiographs 
from a final group of 350 male and 350 female patients, 
captured using the CS8100 machine (Carestream Dental, 
Atlanta, GA, USA).

The target population of this study was strictly limited to 
patients with permanent dentition. Consequently, the age of 
the participants ranged from 18 to 40 years. The exclusion 
criteria omitted panoramic radiographs of patients who had 
received atypical treatments, including partial or complete 
mandibulectomy, orthognathic surgery, and reparative pro-
cedures in the posterior region of the mandible. Additional-
ly, patients with class II and III impacted mandibular teeth 
were not considered in this analysis. Furthermore, individu-
als with a history of mandibular fractures, cystic lesions or 
tumors in the mandible, bone diseases such as osteomyeli-
tis or osteoporosis, or syndromic conditions were excluded 
due to the potential for compromised visibility of the entire 
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mandibular canal tract. 
All panoramic radiographs were captured by expert ra-

diographers, in accordance with the manufacturer’s rec-
ommendations and in consideration of factors such as the 
patient’s body size, jaw width (narrow or wide), degree of 
obesity, and other relevant characteristics. The RAYSCAN 
Alpha and CS8100 devices are digital radiography ma-
chines, while the OP-100 is a computed radiography de-
vice capable of acquiring digital images via Fuji Computed 
Radiography (Fuji Corp, Tokyo, Japan). The specifications 
of these 3 scanners are detailed in Table 1.

An experienced oral radiologist manually annotated pan-
oramic radiographs for mandibular canal segmentation us-
ing a software application (3D Slicer for Windows 10, ver. 
4.10.2; Massachusetts Institute of Technology, Cambridge, 
MA, USA).16 The images were resampled to a resolution 
of 1024 ×512 (width ×height) and normalized using min-
max intensity scaling, with values ranging from 0 to 1. 
Additionally, a total of 2,100 panoramic radiographs were 
divided into 2 datasets: an internal dataset consisting of 
1,800 images for network training and validation, and a test 
set comprising 300 images to assess the network’s perfor-
mance. The internal dataset included 600 images from each 
of the 3 groups. In a similar fashion, the test set contained 
100 images from each group, totaling 300 images. Fig. 1 
displays the kernel density estimation plot for all images 

(n =2,100) used in this study.17,18 The kernel density esti-
mation plot reveals that the pixel intensities of PAN A and 
PAN C exhibited similar distributions, whereas PAN B dis-
played a markedly different pattern.

In this study, augmentation techniques were applied to 
the training datasets to enhance the generalizability of the 
network. The Albumentations augmentation method (ver. 
1.3.0; https://sourceforge.net/projects/albumentations.
mirror/files/1.3.0/) was used to introduce random transfor-
mations to the training set. The parameters for these trans-
formations were as follows: a 15% probability of a hori-
zontal flip, a 50% probability of rotation within a range of 

-10° to 10°, a 50% probability of shifting contrast by 0% 
to 30%, and a 5% probability of applying Gaussian blur. 
These data augmentation strategies were applied consis-
tently to each deep learning process in the study.

Study design and network architecture
In this study, a U-Net-based architecture was employed 

for mandibular canal segmentation. Four distinct network 
architectures-ResNet50, ResNet152, SEResNet152, and  
EfficientNetB4-were adapted to the backbone of U- 
Net.19-21 The objective was to identify the most relevant 
backbone for canal segmentation. To select an appropri-
ate network architecture, 5-fold cross-validation was per-
formed on a dataset comprising 1,800 internal images. 
U-Net-based semantic segmentation networks designed for 
canal segmentation were utilized for deep learning analy-
sis. These networks were sourced from open-source code 
available at https://github.com/qubvel/segmentation. The 
network architecture consisted of an encoder followed by a 
decoder, each with 5 resolution steps. A 2-dimensional con-
volution kernel was used to construct the networks. Fig. 2B 
illustrates a representative U-Net-based architecture, while 
the actual network architecture employed in the experi-
ments was a modified version with alterations to the U-Net 
encoder structure.

Network optimization was achieved through the joint 
minimization of both binary focal loss and Dice loss, uti-
lizing a batch size of 8:

                  2 ×∑pTrue × pPred
LossDice =  --------------------------  ,
                  ∑p2

True +∑p2
red

LossFocal =  -α × pTrue × (1-pPred)γ log(pPred) 
- (1-pTrue) × α × pPred

γlog (1-pPred)22

Table 1. Different characteristics of panoramic dental imaging 
devices.

Parameters PAN A PAN B PAN C

Manufacturer RAYSCAN Alpha OP-100 CS8100
Tube voltage 60-90 kVp 57-85 kVp 60-90 kVp
Tube current 4-17 mA 2-16 mA 2-15 mA
Irradiation time 14 s 16.8-17.6 s 2-12.5 s
Frequency 60-220 kHz 75-150 kHz 140 kHz

Fig. 1. Kernel density estimation plot for digital panoramic radio-
graphs taken with 3 different imaging devices. PAN: panoramic 
radiograph, PAN A: RAYSCAN Alpha, PAN B: OP-100, PAN C: 
CS8100.
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Here, pTrue represents the pixel value of the ground truth, 
while pPred denotes the network’s inference result (prob-
ability) for the corresponding pixel. α is the weighting 
factor in balanced cross-entropy, and γ is the focusing pa-
rameter used for the smooth adjustment of weights. The 
values for α and γ were set to 0.25 and 2.0, respectively. 
Notably, both α and γ are empirically determined hy-
per-parameters in the binary focal loss equation.

The deep learning networks were implemented us-
ing Python3, employing Keras with a TensorFlow (ver. 
2.10.0; https://github.com/tensorflow/tensorflow/releases/
tag/v2.10.0) backend, and were run on an NVIDIA RTX 
A6000 graphics processing unit (48 GB; NVIDIA, Santa 
Clara, CA, USA). Training of the networks was conducted 

with an Adam optimizer. The initial learning rate was set at 
0.001 and was decreased by a factor of 0.2 every 5 epochs 
upon reaching a plateau, over a total of 200 epochs, with a 
batch size of 8.

Evaluation of network performance for 
segmentation 
In this study, SPSS (version 26.0; IBM Corp., Armonk, 

NY, USA) was utilized for statistical analysis, specifical-
ly employing the Friedman test. A significance level of 
P<0.05 was considered to indicate statistical significance. 
To evaluate the performance of automated segmentation, 
the precision, recall, and Dice similarity coefficient (DSC) 
were calculated using the Scikit-learn Python library (ver-

Fig. 2. A. Data enrollment criteria. B. Representative architecture of U-Net. The actual network architecture employed in the experiments 
was a modified version, with changes made to the encoder structure of U-Net. PAN: panoramic radiograph, PAN A: RAYSCAN Alpha, 
PAN B: OP-100, PAN C: CS8100.

A

B
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sion 1.2.2; https://scikit-learn.org/1.2/) and the Python pro-
gramming language (version 3.9.16; https://www.python.
org/downloads/release/python-3916/). The network was as-
sessed on a pixel-wise basis, applying the following equa-
tions:

                         TP
Precision = -------------
                    TP + FP

                    TP
Recall = --------------
               TP + FN

                     2 × TP
DSC = --------------------------
            2 × TP + FP + FN

The rates of true positives, false positives, true negatives, 
and false negatives were calculated at the pixel level. Net-
work predictions were deemed positive when the proba-
bility exceeded 0.5.

Results
Table 2 presents the assessment outcomes for the 4 dis-

tinct backbones integrated into the U-Net-based architec-
ture. The images from the test set were excluded from this 
analysis, as the network was trained and evaluated solely 
using the internal dataset. To assess performance across 
the entire internal dataset, which comprised 1,800 imag-
es, 5-fold cross-validation was conducted. The dataset 
was partitioned into training, validation, and test sets in a 
6:2:2 ratio for each group of images. The U-Net with the 
EfficientNetB4 backbone exhibited the best segmentation 
performance, achieving precision, recall, and DSC metrics 
of 84.0%, 84.2%, and 83.9%, respectively. Consequently, 
EfficientNetB4 was chosen as the backbone for the subse-
quent multi-device study.

The validation set was generated by randomly allocating 
30% of the images from the training set during the network 
training phase. For example, when the training dataset 
contained 600, 1200, and 1800 images, then the corre-

sponding validation sets consisted of 180, 360, and 540 
images, respectively. In contrast, the test set comprised a 
constant number of 300 images. In this multi-device study, 
7 types of training datasets were introduced, representing 
all possible combinations of the 3 scanners. The networks 
trained with these 7 training datasets fell into 3 categories: 
1) single-device networks; 2) dual-device networks; and 
3) a multi-device network. The single-device network was 
trained exclusively with images from 1 scanner, either PAN 
A, PAN B, or PAN C, with the training set containing 600 
images. The dual-device network combined datasets from 
2 different scanners, utilizing all 3 possible pairings of the 
2 groups for training sets and resulting in 1200 images 
per set (n =1,200). Finally, the multi-device network was 
trained using a comprehensive dataset that included images 
from all 3 scanners, totaling 1,800 images. 

Table 3 presents the evaluation metrics for 3 single-de-
vice networks. The networks trained with PAN A, PAN 
B, and PAN C achieved average DSC values of 75.3%, 
65.7%, and 85.4%, respectively. These findings demon-
strate that employing PAN C for network training resulted 
in the best segmentation performance, with average preci-
sion, recall, and DSC values of 85.8%, 85.1%, and 85.4%, 
respectively.

The evaluation metrics for the dual-device networks are 
presented in Table 4. When compared to the training meth-
od that utilized only single groups, the dual-device net-
works demonstrated a significant improvement in perfor-
mance, as reflected by the segmentation metrics. The net-
works trained using the combinations of PAN A and PAN 
B, PAN A and PAN C, and PAN B and PAN C achieved 
average DSC values of 87.9%, 87.8%, and 88.4%, respec-
tively. Moreover, the network trained with a dataset com-
bining PAN B and PAN C outperformed those trained with 
the other 2 combinations of image groups, achieving preci-
sion, recall, and DSC values of 90.3%, 86.8%, and 88.4%, 
respectively. The dual-device networks exhibited superior 
performance to the single-device networks. However, these 

Table 2. Evaluation metrics from 4 backbones for mandibular canal segmentation

Backbone ResNet50 ResNet152 SEResNet152 EfficientNetB4

Precision 0.793±0.090
(0.784-0.802)

0.826±0.089
(0.817-0.835)

0.820±0.087
(0.811-0.829)

0.840±0.081
(0.836-0.844)

Recall 0.804±0.098
(0.794-0.815)

0.819±0.086
(0.810-0.828)

0.839±0.078
(0.831-0.847)

0.842±0.074
(0.839-0.845)

DSC 0.800±0.083
(0.787-0.804)

0.820±0.079
(0.812-0.829)

0.827±0.074
(0.820-0.835)

0.839±0.070
(0.836-0.843)

DSC: dice similarity coefficient
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findings suggest that the greater network performance can-
not be attributed solely to the increased volume of training 
data; the performance also varied according to the distinct 
characteristics of the data in the training set. 

Table 5 presents the evaluation metrics for the multi-de-
vice network. This network attained the highest perfor-
mance in mandibular canal segmentation among the 7 dif-
ferent networks evaluated, achieving an average precision 
of 90.6%, recall of 87.4%, and DSC of 88.9%. Although 
the multi-device network surpassed all dual-device net-
works in overall performance, it demonstrated marginally 
lower results compared to the 2 types of dual-device net-
works when assessed on the test set corresponding to PAN 
B. 

Fig. 3 displays the automated segmentation results of the 
7 independent networks for the 3 panoramic radiograph 
samples in the test set. In the networks trained on a single 
device, errors frequently occurred along the trajectory of 
the mandibular canal. Conversely, in networks trained on 
dual- or multi-device setups, errors were predominantly 
localized to the areas surrounding the mental foramen or 
mandibular foramen.

Fig. 4 presents box plots depicting the DSC metrics for 

the 7 networks, representing all possible combinations of 
the 3 groups. The Friedman test was conducted to ana-
lyze differences in the DSC metric distributions across the 
networks, while the Bonferroni correction was applied to 
assess 2-sided statistical significance. The statistical signif-
icance values across the 7 networks are presented in Table 
6. The Friedman test revealed no statistically significant 
differences among the dual- and multi-device networks.

Discussion
As a cutting-edge machine learning method, deep learn-

ing has garnered substantial attention in clinical research.9 
This approach has also gained traction in dental and max-
illofacial radiology, with a growing body of research em-
ploying deep learning techniques for the localization and 
segmentation of the bilateral mandibular canals, each hous-
ing an inferior alveolar artery, vein, and nerve. However, 
several previous studies of mandibular canal segmentation 
using deep learning have encountered limitations with gen-
eralizability, as the networks were typically trained and 
evaluated on patient data from a single imaging device. To 
address this issue, the present study incorporated network 

Table 3. Evaluation results for the single-device cohort networks

Training
 dataset

Hold-out
validation

      Test dataset
Average
(n=300)PAN A 

(n=100)
PAN B
(n=100)

PAN C
(n=100)

PAN A
(n = 600)

Precision 0.760±0.075
(0.745-0.775)

0.690±0.075
(0.664-0.715)

0.766±0.092
(0.748-0.785)

0.739±0.107
(0.726-0.751)

Recall 0.821±0.078
(0.805-0.836)

0.693±0.130
(0.667-0.719)

0.797±0.099
(0.777-0.816)

0.770±0.118
(0.757-0.784)

DSC 0.788±0.073
(0.774-0.803)

0.690±0.126
(0.665-0.715)

0.781±0.093
(0.762-0.799)

0.753±0.109
(0.740-0.765)

PAN B
(n = 600)

Precision 0.683±0.118
(0.659-0.706)

0.656±0.118
(0.633-0.680)

0.679±0.136
(0.652-0.706)

0.673±0.125
(0.658-0.687)

Recall 0.673±0.123
(0.648-0.697)

0.664±0.130
(0.638-0.690)

0.600±0.131
(0.574-0.626)

0.646±0.132
(0.631-0.661)

DSC 0.677±0.118
(0.653-0.700)

0.659±0.122
(0.635-0.683)

0.635±0.130
(0.610-0.661)

0.657±0.124
(0.643-0.671)

PAN C
(n = 600)

Precision 0.883±0.052
(0.873-0.893)

0.838±0.083
(0.821-0.854)

0.852±0.075
(0.838-0.867)

0.858±0.074
(0.849-0.866)

Recall 0.889±0.061
(0.876-0.901)

0.815±0.097
(0.780-0.834)

0.849±0.087
(0.831-0.866)

0.851±0.088
(0.841-0.861)

DSC 0.885±0.054
(0.875-0.896)

0.825±0.086
(0.808-0.842)

0.850±0.079
(0.834-0.866)

0.854±0.078
(0.845-0.862)

DSC: dice similarity coefficient
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training and evaluation using a dataset from multiple de-
vices, constituting a key step toward assessing the general-
izability and clinical utility of deep learning methods. 

This study introduced a multi-device approach for train-
ing a deep learning network, utilizing 2,100 panoramic 
radiographs obtained from 3 different imaging devices. A 
U-Net architecture with an EfficientB4Net backbone was 
used to develop networks for mandibular canal segmenta-
tion. These networks were optimized using the 7 possible 
combinations of the 3 distinct groups of data. Additionally, 

the networks were evaluated using a hold-out test dataset. 
The results indicated that the network trained on the com-
bined datasets from all 3 groups (n =1,800) outperformed 
the other networks, achieving an average precision of 
90.6%, recall of 87.3%, and DSC of 88.9%. Notably, this 
study’s multi-device methodology leveraged panoramic ra-
diographs with diverse characteristics. Deep learning meth-
ods are highly dependent on the training set, and a more 
narrowly defined training dataset can lead to increased bias 
due to the characteristics of the data used during training. 

Table 4. Evaluation metrics for dual-device cohort networks

Training
dataset

Hold-out 
validation

   Test dataset
Average
(n = 300)PAN A 

(n = 100)
PAN B

(n = 100)
PAN C

(n = 100)

PAN A and B
(n = 1200)

Precision 0.904±0.060
(0.892-0.916)

0.895±0.062
(0.882-0.907)

0.898±0.082
(0.882-0.914)

0.899±0.069
(0.891-0.907)

Recall 0.868±0.068
(0.855-0.881)

0.860±0.070
(0.846-0.874)

0.855±0.089
(0.837-0.873)

0.861±0.076
(0.852-0.870)

DSC 0.885±0.061
(0.873-0.897)

0.877±0.064
(0.864-0.889)

0.876±0.084
(0.859-0.892)

0.879±0.071
(0.871-0.887)

PAN A and C
(n = 1200)

Precision 0.914±0.039
(0.907-0.922)

0.875±0.075
(0.860-0.890)

0.893±0.066
(0.880-0.906)

0.894±0.064
(0.887-0.901)

Recall 0.889±0.058
(0.877-0.900)

0.830±0.100
(0.810-0.850)

0.875±0.076
(0.860-0.890)

0.865±0.084
(0.855-0.874)

DSC 0.901±0.047
(0.891-0.910)

0.851±0.086
(0.834-0.868)

0.884±0.069
(0.870-0.898)

0.878±0.072
(0.870-0.887)

PAN B and C
(n = 1200)

Precision 0.915±0.049
(0.905-0.925)

0.889±0.005
(0.879-0.900)

0.906±0.064
(0.893-0.918)

0.903±0.057
(0.897-0.910)

Recall 0.884±0.068
(0.870-0.897)

0.872±0.074
(0.857-0.887)

0.847±0.075
(0.833-0.862)

0.868±0.074
(0.859-0.876)

DSC 0.898±0.058
(0.887-0.910)

0.880±0.061
(0.868-0.892)

0.875±0.067
(0.862-0.889)

0.884±0.063
(0.877-0.892)

DSC: dice similarity coefficient

Table 5. Evaluation results for multi-device cohort network

Training
dataset

Hold-out
validation

   Test dataset
Average

PAN A PAN B PAN C

PAN A, B, and C
(n = 1800)

Precision 0.921±0.044
(0.913-0.930)

0.893±0.055
(0.882-0.904)

0.904±0.066
(0.891-0.917)

0.906±0.057
(0.900-0.913)

Recall 0.889±0.044
(0.880-0.898)

0.858±0.071
(0.844-0.872)

0.873±0.069
(0.860-0.872)

0.874±0.064
(0.866-0.881)

DSC 0.905±0.042
(0.896-0.913)

0.875±0.061
(0.862-0.887)

0.888±0.066
(0.875-0.901)

0.889±0.059
(0.883-0.896)

DSC: dice similarity coefficient
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Moreover, for deep learning networks to be successfully 
applied in real-world clinical settings, it is crucial to use 
datasets that reflect a wide range of imaging characteristics.

In recent years, several studies have utilized a range of 
deep learning architectures to develop automated networks 
for mandibular canal segmentation on panoramic dental 
images. To the best of the authors’ knowledge, however, 
no deep learning-based studies have been conducted to 
establish a semantic segmentation network for panoramic 
radiographs in a multi-device context. In a study focused 
on developing a mandibular canal segmentation network 
through ambiguity classification, the same imaging equip-
ment and radiation parameters-tube voltage, tube current, 
and exposure time-were used for network training.9 That 
study employed a dataset of 1,366 panoramic radiographs 
from a single device and achieved an average DSC of 

85.7% for mandibular canal segmentation. Another study 
described panoptic segmentation of the mandibular canal 
and 6 other structures using a deep neural network applied 
to panoramic radiographs.11 The network was trained with 
51 panoramic radiographs from a single device, achieving 
an average intersection-over-union value of 63.9%. These 
2 prior studies have limitations relative to the present re-
search: 1) they relied on panoramic radiographs from a 
single imaging device, potentially limiting the generaliz-
ability of their findings to other devices; and 2) the number 
of radiographs used was relatively small, which may have 
affected the statistical power and reliability of their results. 
Additionally, another prior study proposed a transfer learn-
ing-based method for canal segmentation. This approach 
used cropped patches from panoramic images that includ-
ed the region of the impacted third molar and the adjacent 

Fig. 3. Canal segmentation results for 3 examples of panoramic dental radiographs, with the combinations of groups used as training sets 
indicated above each column. The red, blue, and yellow regions denote false negatives, false positives, and true positives, respectively. 
PAN: panoramic radiograph, PAN A: RAYSCAN Alpha, PAN B: OP-100, PAN C: CS8100.
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mandibular canal, collected from 2 different hospitals. The 
network was trained on a dataset of 2,940 patches from 
both institutions. The trained network achieved an average 
DSC of 85.7% for canal segmentation. The strength of that 
study lies in its large dataset and inclusion of data from 2 
medical centers, which likely improved the generalizability 
of the trained network. However, unlike the present study, 
it used only specific regions of interest from panoramic 
images for network training. This required additional pre-
processing to extract and prepare these regions for train-
ing, which could be viewed as a limitation of the method. 
Nevertheless, a potential limitation of the present study is 
the composition of the multicenter dataset, which consisted 
exclusively of panoramic radiographs from a single type of 
scanner. This could have introduced bias into the network 
and impacted its generalizability.

The present statistical analysis encompassed 7 different 
networks, each trained with 1 of the 7 types of training sets 
that comprised all possible combinations of image groups. 
Performance evaluation of the single-device networks re-
vealed that the network trained with images from PAN C 
exhibited the best performance, followed by the networks 
trained on PAN A and PAN B images. This discrepancy in 

Table 6. The Friedman test results. The asymptotic significances of the seven networks were computed to assess the differences in their 
performance.

Group-Group
(Training dataset) Test statistic Standard error Standard test 

statistic Significance Adjusted 
significance

B-A .703 .176 3.988 .000 .001
B-C -2.697 .176 -15.289 .000 .000
B-A and B -3.683 .176 -20.883 .000 .000
B-A and C -3.797 .176 -21.525 .000 .000
B-B and C -3.913 .176 -22.187 .000 .000
B-A and B and C -4.130 .176 -23.415 .000 .000
A-C -1.993 .176 -11.301 .000 .000
A-A and B -2.980 .176 -16.895 .000 .000
A-A and C -3.093 .176 -17.538 .000 .000
A-B and C -3.210 .176 -18.199 .000 .000
A-A and B and C -3.427 .176 -19.427 .000 .000
C-A and B - .987 .176 -5.594 .000 .000
C-A and C -1.100 .176 -6.236 .000 .000
C-B and C -1.217 .176 -6.898 .000 .000
C-A and B and C -1.433 .176 -8.126 .000 .000
A and B-A and C - .113 .176 - .643 .521 1.000
A and B-B and C - .230 .176 -1.304 .192 1.000
A and B-A and B and C - .447 .176 -2.532 .011 .238
A and C-B and C - .117 .176 - .661 .508 1.000
A and C-A and B and C - .333 .176 -1.890 .059 1.000
B and C-A and B and C - .217 .176 -1.228 .219 1.000

Fig. 4. Box plots of Dice similarity coefficient metrics. The x-axis 
indicates the groups of internal datasets included in the training 
set. Symbols above the plots signify the absence of significant 
differences between the 2 networks. The boxes in the graph rep-
resent the quartiles of the Dice similarity coefficient metrics, with 
the horizontal line inside each box indicating the median. n.s.: not 
significant, PAN A: RAYSCAN Alpha, PAN B: OP-100, PAN C: 
CS8100.
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performance can likely be attributed to the fact that PAN 
B displayed a significantly different intensity distribution 
from the other groups, as shown in Fig. 1. These differ-
ences in intensity distribution among the image groups 
are believed to have influenced the results. Moreover, the 
network trained with images from PAN C outperformed 
the model trained on images from PAN A, despite the ab-
sence of marked differences in image intensity distribu-
tion and radiation conditions between them. The superior 
performance of the model trained on PAN C may be due 
to the post-processing techniques used by each vendor, 
which can introduce subtle variations in the radiographs. 
Regarding the dual-device networks, the network trained 
with a dataset that included PAN B demonstrated superior 
performance. This finding aligns with the results from the 
networks trained on single image groups, where the inclu-
sion of PAN C in the training dataset resulted in the highest 
average DSC. Therefore, the combination of PAN B and 
PAN C constituted the optimal training dataset among the 3 
dual-device networks.

The average DSC metrics indicated that the multi-de-
vice network outperformed the others in the segmentation 
of the mandibular canal. This network demonstrated en-
hanced performance with the test sets for PAN A and PAN 
C when compared to the dual-device networks. However, a 
slight decline was observed in the average DSC for the test 
set corresponding to PAN B. Given that the images from 
PAN A and PAN C shared similar intensity distributions, 
which differed from those of PAN B, it is believed that 
the multi-device network may exhibit a bias toward im-
ages from PAN A and PAN C. Additionally, the Friedman 
test revealed no statistically significant difference in per-
formance between the dual-device networks (mean DSC: 
87.9%, 87.8%, and 88.4%) and the multi-device network 

(mean DSC: 88.9%). These results suggest that training a 
network with images that share similar characteristics may 
lead to a bias in segmentation performance for those specif-
ic images. This underscores the importance of developing 
robust networks that account for not only variations across 
multiple centers and devices, but also the distinct character-
istics of image data obtained with various imaging devices.

This study had some limitations. First, the annotations 
were derived from a single examiner. Although an experi-
enced rater conducted the manual delineation, the potential 
exists for bias due to individual subjectivity and opinion. 
Furthermore, optimal canal segmentation cannot be fully 
investigated using only the U-Net-based network, despite 
its use with 4 different backbones. Future studies employ-
ing state-of-the-art networks should be conducted to ex-

plore the optimal network architecture. Second, despite 
the successful application of the dual- and multi-device 
networks for accurate mandibular canal segmentation, 
the number of false positives reported by the network re-
mains a substantial challenge. These errors were typically 
observed in and around the region of the mental foramen. 
Therefore, it may be assumed that a deep learning-based 
approach, utilizing a boundary- and continuity-aware train-
ing strategy for mandibular canal segmentation, could ad-
dress these issues.23 Third, the evaluation datasets used in 
this study were limited to a single ethnic group, ensuring 
no demographic differences, and the patients’ ages ranged 
from 18 to 40 years. Consequently, future research should 
aim to validate the auto-segmentation model on datasets 
that include a broader range of ages and ethnic diversity.

In conclusion, this study indicates that the examined deep 
learning method demonstrated reliable performance for 
mandibular canal segmentation on panoramic radiographs 
from multiple devices, achieving a DSC greater than 88%. 
Furthermore, the multi-device study revealed that develop-
ing a robust network requires the acquisition of a dataset 
that captures the diverse characteristics of panoramic radio-
graphs, rather than simply increasing the volume of train-
ing data for deep learning.
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