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Abstract

Trimethylamine-N-oxide (TMAO)–a gut-microbiota metabolite–is a biomarker of cardiome-

tabolic risk. No studies have investigated TMAO as an early biomarker of longitudinal glu-

cose increase or prevalent impaired glucose regulation. In a longitudinal cohort study, 300

diabetes-free men and women (77%) aged 20–55 years (mean = 34±10) were enrolled at

baseline and re-examined at 2-years to investigate the association between TMAO and bio-

markers of diabetes risk. Plasma TMAO was measured using Ultra Performance Liquid

Chromatography-Mass Spectrometry. After an overnight fast, FPG was measured longitudi-

nally, HbA1C and insulin were measured only at baseline. Insulin resistance was defined

using HOMA-IR. Multivariable generalized linear models regressed; i) FPG change (year 2

minus baseline) on baseline TMAO tertiles; and ii) HOMA-IR and HbA1c on TMAO tertiles.

Multivariable relative risk regressions modeled prevalent prediabetes across TMAO tertiles.

Mean values of 2-year longitudinal FPG±SE across tertiles of TMAO were 86.6±0.9, 86.7

±0.9, 86.4±0.9 (p = 0.98). Trends were null for FPG, HbA1c, HOMA-IR, cross-sectionally.

The prevalence ratio of prediabetes among participants in 2nd and 3rd TMAO tertiles (vs.

the 1st) were 1.94 [95%CI 1.09–3.48] and 1.41 [95%CI: 0.76–2.61]. TMAO levels are asso-

ciated with increased prevalence of prediabetes in a nonlinear fashion but not with insulin

resistance or longitudinal FPG change.

Introduction

Type 2 diabetes is an important public health problem with over 400 million diagnosed cases

globally, and in the United States the prevalence of diagnosed diabetes increased from 0.93%
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in 1958 to 7.40% in 2015[1]. Similarly, impaired glucose regulation (i.e., prediabetes) is also a

growing public health concern. In 2012, an estimated 86 million people in the U.S. aged 20

and older had prediabetes[1], which is a strong preclinical risk factor for future type 2 diabetes.

A better understanding of disease susceptibility and environmental risk factors is needed to

address the growing burden of type 2 diabetes.

The microbes inhabiting the gastrointestinal tract have been hypothesized to play an etio-

logic role in the development of cardiometabolic diseases. Recently, Le Chatelier et al.[2]

found the gut microbiome to be associated with adverse metabolic profiles both cross-section-

ally and longitudinally among diabetes-free individuals, bolstering the potential for the gut

microbiota to contribute to early diabetes risk, although the mechanisms remain uncertain.

Trimethylamine-N-oxide (TMAO)–a gut microbiota derived metabolite–has been hypoth-

esized as risk factor for cardiometabolic disease. TMAO is produced primarily by the metabo-

lism of dietary nutrients such as choline, phosphatidylcholine and L-carnitine by intestinal

bacteria to produce trimethylamine which is subsequently converted to TMAO in the liver.

There is strong evidence linking circulating TMAO levels to increased risk for myocardial

infarction and stroke[3, 4], even in low risk individuals (e.g., age<65 years, women, low lipid

levels, low C-reactive protein (CRP) levels)[5]. In regard to diabetogenesis, animal models

have shown that dietary TMAO can lead to impaired glucose tolerance, increase fasting insulin

levels and adipose tissue inflammation, in mice fed a high fat diet[6]. Others have demon-

strated that knockdown of flavin containing monooxygenase 3 (FMO3)–which produces

TMAO–in insulin resistant mice blocks the development of hyperglycemia[7]. In humans, a

few studies have also shown increased TMAO levels to be associated with type 2 diabetes. Most

prior studies[8–11] were cross-sectional precluding the ability to determine whether elevated

TMAO preceded type 2 diabetes development or resulted from the diabetes phenotype which

is often associated with alterations in host physiology, including nephropathy, which influ-

ences TMAO levels via reduced renal clearance. Additionally, health behavior changes and

new pharmacological therapies occurring in response to type 2 diabetes diagnosis could con-

tribute to intestinal dysbiosis and increased capacity for TMAO production. To our knowl-

edge, only one longitudinal study has explored baseline TMAO as a predictor of future

diabetes development [12] and, surprisingly, they report elevated TMAO levels to be related to

decreased type 2 diabetes risk. Therefore, limited data are available exploring the value of

TMAO in predicting type 2 diabetes development. No existing studies have explored the rela-

tionship between TMAO and early risk biomarkers linked to future type 2 diabetes develop-

ment such as insulin resistance, rising longitudinal glucose levels or prediabetes.

Presently, we have studied the relationship between plasma TMAO and early biomarkers of

type 2 diabetes risk. We hypothesize that elevated plasma TMAO-levels would be associated

with markers of insulin resistance and impaired glucose regulation, cross-sectionally, as well as

with rising glucose levels, longitudinally. These investigations are undertaken in a diabetes-

free population without a history of cardiovascular and/or kidney disease.

Materials and methods

Study population

The Oral Infections, Glucose Intolerance and Insulin Resistance Study (ORIGINS) is a longi-

tudinal cohort study investigating the relationship between subgingival microbial community

composition, systemic inflammatory phenotype and impaired glucose metabolism[13]. The

current analysis includes the first 300 participants enrolled from February 2011 to May 2013.

Participants were recruited via postal mailings, email blasts, posted flyers, information sessions

and word-of- mouth strategies.

TMAO and impaired glucose regulation
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Inclusion criteria were as follows: Men and women aged 20–55 years without: i) Diabetes

Mellitus based on self-report physician diagnosis, fasting plasma glucose (FPG)�126 mg/dl or

hemoglobin A1c (HbA1c)�6.5% (48 mmol/mol); ii) self-reported history of myocardial

infarction, congestive heart failure, stroke or chronic inflammatory conditions. Participants

were examined at baseline and n = 297 had a TMAO assessment, and n = 241 (81%) provided

fasting blood at a two-year follow-up visit (February 2013 to December 2015[13]). The Institu-

tional Review Boards of Columbia University and The University of Minnesota approved the

study. All participants provided written informed consent.

Trimethylamine-N-oxide assessment

The exposure Trimethylamine-N-oxide (TMAO) was only measured once at baseline in human

plasma samples using Ultra Performance Liquid Chromatography-Mass Spectrometry

(UPLC-MS/MS) after protein precipitation using deuterated (D9)-TMAO as the internal stan-

dard[14]. UPLC-MS/MS analysis was performed on a platform comprising Eksigent ULC 100

integrated to API 4000 mass spectrometer controlled by Analyst 1.6 (ABSciex, Foster City, CA).

Laboratory measures

At baseline, FPG, serum insulin and lipids, and HbA1c were measured from blood after an

overnight fast using a Cobras Integra 400 Plus (Roche Diagnostics, Indianapolis, IN, USA) as

previously described[15, 16]. The Homeostatic Model Assessment of Insulin Resistance

(HOMA-IR) was used to define insulin resistance as previously defined[17, 18]. Baseline predi-

abetes status was defined based on either one of the below criteria being fulfilled: HbA1C of

5.7–6.4% (39–46 mmol/mol) or FPG between 100 and 125 mg/dl[19]. FPG was also measured

at the year 2 follow-up visit.

Risk factors

Cardiometabolic risk factors were measured by trained research assistants in space provided

by a Center for Translational Science Award (CTSA). Seated systolic and diastolic blood pres-

sures were measured in triplicate and the last two measurements were averaged. Participant

body mass index (BMI) was calculated as weight in kilograms/height in meters2. Question-

naires were administered to obtain information on: age, sex, race/ethnicity (non-Hispanic

Black, non-Hispanic White, Hispanic, Other), educational level (high school completion, col-

lege or vocational training, advanced degrees), cigarette smoking (current, former or never

smoking and duration/intensity of smoking). Leisure-time physical activity (LTPA) was

assessed and activities were converted into metabolic equivalents (METS), further categorizing

them into four LTPA categories in accordance with the 2008 Physical Activity Guidelines for

Americans: no LTPA reported, low (0 to<500 MET min/wk), moderate(500 to<1,000 MET

min/wk), high(�1000 MET min/wk)[20, 21].A detailed food frequency questionnaire was

administered from which The Alternative Healthy Eating Index (AHEI) score was calculated

to represent diet quality based on the intake of 9 components: vegetables, fruit, nuts and soy,

white or red meat, transfat, polyunsaturated or saturated fat, fiber, multivitamin use, and alco-

hol[22]. A higher total score of AHEI indicates a lower risk of developing chronic disease par-

ticularly chronic heart disease and diabetes[22, 23].

Statistical analysis

All statistical analyses were conducted with SAS 9.4. (SAS Institute, Cary, NC). Difference in

means or prevalence of potential confounders according to TMAO levels or metabolic

TMAO and impaired glucose regulation
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variables (i.e., insulin resistance, FPG and HOMA-IR) were assessed using one-way ANOVA

for continuous variables and chi-square for categorical variables. Multivariable linear models

regressed natural log transformed insulin resistance (due to non-normality of the original vari-

able), FPG or HbA1c on tertiles of TMAO, in separate regression models. TMAO was divided

into tertiles to relax linearity assumptions. Sequentially adjusted regression models were

formed to assess the degree of confounding by specific sets of confounders. Model 1 was unad-

justed. Model 2 was adjusted for age, gender, race/ethnicity, and education. Model 3 was fur-

ther adjusted for BMI, systolic blood pressure and HDL. Model 4 was further adjusted for

AHEI. Tests for linear trends were performed using TMAO as a continuous variable in the

aforementioned regression models. A multivariable modified Poisson regression with robust

error variance was used regressed prediabetes prevalence across tertiles of TMAO; prevalence is

defined as the probability of having prediabetes. Prevalence ratios and 95% confidence intervals

(95%CI) are presented for the 2nd and 3rd tertiles of TMAO levels relative to the 1st tertile.

Results

Baseline characteristics

Participants had a mean age of 34±10 years, and 77% were female. Median plasma TMAO

level and Interquartile range (IQR) are 2.69 μM and 1.9–4.22 μM, respectively. TMAO levels

were modestly associated with increased age, Hispanic ethnicity and BMI (Table 1). Interest-

ingly, diet quality as assessed by AHEI did not differ by TMAO level. Similarly, the AHEI sub-

score corresponding to meat consumption was not related to TMAO levels. Additional

participant characteristics are summarized in Table 1.

Cross-sectional associations between TMAO and biomarkers of diabetes

risk

TMAO levels did not explain variation in FPG, HbA1c or HOMA-IR cross-sectionally, as

summarized in Table 2. Results were very consistent across varying degrees of multivariable

adjustment (Table 2). After full multivariable adjustment (model 4, S1 Fig), the prevalence

ratio of prediabetes among participants in the 2nd and 3rd TMAO tertiles (vs. the 1st) were 1.94

[95%CI 1.09–3.48] and 1.41 [95%CI: 0.76–2.61] and results were consistent across multivari-

able models (S1 Fig). When combining participants in the 2nd and 3rd tertiles, the prevalence

ratio for prediabetes was 1.71, p = 0.05 in crude models although results were attenuated and

lost statistical significance after multivariable adjustment (S2 Fig).

Longitudinal association between TMAO and fasting plasma glucose

There was no statistically significant association between baseline TMAO and follow-up FPG.

In unadjusted models, mean follow-up FPG across tertiles of TMAO were 86.8±1, 86.9±1, 87.1

±1 mg/dL respectively. Results were consistently null in multivariable models (S3 Fig).

Discussion

We report that TMAO levels were not associated with insulin resistance, HbA1c or fasting

plasma glucose cross-sectionally, or with longitudinal change in fasting plasma glucose.

TMAO levels were associated with a modest increase in the prevalence of prediabetes in a non-

linear fashion such that participants with intermediate TMAO levels had a statistically signifi-

cant 94% increase in prediabetes prevalence. These results were generally consistent regardless

of level of risk factor adjustment although statistical significance was lost for participants in the

highest TMAO tertile.

TMAO and impaired glucose regulation
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To our knowledge, the current study is the first to investigate the association between

plasma TMAO and early biomarkers of diabetes risk among participants free of diabetes and

clinical cardiovascular disease. Our null findings might appear at odds with several studies

reporting that elevated TMAO levels predict increased risk for chronic kidney disease, myo-

cardial infarction, stroke and heart failure[5, 24]. However, it is important to note that among

studies with positive TMAO findings, the enrolled participants were generally older and had

Table 1. Participant characteristics overall and by TMAO Tertiles: (ORIGINS) 2011–2015.

All (N = 297) Tertile 1 (n = 99) Tertile 2 (n = 99) Tertile 3 (n = 99) P Value

TMAO (median, range) 2.69(1.90–4.22) 1.73 (1.411.90) 2.69(2.33–2.98) 5.52(4.22–7.66) N/A

Age,years 34.06±9.86� 32.28±0.92 33.87±0.98 36.01±1.03 0.02

Female 77.10% 78.79% 77.78% 74.75% 0.78

Race 0.007

Hispanic 46.80% 49.50% 34.34% 56.57%

Non-Hispanic White 22.90% 23.23% 26.26% 19.19%

Non-Hispanic Black 16.84% 11.11% 20.20% 19.19%

Other 13.46% 16.16% 19.20% 5.05%

Education 0.5

< college 31.99% 26.26% 32.32% 37.38%

4 years of college 45.45% 51.52% 44.45% 40.40%

>college 22.56% 22.22% 23.23% 22.22%

Activity level 0.59

None 30.58% 31.26% 32.65% 27.84%

Low 12.03% 8.33% 13.27% 14.43%

Moderate 16.15% 14.58% 19.39% 14.43%

High 41.24% 45.83% 34.69% 43.30%

AHEI Score 49.05±11.88� 48.3±1.2 50.2±1.3 48.7±1.3 0.53

AHEI meat score 6.20±3.50� 6.6±0.4 6.0±0.4 6.0±0.4 0.41

BMI (kg/m2) 27.07±6.13� 26.83±0.61 26.08±0.52 28.29±0.68 0.03

Body Mass Index category 0.04

Normal 44.44% 50.51% 50.51% 32.32%

Overweight 32.33% 28.28% 31.31% 37.37%

Obese 23.23% 21.21% 18.18% 30.30%

Systolic blood pressure,mm Hg 117.75±12.45� 117 ±1.21 117±1.33 119±1.20 0.52

Diastolic blood pressure,mmHg 75.25 ±9.71� 75 ±0.91 75 ±1.05 75 ±0.96 0.98

Hypertension 97 (32.66%) 29 (29.29%) 33(33.33%) 35 (35.35%) 0.65

Prediabetes 17.85% 12.12% 21.21% 20.20% 0.19

FPG (mg/dl) 85.22±7.64� 85.23±0.82 84.15±0.69 86.28±0.77 0.15

HbA1c (%)/ mmol/mol 5.36±0.34� (35±3.7)� 5.32±0.03 (35±0.3) 5.36±0.03 (35±0.3) 5.39±0.03 (35±0.3) 0.38

Total cholesterol (mg/dl) 172.61±30.74� 173.56±3.13 174.22±3.04 170.06±3.10 0.59

LDL-cholesterol (mg/dl) �� 97.98±27.86� 99.98±2.96 98.33±2.79 95.63±2.66 0.54

HDL (mg/dl) 59.05±16.06� 58.26±1.60 59.84±1.58 59.04±1.66 0.79

Chol to HDL ratio 3.12±0.05 3.18±0.11 3.10±0.09 3.08±0.09 0.75

Triglyceride (mg/dl) 77.80±45.50� 77.12±3.80 79.61±5.24 76.66±4.59 0.89

Insulin (median, 25th 75th percentile) 8.8(5.9,12.0) 8.5 (5.8,12.5) 8.0 (5.6,11.3) 9.7 (6.7,12.3) 0.14

HOMA-IR (median, 25th 75th percentile) 0.57(0.19,0.97) 0.54(0.15,1.03) 0.47(0.13,0.82) 0.70(0.31,1.04) 0.08

�Standard deviation

��n = 4 participants missing LDL-cholesterol

https://doi.org/10.1371/journal.pone.0227482.t001
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evidence of substantial pre-existing cardiovascular disease. For example, in the elegant publica-

tions by Tang and colleagues, study participants were recruited from elective diagnostic car-

diac catheterization[8] which is an indication for suspected atherosclerotic coronary artery

disease and an adverse cardiovascular risk profile. Accordingly, those participants had a mean

FPG in the prediabetes range (102 mg/dl), 32% had diagnosed diabetes (~double the national

rate) and 72% were hypertensive[5]. Participant characteristics were consistent in a second

report among a similar patient population enrolled from recipients of elective cardiac catheter-

izations in which TMAO was predictive of all-cause mortality among patients with chronic

kidney disease[24].

In contrast, our results from ORIGINS are consistent with recent null findings among 817

participants in the Coronary Artery Risk Development in Young Adults (CARDIA study[25]

which found no association between TMAO and coronary artery calcification incidence or

progression. Additionally, CARDIA also reported no association between TMAO level and

cross-sectional insulin resistance. As suggested by the CARDIA investigators, the younger age

(~40 years) and lower cardiovascular risk (~4% prevalent diabetes and 10% using hypertensive

medications) of their cohort might explain their null finding[25]. The mean age of ORIGINS

participants is similarly young (34 years) while the mean age in prior positive studies was 66

years[24] and 63 years[5]. Our observation that TMAO was modestly related to increased pre-

diabetes prevalence supports the notion that TMAO levels might only be a predictive bio-

marker in populations with early or established cardiovascular risk.

Renal function might also provide some level of explanation for discordant findings in our

current data as compared to other cohorts. The fact that higher renal function increases

Table 2. Mean fasting plasma glucose, HbA1c, HOMA-IR across TMAO Tertiles: Cross-sectional results from

ORIGINS) 2011–2015.

TMAO Tertiles FPG (mg/dl)mean±SE HbA1c (%)/(mmol/mol) mean±SE HOMA-IR mean±SE

Tertile 1 (n = 99)

TMAO range (0.24–1.90)

Model 1 85.23±0.76 5.32±0.03 (35±0.3) 0.63±0.05

Model 2 85.49±0.70 5.34±0.03 (35±0.3) 0.64±0.05

Model 3 85.57±0.67 5.36±0.02 (35±0.2) 0.64±0.05

Model 4 85.68±0.71 5.33±0.02 (35±0.2) 0.66±0.05

Tertile 2 (n = 99)

TMAO range (1.91–2.69)

Model 1 84.15±0.76 5.37±0.03 (35±0.3) 0.52±0.05

Model 2 84.20±0.70 5.37±0.03 (35±0.3) 0.54±0.05

Model 3 84.12±0.67 5.36±0.02 (35±0.2) 0.56±0.05

Model 4 84.25±0.72 5.34±0.02 (35±0.2) 0.54±0.05

Tertile 3 (n = 99)

TMAO range (2.70–4.22)

Model 1 86.28±0.76a 5.39±0.03 (35±0.3) 0.70±0.05a

Model 2 85.96±0.71 5.37±0.03 (35±0.3) 0.66±0.05

Model 3 86.00±0.68 5.36±0.02 (35±0.3) 0.66±0.05

Model 4 86.01±0.74 5.35±0.03 (35±0.3) 0.66±0.05

Model 1 = unadjusted; Model 2 = age, gender, race/ethnicity, education

Model 3 = M2+ BMI, systolic blood pressure, HDL

Model 4 = M3+AHEI
ap-value for comparison of mean values between tertile 3 vs. tertile 2�0.05

The sample size for model 4 is n = 266 for all outcomes due to missing data on AHEI.

https://doi.org/10.1371/journal.pone.0227482.t002
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TMAO clearance raises the strong potential for confounding. Specifically, it is possible that

reduced renal function causes both elevated TMAO levels and clinical cardiovascular disease

(CVD) events. Our observation of increased TMAO among older participants provides indi-

rect support for this notion. As such, our adjustment for age in multivariable models helps to

mitigate confounding by renal function although future studies with assessment of renal func-

tion will be important.

It is also possible that the adverse impact of TMAO on cardiometabolic risk, only begins

above a threshold of circulating TMAO that is achieved in the context of reduced renal func-

tion enabling excessive TMAO accumulation. Interestingly, Tang and colleagues found that

among patients without chronic kidney disease (CKD), the predictive value of TMAO for all-

cause mortality was substantially diminished and only statistically significant in the 4th TMAO

quartile[24]. Moreover, the observed range of TMAO values in the non-statistically significant

1st– 3rd quartiles of TMAO were similar the ranges observed in both CARDIA and ORIGINS.

Median (IQR) plasma TMAO levels in ORIGINS are 2.7 μM (1.9–4.22 μM) and in CARDIA

median (IQR) values were 2.6 (1.8–4.2).[25]

Some important limitations should be noted. The ORIGINS cohort is not a nationally repre-

sentative sample, limiting the generalizability of our findings. Nevertheless, the consistency in

TMAO distributions between ORIGINS and CARDIA, a much larger multi-center, population-

based study, suggests that results in ORIGINS are robust. Second, our sample size was small

and had limited power to rule out associations of very modest magnitude. Nevertheless, the

magnitude of associations observed presently are unlikely to be clinically meaningful even if

larger studies identified statistically significant findings of similar magnitude. Our measure of

diet quality was based on a single food frequency questionnaire which potentially mischaracter-

ized TMAO dietary precursors proximal to the assessment of TMAO. Dietary information in

the study was calculated using AHEI[22], which is based on foods and nutrients predictive of

chronic disease risk generally and not TMAO specifically. Regardless, since TMAO is hypothe-

sized as an intermediate mechanism linking diet to cardiometabolic outcomes, the dietary

assessment poses minimal threat to the validity of our TMAO findings. In future studies, the

precision of hypothesis tests would be enhanced by measuring gut microbiome and dietary

TMAO precursors carefully, and analyzing the potential for interactions between the gut micro-

biome and diet on TMAO levels and subsequent cardiometabolic disease.

A strength of our study was the ability to examine the prospective association of baseline

plasma TMAO levels and longitudinal changes in fasting plasma glucose among a healthy

study sample which precludes potential reverse causation by the diabetes phenotype and

reduces potential confounding by reduced renal function.

In a cohort of participants free of diabetes and clinical cardiovascular disease, we observed

no association between TMAO levels and continuous biomarkers of early diabetes risk cross-

sectionally or longitudinally. In contrast, intermediate TMAO levels were modestly associated

with increased risk of prevalent prediabetes after multivariable adjustment. Future longitudi-

nal studies are necessary to determine if TMAO increases risk for incident prediabetes and/or

diabetes, despite no evident relationships with insulin resistance. Until such studies are per-

formed, the role of TMAO as a biomarker of diabetes risk remains uncertain.

Supporting information

S1 Fig. Association between Tertiles of TMAO and Prediabetes Prevalence. Model 1 = unad-

justed; Model 2 = age, gender, race/ethnicity, education; Model 3 = M2+ BMI, systolic blood

pressure, HDL; Model 4 = M3+alternative healthy eating index. �p<0.05.

(TIF)
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S2 Fig. Association between TMAO (Tertiles 2 and 3 vs. 1) and Prediabetes Prevalence.

Model 1 = unadjusted; Model 2 = age, gender, race/ethnicity, education; Model 3 = M2+ BMI,

systolic blood pressure, HDL; Model 4 = M3+ alternative healthy eating index.

(TIF)

S3 Fig. Association between Baseline TMAO Tertiles and Longitudinal Fasting Plasma

Glucose. Model 1 = unadjusted; Model 2 = age, gender, race/ethnicity, education; Model

3 = M2+BMI, systolic blood pressure, HDL+ alternative healthy eating index; Model 4 = M3+

baseline glucose. Y axis is centered on the mean value observed in the total population

(mean = 85 mg/dL) and the range is set to twice the standard deviation of fasting glucose.

(TIF)
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