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Nicolaus Copernicus University in Toruń, Jurasza Str. 2, 85-089 Bydgoszcz, Poland

2 Department of Immunology, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus
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Abstract: Amidrazones are widely used in chemical synthesis, industry and agriculture. We compiled
some of the most important findings on the biological activities of amidrazones described in the
years 2010–2022. The data were obtained using the ScienceDirect, Reaxys and Google Scholar search
engines with keywords (amidrazone, carbohydrazonamide, carboximidohydrazide, aminoguanidine)
and structure strategies. Compounds with significant biological activities were included in the review.
The described structures derived from amidrazones include: amidrazone derivatives; aminoguani-
dine derivatives; complexes obtained using amidrazones as ligands; and some cyclic compounds
obtained from amidrazones and/or containing an amidrazone moiety in their structures. This review
includes chapters based on compound activities, including: tuberculostatic, antibacterial, antifungal,
antiparasitic, antiviral, anti-inflammatory, cytoprotective, and antitumor compounds, as well as furin
and acetylocholinesterase inhibitors. Detailed information on the compounds tested in vivo, along
the mechanisms of action and toxicity of the selected amidrazone derivatives, are described. We
describe examples of compounds that have a chance of becoming drugs due to promising preclinical
or clinical research, as well as old drugs with new therapeutic targets (repositioning) which have the
potential to be used in the treatment of other diseases. The described examples prove that amidrazone
derivatives are a potential source of new therapeutic substances and deserve further research.

Keywords: amidrazone; aminoguanidine; antibacterial; antifungal; antiparasitic; antitumor; anti-
inflammatory

1. Introduction

Amidrazones (hydrazones of acid amides) are organic compounds represented by
the general structure presented in Figure 1a. These compounds are characterized by three
nitrogen atoms (N1, N2 and N3), of which only two, N1 and N3, may be substituted with
alkyl or aryl groups. Amidrazones can exhibit tautomerism due to the transfer between the
nitrogen atoms N3 and N2 [1,2]. Amidrazones are monoacid bases which form salts with
inorganic acids, among which the most widely known are the hydrochlorides [2].
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nitrogen atoms (N1, N2 and N3), of which only two, N1 and N3, may be substituted with 
alkyl or aryl groups. Amidrazones can exhibit tautomerism due to the transfer between 
the nitrogen atoms N3 and N2 [1,2]. Amidrazones are monoacid bases which form salts 
with inorganic acids, among which the most widely known are the hydrochlorides [2]. 

 
Figure 1. (a) The general structure of amidrazones, showing the numbering of the nitrogen atoms 
and the possible phenomenon of tautomerism. (b) The structure of aminoguanidine. 
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Figure 1. (a) The general structure of amidrazones, showing the numbering of the nitrogen atoms
and the possible phenomenon of tautomerism. (b) The structure of aminoguanidine.

Amidrazones constitute a group of interesting compounds used mainly as precursors
for the synthesis of five-, six- and seven-membered heterocyclic systems. Simple meth-
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ods of obtaining 1,2,4-triazole, thiatriazole and 1,2,4-triazine derivatives [3], tetrazole [4]
derivatives and other derivatives [1] from amidrazones have been described previously.
Due to the presence of nitrogen atoms, amidrazones can form complexes with transition
metals [2].

The nomenclature of amidrazones has evolved in recent years. In older papers,
amidrazones are named after the acid theoretically obtained from them by hydrolysis
(e.g., CH3C(=NNH2)NH2 is acetamidrazone) [1,2]. Currently, the International Union of
Pure and Applied Chemistry (IUPAC) recommends a different numbering and nomen-
clature of amidrazones (R-C(=N-NH2)-NH2 as carbohydrazonamides and R-C(=NH)-
NH-NH2 as carboximidohydrazides [5]). However, the previous nomenclature is still
widespread in many published papers. For example, on sciencedirect.com, in 2010–2021,
the word “amidrazone” gave 243 results, while “carbohydrazonamide” gave only 15.
Therefore, in this work, the original nomenclature and numbering of the nitrogen atoms in
amidrazones were adopted (Figure 1a).

Aminoguanidine (NH2)2-C=N-NH2 (Figure 1b) is a simple, non-toxic compound
that is closely related to amidrazones. Some authors of older publications do not classify
it among the amidrazones [2], while others do consider it an amidrazone [1]. Taking
into account the similarity of aminoguanidine to amidrazones in terms of its structure,
application in the synthesis of heterocyclic compounds and the biological activities of the
obtained products, in this work, aminoguanidine and its derivatives are presented among
the amidrazone derivatives.

Many amidrazones and their derivatives exhibit a broad spectrum of biological activities,
e.g., antibacterial [6], antifungal [6,7], antimalarial [8], antiviral [9], anti-inflammatory [10],
analgesic [10], anticonvulsant [11] and insulin-mimetic [12], and as thrombin inhibitors [13].
Despite the presence of some review articles on amidrazone chemistry [1,2], a compre-
hensive study of the biological activity of amidrazones is still lacking. The last review
concerning the biological activities of aminoguanidine derivatives was published back
in 2009 [14], which justifies the presentation of the up-to-date information in this field.
In addition, the diversity of the nomenclature used in medicinal chemistry literature for
amidrazone derivatives (i.e., amidrazones, carbohydrazonamides, aminoguanidines, guani-
dines, amidinohydrazones, hydrazones, hydrazidines and others) makes it difficult for
researchers to discover information about the biological activities of these compounds
by using keywords, in the case of a person who is unfamiliar with the subject. There-
fore, a double search strategy was used in the search for articles, using both keywords
(amidrazone, carbohydrazonamide, carboximidohydrazide, aminoguanidine) and struc-
ture strategies. The best selected compounds with significant biological activities were
included in the review. The data were obtained using the ScienceDirect, Reaxys and Google
Scholar searching engines.

This work encapsulates some of the most important findings on the biological activities
exhibited by amidrazone derivatives described from 2010–2022. The described structures
derived from amidrazones include: (a) amidrazone derivatives; (b) aminoguanidine deriva-
tives; (c) complexes obtained using amidrazones as ligands; and (d) some examples of
cyclic compounds obtained from amidrazones and/or containing an amidrazone moiety
in their structures (e.g., 1, 32, 51). We also discuss their toxicity, mechanism of action and
potential use in preclinical trials.

2. Results
2.1. Antimicrobial Activity
2.1.1. Tuberculostatic Activity

Delpazolid (1, Figure 2), also called LCB01 0371, was the first compound containing a
cyclic amidrazone moiety that was developed to treat multi-drug-resistant tuberculosis.
Delpazolid successfully passed the phase I clinical trials, confirming its safety (maximum
tolerated dose in humans = 2400 mg) [15]. A phase II study is currently recruiting, which
explores the combination of delpazolid with bedaquiline, moxifloxacin and delamanid in
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patients with newly diagnosed, uncomplicated, drug-sensitive pulmonary tuberculosis [16].
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Compounds 2–5, which possess a 2-pyridylamidrazone moiety, demonstrated tubercu-
lostatic activity against Mycobacterium gordonae (MIC = 2–8.8 µM). Derivatives 2–3 inhibited
the growth of M. tuberculosis (MIC = 4.4 µM). Interestingly, compounds 4–5, substituted
with chloride or bromide atoms instead of nitro group, were even 7-fold more active against
Mycobacterium kansasii than isoniazid (MIC = 4.2 µM) [17].

Another 2-pyridylamidrazone derivatives, 6 and 7, showed a strong tuberculostatic ac-
tivity against the standard H37Rv strain and clinically isolated drug-resistant M. tuberculosis
strains (MIC = 0.4 µg/mL) [18].

Derivative 8, containing an aminoguanidine moiety, showed strong tuberculostatic
activity against (MIC = 0.78 µM), and low cytotoxicity to, human embryonic kidney cells.
The mechanism of 8 was the inhibition of the enoyl acyl carrier protein reductase enzyme
(InhA), which was confirmed in vitro and in computational studies [19].

2.1.2. Antibacterial Activity

Several compounds with antibacterial activities are presented in Figure 3.
The previously mentioned compounds 6–7 exhibited a significant antibacterial ac-

tivity against several Gram-positive bacterial strains (Staphylococcus epidermidis, Micrococ-
cus luteus, Bacillus subtilis, Bacillus cereus and Streptococcus mutans), with MIC values of
0.12–1.95 µg/mL. Additionally, derivative 6 showed an activity against Staphylococcus aureus
comparable to ciprofloxacin and vancomycin. Interestingly, the replacement of the pyrroli-
dine ring found in compound 6 with a morpholine moiety present in compound 7 resulted
in an approximately twofold decrease in its anti-tuberculosis and antibacterial activities
against Gram-positive strains in comparison with the starting compounds of 6–7 [18]. Com-
pound 9, containing an isatin moiety, demonstrated stronger antibacterial activity against
S. aureus (MIC = 4 µg/mL) than ciprofloxacin [20].

The chloride or bromide salts of (N1-phenyl)phenylamidrazone (10) and its derivatives,
11–14, showed antimicrobial activity. The strongest bactericidal activity against S. aureus
was demonstrated by compounds 12 (minimal bactericidal concentration MBC = 4 µg/mL)
and 14 (MBC = 8 µg/mL), while derivatives 10, 11 and 13 showed similar activity to
nifuroxazide (MBC = 16 µg/mL) [21].
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Among the N1-(carbazol-3-yl) substituted amidrazones 15–17, compound 15, with
incorporated morpholine, was bacteriostatic (MIC = 1.56 µg/mL) against B. cereus [22].
Compound 16 showed bactericidal activity against standard S. aureus and clinically iso-
lated MRSA strains (MBC = 3.125 µg/mL). Compound 17 exhibited antibacterial activ-
ity against the Gram-negative strain of Klebsiella pneumoniae (MBC = 6.25 µg/mL and
MIC = 3.125 µg/mL) [22].

Another method of amidrazone modification is the creation of their hybrids with antimi-
crobial drugs, i.e., ciprofloxacin (18–19) or metronidazole (20–21). Compounds 18–19 showed
antibacterial activity against Escherichia coli (MIC50 = 0.2 µg/mL), Pseudomonas aeruginosa
(MIC50 = 6.25 µg/mL), Helicobacter pylori (MIC50 = 4 µg/mL) and S. aureus (only 18,
MIC50 = 6.25 µg/mL). However, both compounds were less active than ciprofloxacin
alone [23]. Amidrazones 20 and 21 showed selective activity against metronidazole-
resistant H. pylori (MIC = 8 and 16 µg/mL, respectively) [23].

Among the aminoguanidine derivatives 22–31, the 1,3,4-oxadiazole derivative 22 showed
strong antibacterial activity against Gram-negative E. coli and Salmonella typhimurium and
the Gram-positive S. aureus, Enterococcus faecium and Streptococcus agalactiae bacterial
strains [24].
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The chalcone-incorporated derivatives 23–24 showed a wide range of antimicrobial
activities against S. aureus, S. mutans, MRSA, E. coli, S. typhimurium and P. aeruginosa
(MIC = 1–8 µg/mL) [25].

The 1,2-diazole derivatives 25–26 showed strong antimicrobial activity (MIC = 1–4 µg/mL)
against Gram-positive (S. aureus, MRSA, quinolone-resistant S. aureus, S. mutans) and
Gram-negative (E. coli, S. typhimurium) bacterial strains [26].

Aminoguanidine derivative 27 demonstrated a wide range of antimicrobial activities,
with an MIC value of 1 µM/mL against eight strains (including S. aureus, S. mutans, E.coli,
C. albicans, MRSA and Quinolone-resistant S. aureus). The inhibition of the dihydrofolate
reductase (DHFR) protein is a possible mechanism of action of 27 [27].

Aminoguanidine derivative 28 showed stronger antibacterial activity towards multidrug-
resistant strains (S. aureus, E. coli, MIC = 0.56–2.24 µmol/L) than the five antibiotics used
(gatifloxacin, moxiflocaxin, norfloxacin, oxacillin, and penicillin), as well as low cytotoxicity
to normal HEK 293T cells. The activity of 28 could be connected to its binding to the E. coli
FabH-CoA receptor [28].

Aminoguanidine derivative 29 showed antibacterial activity against B. subtilis
(MIC = 4 µg/mL) and eight other bacterial strains (MIC = 4 µg/mL). The mechanism of
action of 29 was its interaction with β-ketoacyl-acyl carrier protein synthase III (FabH) [29].

Thiazole derivatives 30–31 demonstrated strong bactericidal activity against the
S. aureus, MRSA and VRSA bacterial strains (in most cases, MIC = MBC = 2 µg/mL)
and were active against MRSA in several animal models. Compound 30 demonstrated
resistance to the microsomal cytochrome P450 and stability during metabolism. However,
it interacted with enzymes connected to bacterial wall synthesis (such as undecaprenyl
diphosphate synthase and undecaprenyl diphosphate phosphatase). Due to its similar
activity (but in lower doses) to that of vancomycin in mice, compound 30 may be a new
leading structure in the treatment of drug-resistant bacterial strains [30].

Gold(III) complex 32 obtained by the reaction of amidrazone with HAuCl4, showed an-
tibacterial activity against S. aureus (MIC = 4 µg/mL) and lower toxicity to mice fibroblasts
(IC50 = 41.8 µg/mL), which suggests the good selectivity of this compound [31].

2.1.3. Antifungal Activity

Among the previously mentioned amidrazone derivatives 10–14, the strongest fungistatic
activity against C. albicans was exhibited by compounds 11 (MIC = 4 µg/mL) and 10
(MIC = 8 µg/mL). Additionally, derivative 11 was fungicidal at a concentration of 16 µg/mL
against Aspergillus niger and Aspergillus brasiliensis [32]. The presence of a nitro group
in the position R1 of compound 11 seems to increase its antifungal activity. Contrarily,
the addition of a four-nitro substituent in the N1-phenyl rings of compounds 12 and 14
decreased their antifungal properties but elevated their antibacterial activity.

The also previously mentioned aminoguanidine derivatives 23–27 showed strong
antifungal activity against C. albicans (MIC = 1–8 µg/mL) [25,26]. The strongest effect on
this fungal strain was observed for derivative 22, containing two aminoguanidine groups
(MIC = 0.015–0.5 µg/mL, MBC = 0.031–1 µg/mL) [24].

Compound 33 (Figure 4) exhibited antifungal activity against Candida albicans
(MIC = 16 µg/mL) [26]. Pyrazinylamidrazone 34 exhibited antifungal activity against
the clinical strain C. albicans (MIC = 16 µg/mL). The replacement of the phenyl ring of
compound 34 with a hydrogen or a methyl group resulted in the total disappearance of
the antifungal activity of the obtained derivatives, which underlines the importance of the
phenyl substituent in this position [33].
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The imidazolylamidrazone derivatives 35–37 demonstrated fungistatic activity against
Candida krusei (MIC = 3.1–6.3 µg/mL) and Candida neoformans (MIC = 2–4 µg/mL) [34].
Derivatives 35–37 also displayed a strong inhibitory effect on biofilm development in the
case of Candida spp. biofilms on nanohydroxyapatite substrate, and the strongest effect was
observed for compound 36 [35]. The mechanism of action of compounds 35–37 seems to
be connected with the production of reactive oxygen species [36]. Amidrazone-quinolone
hybrids 38–39 showed an antifungal activity in vitro against C. albicans comparable to that
of fluconazole [37].

Among compounds 40–42 (which can also be classified as vic-dioximes), deriva-
tive 40 showed a stronger activity than nystatin against the C. glabrata, C. utilis and
S. cerevisiae fungal strains (in all cases, MIC = 4 µg/mL) [38]. Compound 41, which con-
tains a methylfuryl moiety instead of a methylphenyl moiety, demonstrated less antifungal
activity against S. cerevisiae (MIC = 16 µg/mL) than 40, along with antibacterial activity
against B. cereus (MIC = 8 µg/mL) and Streptococcus pneumoniae (MIC = 16 µg/mL). Deriva-
tive 42, which possesses a pyridine ring, was selective to the Candida tropicalis fungal strain
(MIC = 8 µg/mL) [39].

Compound 43 showed antifungal activity against C. albicans, C. krusei, Microsporum canis
and Trichophyton mentagrophytes (MIC = 0.5–3.9 µg/mL) and a lower toxicity to danio
zebrafish than voriconazole [40].

2.2. Antiparasitic Activity

In an attempt to obtain antiparasitic agents, amidrazones were enriched with benznida-
zole (44–45), metronidazole (20–21) or ciprofloxacin (18) moieties. Derivatives 44 and 45
(Figure 5) demonstrated similar activities to benznidazole against the trypomastigota forms
of Trypanosoma cruzi (IC50 = 9.5 and 12.85 µM, respectively; benznidazol IC50 = 10.26 µM).
Both compounds were selective to parasite cells, especially derivative 45, with a se-
lectivity index value of about 33 [41]. Compounds 18 and 21 were revealed to pos-
sess an antitrichomonal activity about two times stronger than that of metronidazole
against Trichomonas vaginalis [34]. Compound 20 showed antigiardial activity comparable
to metronidazole against Giardia lamblia (IC50 = 5.6–7.2 µg/mL) [23].

Likewise, aminoguanidine derivatives 46–50 were studied as antiparasitic agents.
Robenidine (46) is an antibiotic used in veterinary medicine which, in current research,
has shown an antigiardial activity against G. lamblia comparable to that of metronidazole.
In contrast to the reference drug, compound 46 completely inhibited the adherence of
trophozoides and is a candidate for a new generation of antigiardial drugs [42].
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Guanabenz (47) is a known antihypertensive drug currently drawing attention for the
purpose of other medicinal uses. It has exhibited antiparasitic activity against the replicative
stages of Toxoplasma and Plasmodium falciparum [43]. Guanabenz inhibited the Toxoplasma
dephosphorylation enzyme eIF2α. This translational control is critical during infections
with both the replicative and latent forms of Toxoplasma [43,44]. In mice models, guanabenz
extended the survival of mice acutely infected with Toxoplasma within 2–3 days [44] and
reduced the number of brain cysts in chronically infected mice [43].

Aminoguanidine derivatives 48–50 showed antileishmanial activity against amastig-
otes of Leishmania chagasi (IC50 = 0.6–7.27 µM) comparable to pentamidine (IC50 = 4.4 µM).
Compounds 48–50 showed a 50–80 times higher toxicity to amastigotes than to murine
macrophages. The mechanism of action of the most promising compound, 50, is proba-
bly related to its interaction with the active site of the trypanothione reductase enzyme,
interfering in the redox system of L. chagasi amastigotes [45].

The 1,2,4-triazole derivative 51, obtained from amidrazone, showed strong anthelmintic
activity (2.475 µg/µL) against Rhabditis nematodes. Due to its stronger activity than alben-
dazole and low toxicity to PBMC, compound 51 could be a candidate for the development
of new anthelmintic drugs [46].

2.3. Antiviral Activity

Amidrazone derivative 52 (Figure 6) reduced the number of plaques of herpes sim-
plex type-1 (HSV-1) on Vero cells by 67% [47]. Amidrazon 53, with a pyrazoloisoxazole
moiety, showed antiviral activity against two HIV strains studied in two leukemia cell lines
(EC50 = 0.17–0.46 nM). Compound 53 was two times more effective than the anti-HIV drug
efavirenz and about two times less toxic to uninfected cell lines. Compound 53 exhibited
strong inhibitory activity towards HIV reverse transcriptase (HIV-RT). Molecular docking
confirmed that compound 53 strongly interacts with the HIV-RT active pocket, which
enables its classification as a potential non-nucleoside reverse transcriptase inhibitor [48].
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2.4. Anti-Inflammatory Activity

Derivatives of N1,N3-substituted 2-pyridylamidrazone 54–57 (Figure 7) were studied
in order to assess their anti-inflammatory activity in mitogen-stimulated peripheral blood
mononuclear cells (PBMC). Compound 54 decreased the production of TNF-α by 43% and
showed no toxicity to PBMC at a concentration of 100 µg/mL [49].
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Compound 55, at a concentration of 10 µg/mL, inhibited the production of the pro-
inflammatory cytokine IL-6 by 35% [50]. The median lethal dose of 55 (i.p.) in mice was
identified as 417 mg/kg. Compound 55, at a concentration of 21 mg/kg, reduced rat
hind paw edema to a greater extent than diclofenac at a dose of 50 mg/kg. Moreover,
derivative 55 demonstrated antinociceptive activity in mice comparable to that of morphine
but with a longer duration of action. In summary, compound 55 could be a potential
non-steroidal anti-inflammatory drug [50].

Compound 56, at a concentration of 10 µg/mL, inhibited the production of TNF-α in
PBMC stimulated by lipopolysaccharide (LPS) by 53% [51]. Compound 57, at a concen-
tration of 50 µg/mL, showed no toxicity but strongly inhibited the proliferation of PBMC
activated by anti-CD3 antibodies or phytohaemagglutinin by 90–99%, and the observed
effects were comparable to or stronger than those of ibuprofen. The mechanism of action of
derivative 57 is cell cycle arrest at the G1 phase [52].

Additionally, some 1,2,4-triazole derivatives obtained by the cyclisation of amidra-
zones, similar to 56–57, showed a strong significant anti-inflammatory activity compara-
ble to ibuprofen’s inhibition of PHA-stimulated PBMC proliferation and TNF-α produc-
tion [46,53].

Anti-inflammatory activity was also reported for amidrazone-derived pyrrole-2,5-
dione derivatives 58–59. Compound 58, possessing two phenyl substituents, significantly
reduced the production of IL-6 (by 64%) in LPS-stimulated PBMC cultures. Both com-
pounds 58 and 59 inhibited the proliferation of PBMC even at a low dose of 10 µg/mL, and
the strongest effect was observed for the latter, possessing two 2-pyridine rings [54].

The previously mentioned N1,N3-substituted amidrazones 38–39 showed an anti-
inflammatory activity in protein denaturation assays comparable to that of the sodium
salt of diclofenac. Both derivatives showed a stronger antioxidant activity than ascorbic
acid [37].

Indoleamidrazone derivatives 60–63 produced a stronger reduction in carrageenan-
induced rat paw edema in rats than indomethacin. In general, compounds possessing nitro
or methoxy substituents at the para position showed stronger anti-inflammatory effects
than derivatives possessing the same groups in the meta position [55].
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Naphthylamidrazone derivative 64 revealed properties preventing the adverse effects
of a chronic inflammatory reaction in the articular chondrocytes through a mechanism
involving the ASIC1a channels, which are sensitive to the acidification of the environment.
Compound 64, in a concentration range of 6.25–50 µM, caused a significant inhibition of
the ASIC1a protein expression in the joint chondrocytes comparable to amiloride (a weak
non-selective ASIC1 inhibitor). Additionally, compound 64, at a dose of 25 µM, decreased
the number of Ca2+ ions in the acidic environment of isolated rat articular chondrocytes by
69%, which is almost three times higher than the effect of amiloride at a dose of 100 µM. In
summary, it can be stated that compound 64 is a potential drug for rheumatoid arthritis [56].

Aminoguanidine (AG) has been shown to possess strong anti-inflammatory and
antioxidant activities in multiple ways. It inhibits the formation of highly reactive advanced
glycosylation end products in the course of advanced diabetes. AG passed phase III clinical
trials in diabetic patients. Although high doses of AG induced side effects, including
liver dysfunction, low doses of AG therapy could be promising for the treatment of renal
diseases [57].

Aminoguanidine derivatives 23–26 were studied in tests on xylene-induced ear edema
in mice. Compound 23 showed an anti-inflammatory activity similar to indomethacin.
However, compound 24, with a bromine atom at position 3, was about two times less
effective [25]. Derivatives 25 and 26 were about two times stronger as anti-inflammatory
agents than indomethacin [26].

Aminoguanidine derivative 65 was studied in an LPS-stimulated neonatal sepsis mice
model. The mechanism of compound 65 was connected to a decreased pro-inflammatory
cytokine release and COX-2 expression, as well as the suppression of microglia activation.
Additionally, septic mice treated with derivative 65 did not exhibit the cognitive impairment
and the anxiety behavior caused by LPS [58].

2.5. Cytoprotective Activity

Some aminoguanidine derivatives, such as guanabenz (47), sephin1 (66) and raphin1
(50), possess cytoprotective activities (Figure 8). The effects of those compounds are con-
nected with the reduced deposition of proteins of abnormal conformation, which are present
in many neurodegenerative diseases, such as Alzheimer’s, Parkinson’s, amyotrophic lateral
sclerosis (ALS) and others. Guanabenz and sephin1 are inhibitors of the stress-induced
transcription factor R15A. They prolong eIF2α (translation initiation factor) phosphoryla-
tion and, in consequence, cause the transient attenuation of protein synthesis induced by
endoplasmic reticulum (ER) stress [59]. Guanabenz is currently in clinical trials as a method
for the management of multiple sclerosis [60] and amyotrophic lateral sclerosis [61,62].
Guanabenz has also been shown to reduce neuroinflammation in mice with latent toxoplas-
mosis and reversed the behavioral changes in the studied rodents [63]. Sephin1 has passed
phase I clinical trials and is being developed for treating Charcot-Marie-Tooth disease [64].
Moreover, sephin1 showed protective activity in a mouse model of multiple sclerosis [65].
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Raphin1 is an inhibitor of the constitutively expressed transcription factor R15B, which
may be useful when combating a wide range diseases, as it could enable the increase in
the control capacity of the protein quality by transiently increasing eIF2α phosphorylation
and translation attenuation. It was effective in a mouse model of Huntington’s disease [66].
Moreover, the previously mentioned robenidine showed cytoprotective properties [67].
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2.6. Antitumor Activity

Many piperazine-incorporating amidrazones, including 18–19, 67–72 and 74–79 (Figure 9),
were studied as antineoplastic agents. Compounds 67 and 68, in a panel of 55 different cancer
cell lines, produced medium IC50 values of 4.81 µM and 4.92 µM, respectively, which were
similar to the values of the total growth inhibition (TGI = 4.47 and 4.52 µM, respectively). This
underlines their strong anti-cancer properties [68]. Moreover, amidrazones 69–70 showed
antiproliferative activity against several cancer cell lines, including leukemia K562, breast
MCF-7 (Table 1), prostate PC-3 and colon HCT (in all cases, IC50 = 1.9–3.9 µM) [69].
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Amidrazones possessing a thiophenyl (71–72), flavone (73–74) or coumarin (75) moiety,
as well as bisamidrazone derivative 79, showed antiproliferative activity against the MCF-7
and K562 cancerous cell lines (Table 1). Compounds 72, 76 and 79 had low toxicity to human
fibroblasts in vitro. Molecular docking revealed a similarity of compounds 72–76 with
imatinib (a drug belonging to the group of tyrosine kinase inhibitors) during interactions
with bcr-abl tyrosine kinase, which may indicate a similar mechanism of action of those
compounds [70–76]. Alternatively, according to in silico studies, derivative 79 could act
as an effective inhibitor of phosphatidylinositol 3-kinase, the hyperactivity of which was
observed in cells of the MCF-7 line [77].

Table 1. IC50 values of select compounds against MCF-7 and K562 cancerous cell lines.

Comp. IC50 MCF-7 IC50 K562 Ref.

69 2.50 µM 3.10 µM [69]
70 2.70 µM 3.50 µM [69]
71 7.26 µM 9.91 µM [70]
72 >50 µM 1.02 µM [71]
73 5.18 µM 2.89 µM [72]
74 5.91 µM 5.02 µM [73]
75 20.20 µM 9.30 µM [74]
76 4.50 µM 1.10 µM [75]
79 4.30 µM 3.00 µM [77]
81 0.09 µM - [78]

Ciprofloxacin derivatives 18–19 showed antiproliferative activity against the HeLa
and MCF-7 cancerous cells [23]. Amidrazones 78–79, which possess a chloroquine moiety,
showed antiproliferative activity against the cervix HeLa and MCF-7 cancer cells [23].

Indoleamidrazone 80 inhibited the proliferation of MCF-7 cells by 68% at a concentra-
tion of 100 µg/mL [55]. As previously mentioned, the similar compounds 60–63, which
possess nitro- or methoxy-phenyl substituents instead of the benzyl observed in 80, were
inactive, except for derivative 63, which showed a 61.5% growth inhibition of MCF-7
cells [55].

Aminoguanidine derivative 81 demonstrated strong antiproliferative activity against
MCF-7 and an inhibitory effect on tubulin polymerization (IC50 = 8.4 µM). Molecular
docking revealed that the probable mechanism of derivative 81 may be connected with
colchicine biding [78]. Compound 82 showed a potent inhibition of ribosomal kinase RSK2
and MCF-7 tumor cell growth inhibition [79].

Computational methods were used to identify compounds with anticancer properties.
Aminoguanidine derivative 83 was one of the predicted compounds, with a confirmed
antiproliferative activity against HL-60 leukemia cells (IC50 = 11 µM) and low to towards
Vero cells (IC50 > 100 µM) [80].

Compound 84 showed antiproliferative activity against the HL-60, K562 and HT-29 cell
lines (IC50 = 8.9–12.5 µmol/L), and it was more effective than etoposide against the latter
two lines [81]. Compound 85 showed high antitumor activity against the MDA-MB-231,
MCF-7, HEP-G2 and SMMC-7721 cancer lines (IC50 = 2.31–3.75 µM). Compound 85 induced
apoptosis by downregulating Bcl-2 and upregulating Bax protein levels in MDA-MB-231
cancer cells [82].

Pd(II) complex 86 showed high cytotoxicity to various cancerous cell lines, including
DU-145, MCF-7, HCT-116 and breast MDA231 (IC50 = 0.143–0.492 µM). However it was not
toxic to skin fibroblasts [83]. The similar Pd(II) complex 87 showed also antiproliferative
activity towards MCF-7 and T47D breast cancer lines and very low cytotoxicity to normal
Vero cells [84]. Complexes 88–89 showed cytotoxic activity against HT-29, HCT-116 +/+

and HCT-116−/−, as well as selectivity to cancerous cells [85].
Cu(II) complex 90 showed antiproliferative activity against the Colo-205 adenocar-

cinoma cell line and low toxicity to MRC-5 human lung fibroblasts [86]. Another Cu(II)
complex, 91, at concentration 100 µg/mL, showed a similar (almost total) antiproliferative
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activity to cisplatin against colon CX-1 and colon SW-948 cancer and epidermal A431 cell
lines but was about 12-fold less toxic than the reference drug [49].

In 2022, two publications describing the antitumor activity of N1-benzylidenepyrazine-
2-carbohydrazonamide complexes were published. The strongest activity was reported
for the cobalt complex against glioma U87 MG cancerous cells (IC50 = 7.69 µg/mL) [87,88].
However, the structures of those complexes have not been precisely specified.

2.7. Furin Inhibition

Furin is a trans-membrane protein which plays an important role in many bacterial
and viral diseases, tumorigenesis, neurodegenerative disorders and diabetes [89]. It has
recently been shown that furin inhibitors can be used to successfully block the entry of the
SARS-COV-2 virus [90]. Aminoguanidine derivatives 92 and 93 (Figure 10) showed furin
inhibitory activity (Ki= 0.46 µM and 0.58 µM, respectively). Additionally, derivative 92
also showed inhibitory activity against trypsin, while compound 93 was also a thrombin
inhibitor [89].
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2.8. Acetylocholinesterase Inhibition

Several compounds were identified as potential acetylcholinesterase (AChE) or butyry-
locholinesterase (BChE) inhibitors in the search for potential drug candidates for treating
Alzheimer’s disease (Figure 11, Table 2). Compound 75 showed high activity against, and
selectivity to, BChE and was about 3900 times stronger in its activity against this enzyme
than tacrine [91].
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Table 2. Inhibitory activity of select compounds against AChE and BChE.

Comp. IC50 AChE [µM] IC50 BChE [µM] Ref.

75 24.25 ± 2.97 0.002 ± 0.0014 [91]
94 17.95 ± 0.90 17.51 ± 0.21 [92]
95 28.16 ± 0.98 1.69 ± 0.17 [92]
96 24.75 ± 0.17 >500 [92]

tacrine 0.124 ± 0.02 7.8 ± 0.06 [91]
rivastigmine 56.10 ± 1.41 38.40 ± 1.97 [92]
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Aminoguanidine derivative 94 showed a threefold stronger AChE inhibitory activity
than rivastigmine and no selectivity towards BChE. Compound 95 was a selective inhibitor
of BChE, with an approximately 16-fold lower AChE inhibitory activity, while derivative 96
was a selective AChE inhibitor. This proves the great potential of aminoguanidine deriva-
tives, which may, in the future, act as inhibitors of various types of cholinesterases [92].

3. Summary

We compiled the biological activities of amidrazone derivatives described in the
years 2010–2022. Antimicrobial, antitumor, anti-inflammatory and antiparasitic activities
constitute the main kinds of exhibited biological activities. The most important compounds
studied in vitro are presented in Table 3, together with their activity details. Due to their
advanced stages in preclinical studies, they form an important group, from which new
therapeutic substances may emerge. Compounds with known mechanisms of action are
summarized in Table 4.

Table 3. Biological activity of selected amidrazones studied in vivo.

Comp. Activity Animal Model Dose Effect Reference Drug Ref.

23 anti-
inflammatory

xylene-induced ear
edema test in mice 100 mg/kg 92.45% edema

reduction

indomethacin
89.38% reduction,

ibuprofen
87.36% reduction

[25]

25 anti-
inflammatory

xylene-induced ear
edema test in mice

50 mg/kg 93.56% edema
reduction

indomethacin
45.23% reduction,

ibuprofen
29.56% reduction

[26]
26 50 mg/kg 81.65% edema

reduction

30

antibacterial

MRSA-infected
C. elegans 20 mg/mL

reduction in the
MRSA burden by

~90%

vancomycin
~90% reduction

[30]

MRSA murine
skin infection 2% suspension 73% reduction in

MRSA burden
fusidic acid

78% reduction

MRSA-infected mice 20 mg/kg 77% reduction in
MRSA burden

vancomycin
66% reduction

31
MRSA-infected

C. elegans 20 mg/mL
reduction in the

MRSA burden by
~90%

vancomycin
~90% reduction

MRSA murine
skin infection 2% suspension 71% reduction in

MRSA burden
fusidic acid

78% reduction

55

anti-
inflammatory

carrageenan-induced
rat hind paw edema

21 mg/kg 65–73% edema
reduction (0.5–2 h)

diclofenac
50–58% edema

reduction (0.5–8 h)
[50]

42 mg/kg 38–60% edema
reduction (0.5–2 h)

antinociceptive hot-plate test in mice
21 mg/kg analgesic effect

(0.5–2 h)
morphine
analgesic

effect(0.5–1 h)42 mg/kg analgesic effect
(0.5–2 h)

60

anti-
inflammatory

carrageenan-induced
rat hind paw edema

65 mg/kg 89.3% edema
reduction

indomethacin
46% edema
reduction

[55]
61 65 mg/kg 87.7% edema

reduction

62 61 mg/kg 80.7% edema
reduction

63 61 mg/kg 79.5% edema
reduction
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Table 3. Cont.

Comp. Activity Animal Model Dose Effect Reference Drug Ref.

65

anti-
inflammatory

neonatal sepsis
treatment

LPS-induced sepsis
in neonatal mice 50 mg/kg

reduction in
anxiety-like behavior

and cognitive
disorders in adult life

- [58]

Table 4. Mechanism of action and molecular targets of select amidrazone derivatives.

Comp. Activity Mechanism Ref.

AG anti-inflammatory suppression of oxidative stress, inhibition of IL-1β, IL-6, and Foxp3
mRNA upregulation [57]

1 antituberculosic inhibiting protein synthesis via direct binding to the bacterial ribosomal subunit [15]
8 antibacterial inhA inhibition [19]

27 antibacterial inhibition of DHFR protein [27]
28 antibacterial interaction with E. coli FabH-CoA receptor. [28]
29 antibacterial interaction with β-ketoacyl-ACP synthase III (FabH) [29]

30 antibacterial inhibitor of undecaprenyl diphosphate phosphatase and
undecaprenyl diphosphate [30]

38–39 antifungal interaction with DNA (intercalation) [37]
43 antifungal inhibition of 14-α-demethylase (CYP51) [40]
46 antigiardial inhibition of adherence of trophozoides [42]
47 cytoprotective inhibition of R15A, inhibition of dephosphorylation of enzyme eIF2α [59]
48 cytoprotective inhibition of R15B, inhibition of dephosphorylation of enzyme eIF2α [66]

48–50 antiparasitic binding trypanothione reductase enzyme [45]
53 antiviral inhibition of HIV-RT [48]
54 anti-inflammatory decreasing production of TNF-α [49]
55 anti-inflammatory decreasing production of IL-6 [50]
56 anti-inflammatory decreasing production of TNF-α [51]
57 anti-inflammatory G1 phase arrest [52]
58 anti-inflammatory decreasing production of IL-6 [54]

60–63 anti-inflammatory inhibition of COX-1 and COX-2 [55]
64 antarthritic inhibition expression of ASIC1a protein [56]
65 anti-inflammatory inhibition of NFκB activation [58]
66 cytoprotective inhibition of R15A, inhibition of dephosphorylation of enzyme eIF2α [59]
72 antitumor tyrosine kinase brc-abl inhibitor [71]
73 antitumor tyrosine kinase brc-abl inhibitor [72]
74 antitumor tyrosine kinase brc-abl inhibitor [73]
75 antitumor tyrosine kinase brc-abl inhibitor [74]
76 antitumor tyrosine kinase brc-abl inhibitor [75]
79 antitumor phosphatidylinositol 3-kinase inhibitor [77]
81 antitumor inhibition of tubulin polymerization, colchicine binding [78]
82 antitumor inhibition of ribosomal kinase RSK2 [79]
92 enzyme inhibition furin inhibitor, trypsin inhibitor [89]
93 enzyme inhibition furin inhibitor, thrombin inhibitor [89]
75 enzyme inhibition BChE inhibitor [91]
94 enzyme inhibition AChE and BChE inhibitor [92]

95–96 enzyme inhibition BChE inhibitor [92]

Among the antimicrobial agents, delpazolid showed a low toxicity and high effi-
cacy and is undergoing further clinical trials for the treatment of tuberculosis. The 2-
pyridylamidrazone moiety determines the anti-mycobacterial properties of compounds 2–7.
It is worth noting that the amidrazones with the unsubstituted nitrogen N3 (2–7, 9–14 and
33–37) showed stronger antimicrobial properties than amidrazones 54–55, which are N3-
substituted with aryl rings [49,50]. In general, aminoguanidine derivatives 22–31 revealed
a wider range of antimicrobial activities, as well as stronger antibacterial and antifun-
gal properties than amidrazones 9–21. Moreover, derivative 22, which possesses two
aminoguanidine groups, showed the strongest antimicrobial effects. Aminoguanidine



Pharmaceuticals 2022, 15, 1219 15 of 20

derivatives 30–31 showed significant antibacterial effects in various animal models and
deserve further research.

Eight derivatives (23, 25–26, 55, 60–63) showed significant anti-inflammatory activity
in rodents. Moreover, the anti-inflammatory effect of compound 65, used in the research on
the treatment of neonatal anti-sepsis in mice, deserves greater attention.

Amidrazones demonstrated a diverse number of antitumor mechanisms, acting as
brc-abl kinase inhibitors (72–76), an inhibitor of phosphatidylinositol 3-kinase (79), an
inhibitor of tubulin polymerization (81) and an inhibitor of ribosomal kinase RSK2 (82),
which indicates their potential in the search for new anti-cancer drugs. Compound 72
showed the highest selectivity and may be a future drug candidate for leukemia.

Aminoguanidine derivatives exhibited cytoprotective activity and inhibited cholinesterases.
Their possession of both these mechanism simultaneously could be useful in the search for a
cure for Alzheimer’s disease. The phosphorylation of eIF2α translation initiation factor by
guanabenz, sephin1 or raphin1 is promising in regard to the prevention and treatment of many
neurodegenerative diseases. For example, guanabenz, an old-generation antihypertensive
drug, is currently being studied for new potential medical applications, including the treatment
of amyotrophic lateral sclerosis, multiple sclerosis and parasitic toxoplasmosis.

Amidrazones showed moderate toxicity in various models (Table 5). However, among
the derivatives with the lowest toxicity, as many as five (44–45, 56–57 and 59) contain an
acyl group at atom N1, which may be valuable for the synthesis of new derivatives with
more advantageous properties.

Table 5. The toxicity of selected amidrazones in various animal or normal cell models.

Comp. Animal Model Time Toxicity Ref.

18 brine shrimp 24 h IC50 > 50 µg/mL [23]
19 brine shrimp 24 h IC50 > 50 µg/mL [23]
20 brine shrimp 24 h IC50 > 12.5 µg/mL [23]
21 brine shrimp 24 h IC50 > 12.5 µg/mL [23]
43 zebrafish embryos 96 h LC50 = 8.2 µg/mL [40]
55 Swiss mice - LD50 = 417 mg/kg [50]
78 brine shrimp 24 h IC50 > 50 µg/mL [23]

Comp. Studied cells Origin Toxicity Ref.

2 Vero monkey IC50 = 28.7 µM [17]
3 Vero monkey IC50 = 23.1 µM [17]
4 Vero monkey IC50 = 27.8 µM [17]
5 Vero monkey IC50 = 298 µM [17]
6 fibroblasts human IC50 = 10.39 µg/mL [18]
7 fibroblasts human IC50 = 3.29 µg/mL [18]

28 HEK 293T human IC50 = 56.39 µmol/L [28]
32 fibroblasts mice IC50 = 41.8 µg/mL [31]
43 MRC-5 human IC50 = 2.5 µg/mL [40]
23 LO2 human IC50 = 18.1 µg/mL [25]

30–31 HRT-18 human IC50 > 32 µg/mL [30]
44 macrophages mice IC50 = 79.59 µM [41]
45 macrophages mice IC50 = 423.33 µM [41]
46 RAW264.7 mice IC50 = 17.1 µM [42]

48–50 J774.A1 mice IC50 > 10 µM [45]
51 PBMC human IC50 > 100 µg/mL [46]
54 PBMC human IC50 > 100 µg/mL [49]
56 PBMC human IC50 > 10 µg/mL [51]
57 PBMC human IC50 > 50 µg/mL [52]

58–59 PBMC human IC50 > 100 µg/mL [54]
64 chondrocytes rat IC50 > 25 µM [56]
72 fibroblasts human IC50 > 50 µM [71]
76 fibroblasts human IC50 = 15 µM [75]
83 Vero monkey IC50 > 100 µM [80]
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Table 5. Cont.

Comp. Animal Model Time Toxicity Ref.

87 Vero monkey IC50 > 611.09 µM [84]
88 ARPE-19 human IC50 = 38.82 µM [85]
89 ARPE-19 human IC50 = 41.23 µM [85]
90 MRC-5 human IC50 = 58.9 µM [86]
91 PBMC human IC50 > 25 µg/mL [49]

ARPE-19—human epithelial cell line derived from retina; HEK 293T—human embryonic kidney cells;
HRT—human colorectal cells; J774.A1—mice macrophages; LO2—human hepatocytes; MRC5—human lung
fibroblasts; PBMC—human peripheral mononuclear cells; RAW264.7—mice macrophages; Vero—monkey kidney
epithelial cells.

A useful property of amidrazones is their use as ligands for the synthesis of complexes
with metals, which provides researchers with the opportunity to obtain new compounds
with anti-tumor (e.g., 86) or antibacterial (32) properties.

4. Conclusions

Amidrazones remain an interesting area for researchers, as evidenced by the latest
works from 2022. Many derivatives described in this review show strong biological ac-
tivities and deserve more detailed research in this field. We hope that this article, which
systematizes the knowledge about the biological activities of amidrazones, will increase
the scientific interest in these compounds and, in effect, will encourage the development of
novel derivatives and their introduction to research in preclinical and clinical studies.
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