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Renal ion channel transport and electrolyte disturbances play an important role

in the process of functional impairment and fibrosis in the kidney. It is well

known that there are limited effective drugs for the treatment of renal fibrosis,

and since a large number of ion channels are involved in the renal fibrosis

process, understanding the mechanisms of ion channel transport and the

complex network of signaling cascades between them is essential to identify

potential therapeutic approaches to slow down renal fibrosis. This review

summarizes the current work of ion channels in renal fibrosis. We pay close

attention to the effect of cystic fibrosis transmembrane conductance regulator

(CFTR), transmembrane Member 16A (TMEM16A) and other Cl− channel

mediated signaling pathways and ion concentrations on fibrosis, as well as

the various complex mechanisms for the action of Ca2+ handling channels

including Ca2+-release-activated Ca2+ channel (CRAC), purinergic receptor, and

transient receptor potential (TRP) channels. Furthermore, we also focus on the

contribution of Na+ transport such as epithelial sodium channel (ENaC), Na+,

K+-ATPase, Na+-H+ exchangers, and K+ channels like Ca2+-activated K+

channels, voltage-dependent K+ channel, ATP-sensitive K+ channels on renal

fibrosis. Proposed potential therapeutic approaches through further dissection

of these mechanisms may provide new therapeutic opportunities to reduce the

burden of chronic kidney disease.
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1 Introduction

Renal fibrosis is a process described by excessive proliferation of fibroblasts and

deposition of extracellular matrix (ECM), which collectively lead to a broad maladaptive

repair of affected renal tissue (Duffield, 2014). Under pathological conditions, the fibrotic

process is triggered and coordinated by cross-talk between multiple cell types (Gewin

et al., 2017). In particular, myofibroblasts, which are a key population for interstitial

collagen matrix deposition, typically have the properties of contraction, proliferation,

enhanced secretion, and expression of α smooth muscle actin (αSMA), a cytoskeletal

protein of highly contractile microfilaments. In addition to primarily resident

mesenchymal cells (fibroblasts and pericytes), other sources of myofibroblasts include

perivascular fibroblasts, circulating fibroblasts, and epithelial-mesenchymal transition

(EMT) transdifferentiated renal tubular epithelial cells (Mack and Yanagita, 2015).
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Interstitial inflammatory cell infiltration is also one of the

characteristic histological features of renal fibrosis, which is

observed in almost all types of renal disease and fibrosis

(Huen and Cantley, 2017). Activated lymphocytes and

macrophages as well as damaged epithelial cells secrete a

variety of pro-inflammatory and pro-fibrotic factors, among

which transforming growth factor-β (TGF-β) is recognized to

be particularly prominent in renal fibrosis [for more factors

references (Meng et al., 2016; Gewin et al., 2017)]. These

cytokines promote the initiation of the fibrotic response by

favoring fibroblast activation, inflammatory cell recruitment

and endothelial cell loss, and achieve crosstalk between these

cells. New evidence suggests that endothelial cell damage may be

involved in endothelial-to-mesenchymal transition as well as in

complex secretory synthesis (Lipphardt et al., 2017; Yang et al.,

2019a). In addition, the kidney is a highly vascularized organ, and

dysfunction of the interstitial capillary network mediating

hypoxia and oxidative stress production is one of the

important mechanisms driving renal fibrosis. Furthermore,

when repeated epithelial injury occurs, apoptosis of renal

tubular cells can develop, often resulting in tubular atrophy at

a later stage. Interstitial fibrosis and tubular atrophy are common

endpoints in almost all forms of kidney injury. Although a

plethora of literature with in-depth and extensive mechanistic

research, unfortunately there is no effective treatment for renal

fibrosis, and the only proven method to slow the decline of renal

function remains blockade of the renin-angiotensin system with

angiotensin converting enzyme inhibitors (ACEI), angiotensin

receptor blockers, or renin inhibitors (Francois and

Chatziantoniou, 2018). Late development to end-stage renal

disease (ESRD) still requires replacement therapy.

Ion channels are a class of pore-forming proteins found in all

living cells that provide energetically favorable passage for ions to

diffuse rapidly and passively according to their electrochemical

potential (Roux, 2017). By mediating the influx or efflux of

essential ions transported across the cell membrane, they can

modulate the cytoplasmic or extracellular ion concentration,

membrane potential and cell volume, which are fundamental

to the survival and functional state of all cells. Regulation of

changes in ion fluxes and channel activity in response to

changing environmental requirements and stimuli is required

for processes including proliferation, apoptosis, invasion,

secretion and migration, and other cellular behavioral

processes. Ions play an important role in different signaling

pathways, since many extracellular molecules target ions for

related functions, and in the last decade or so, the field of ion

channels has developed rapidly. Indeed, the term

“channelopathy” has been extended to describe a growing

range of diseases associated with ion channel dysfunction.

Dysregulated ion channels are involved in pathological

conditions including hypertension, hyperglycemia, obesity,

electrolyte disturbances, and cellular mechanical changes, all

of which accelerate renal fibrosis phenotypes. Although the

pathological factors and mechanisms of renal fibrosis remain

incompletely understood, increasing evidence suggests that gene

expression and signaling pathway activation associated with

renal fibrosis are closely linked to the regulation of voltage-

and non-voltage-gated ion channels. In this review, we

summarize most recent data regarding the involvement of

four major classes of Cl−, Ca2+, Na+, and K+ ion channels in

the regulation of renal fibrosis. Continued efforts to explore their

interactions and mechanisms, and to assess as candidate

pharmacological targets of delay progression of renal failure

will help develop more effective treatments.

2 Chloride channels

Cl− channels are a group of functionally and structurally

diverse anion-selective channels that have recently gained a

considerable amount of interest. In the past, it was always

thought that Cl− was in electrochemical equilibrium on the

membrane due to less research and the high resting Cl−

permeability, but it is now clear that in most cells, Cl− is

actively transported and out of electrochemical equilibrium

(Duran et al., 2010), for example, some Cl− channels or

transporters like Cl−-HCO3
− exchangers, Na+-Cl−

cotransporters pump Cl− into the cell, thus able to work and

signal (Schmick and Bastiaens, 2014). Cl− channels exhibit

regulation of various physiological functions, including fluid

secretion, cell volume, intracellular pH, and are involved in

processes such as proliferation, trans-epithelial transport, cell

cycle and electrical excitability (Stauber et al., 2012). Different Cl−

channels have been described in several categories based on

structural and biological properties and gating characteristics:

cystic fibrosis transmembrane conductance regulator (CFTR);

Ca2+-activated Cl− channels; voltage-activated Cl− channels;

volume-regulated anion channels (VRAC), ligand-gated

channels, and other chloride channels (Suzuki et al., 2006).

Here we focus on the most recent data regarding the

involvement of these Cl− channels in the behavior of renal

fibrosis.

2.1 Cystic fibrosis transmembrane
conductance regulator(CFTR)

CFTR, a member of the ATP-binding cassette transporter

protein superfamily, is widely expressed in apical epithelial

membranes including the kidney, lung, liver, and reproductive

tract (Csanady et al., 2019). CFTR is a cAMP-dependent anion

channel consisting of a dimer with six transmembrane structures

per subunit that regulate fluid transport and electrolyte balance.

Dysfunction of CFTR leads to abnormal anion secretion, causing

a series of epithelial dysfunctions and the development of chronic

inflammatory. Cystic fibrosis (CF) is the result of a CFTR
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mutation, which is well described in terms of lung symptoms

(Gibson et al., 2003). Some studies have shown that CFTR has a

tumor suppressive effect in various types of cancer (Maisonneuve

et al., 2013; Liu et al., 2020). In addition, CFTR is abundantly

expressed on the apical surface of renal tubules, and CF patients

had more prominent proteinuria, which may be caused by

tubular dysfunction and interstitial injury (Jouret and

Devuyst, 2009), thus suggesting that CFTR is closely

associated with renal fibrotic disease.

Functional CFTR deficiency result in epithelial cells

transforming into a more proliferative, less differentiated state

that is more sensitive to EMT stimuli such as TGF-β1.
Mesenchymal markers such as N- cadherin, vimentin,

collagen I, and fibronectin are significantly upregulated in the

native human CF airways compared to non CF airways

(Quaresma et al., 2020), and increase CFTR activity using the

potent CFTR modulator (HECM) drug restores the mutated

CFTR-induced epithelial phenotype and confers direct

protection against EMT (Narayanan et al., 2020). In the

kidney, the mouse δF508 CFTR mutation exacerbates the

fibrotic phenotype induced by unilateral ureteral obstruction

(UUO), which is a well-established animal model of renal

fibrosis, and in vitro, inhibition of CFTR activity using the

inhibitors inh-172 or GlyH101 is sufficient to trigger the EMT

process in renal cells (Zhang et al., 2017). In addition, it has been

recognized that CFTR deficiency may lead to disruption of the

cytoskeleton and reduced formation of cellular tight junctions in

renal tubular epithelial cells by reducing direct Zonula

Occludens-1 (ZO-1) interactions (Ruan et al., 2014; Castellani

et al., 2017), which is one of the characteristics of EMT. Yes-

associated protein 1 (YAP1) is an important mammalian

transcriptional effector regulating the Hippo pathway and has

been shown to play a key role in organ development, fibrosis, and

wound healing (Dey et al., 2020). YAP1 was found to be

aberrantly active in the presence of mutant CFTR, and is an

important mediator of CFTR-related fibrosis/EMT processes

(Quaresma et al., 2022). However, further elaboration is

needed regarding its more precise mechanism.

CFTR dysfunction activates canonical Wnt/β-catenin
signaling to mediate tubular epithelial-mesenchymal fibroblast

transition (Zhang et al., 2017). Wnt/β-catenin is an evolutionary

conserved signaling pathway that regulates cell fate, homeostasis

and regeneration, and is activated following kidney injury in

various animal models and human kidney diseases. β-catenin
overexpression induces fibrotic features, including epithelial cell

dedifferentiation and EMT (Clevers and Nusse, 2012).

Interestingly, CFTR expression was downregulated in the

UUO mouse model and human fibrotic kidney, and the

UUO-induced deltaF508 fibrosis mouse model has

significantly higher β-catenin protein activity and renal

fibrosis aggregation, which can be rescued by overexpression

of CFTR, implying that CFTR regulation appears to be a potential

therapeutic target for anti-fibrosis via Wnt/β-catenin signaling

(Zhang et al., 2017). This result was further demonstrated by Liu

and his colleagues in a rat model of diabetic nephropathy (Liu

et al., 2021). Mechanistically, CFTR can interact with

Dishevelled2 (Dvl2), a vital component of Wnt signaling, to

inhibit β-catenin activation via the PDZ structural domain, as

Dvl2 has PDZ domain and CFTR has a PDZ binding domain

(Simons et al., 2009; Zhang et al., 2017). However, the nature of

how this interaction inhibits β-catenin activity has not been fully

elucidated. Moreover, it may also be related to the pH and charge

changes of the Wnt pathway. Loss of CFTR function leads to

elevated intracellular PH due to impaired Cl− and HCO3
−

secretion and dysregulation of the H+ pump (membrane

potential changes induced by Cl− flux contribute to the

acidification of H+-ATPase) (Massey et al., 2021). It has been

shown that intracellular alkalinization enhances the interaction

of DvL with the Wnt receptor Frizzled proteins (FZD) by

addressing DvL to negatively charged phospholipids on the

plasma membrane through its positively charged DEP

structural domain, thereby inhibiting β-catenin phosphate

degradation and promoting Wnt signaling (Simons et al.,

2009) (see Figure 1).

Notably, CFTR positively regulates β-catenin protein activity

in the hematopoietic system and embryonic stem cells (Liu et al.,

2017; Sun et al., 2018), implying that CFTR seems to respond

differently to β-catenin signaling in cellular context, possibly by

acting on different components of the Wnt/β-catenin pathway.

With more clinical focus regarding CFTR in autosomal

dominant polycystic kidney disease (ADPKD), the importance

of CFTR in fibrosis is increasingly recognized. Increased cAMP

levels stimulate apical CFTR choreography, which contributes to

epithelial cell proliferation and Cl−-dependent fluid secretion,

while ECM gradually accumulates in the kidney with

cystogenesis and the production of pro-fibrotic factors

(Ramasubbu et al., 1998; Norman, 2011). Moreover, the cyst

wall contains an extensive and abnormal capillary network and

the absence of peritubular capillaries is a feature of

tubulointerstitial fibrosis in chronic kidney disease (CKD).

While deeply investigating the role of CFTR in kidney disease,

independently of ADPKD, applying this target to chronic kidney

disease or fibrotic kidney disease would be quite an attractive

therapeutic treatment in terms of prospect.

2.2 Transmembrane member 16A

Transmembrane member (TMEM) 16A (also known as

Anoctamin-1,ANO1), a Ca2+-activated Cl− channel, belongs to

the 10-member of the TMEM16 family and is known to transport

chlorine and bicarbonate (Pedemonte and Galietta, 2014).

Structurally TMEM16A is a revealed homodimer membrane

protein with each subunit containing a ten-transmembrane

helix structure (TM1-10), in which an ion-selective pore and

two Ca2+-sensitive binding sites were identified. When Ca2+
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directly binds to a site TM6-8 located near the cytoplasmic end of

the membrane pore, the TM6 conformation is triggered to

change, causing the pore to dilate and thus leaving the

channel in an open state (Dang et al., 2017; Paulino et al.,

2017). TMEM16A is widely expressed in various cells and

mediates a variety of fundamental physiological functions,

such as epithelial regulation-secretion, smooth muscle

contraction, cell volume regulation, cell proliferation and

sensory transduction (Yang et al., 2008; Hartzell et al., 2009;

Oh and Jung, 2016). TMEM16A activity may be involved in the

regulation of epithelial CFTR-dependent Cl− transport. Recently,

information about the relationship between TMEM16A and

renal fibrosis was reported.

TMEM16A contributes to renal fibrosis through increased

intracellular Cl− concentration and TGF-β1-dependent pathways
(Li et al., 2022a). Previous studies have indicated that TMEM16A

expression is strongly expressed in the kidneys of patients with

IgA nephropathy, renal cyst models and mice with high-fat diet/

streptozotocin-induced diabetic nephropathy (Buchholz et al.,

2014; Lian et al., 2017; Li et al., 2022a), suggesting an important

role for TMEM16A in kidney disease. Similarly, Li et al. found

that TMEM16A expression was markedly increased in fibrotic

kidneys from UUO and high-fat diet mouse models, and that

inhibition of TMEM16A activity in vivo with specific inhibitors

or knockdown by shRNA effectively attenuated UUO-induced

renal fibrosis and macrophage infiltration (Li et al., 2022a). Also,

in cultured human proximal renal tubular epithelial (HK2) cells,

inhibition of TMEM16A effectively reduced TGF-β1-induced
EMT and restored E-cadherin abundance. Mechanistically, high

levels of TMEM16A respond to TGF-β1-induced increases in

[Cl]i, and mediate the pro-fibrotic effects of TGF-β1 in a Cl−

sensitive serum- and glucocorticoid-inducible protein kinase 1

(SGK1) dependent manner through the intracellular effectors

Smad2/3 and extracellular signal-regulated kinases 1 and 2

(ERK1/2) pathways (Li et al., 2022a) (Figure 1). However, we

recognize that TMEM16A is an outward rectifier current that

promotes Cl− secretion. The mechanism regarding TMEM16A

mediating the elevation of [Cl]i in renal fibrosis has not yet been

fully elucidated, and may be due to 1) differences in Cl−

concentration on renal tubular epithelial cells that predispose

to inward flow, 2) indirect regulation of other Cl− reabsorption

pathways, 3) pathological conditions may shift Cl− outflow to

influx when the membrane potential reaches the Cl− reverse

potential (Deba and Bessac, 2015). Notably, nephron-specific

FIGURE 1
Schematic diagram illustrating the mechanisms by which several chloride channels affect gene expression in renal fibrosis. (1) CFTR deficiency
causes increased intracellular pH. It promotes the binding of positively charged DEP and negatively charged phospholipids at the plasmamembrane,
and as a result, increased association of FZD and Dvl inhibits the phosphorylated degradation of β-catenin and promotes Wnt/β-catenin signaling. In
addition, YAP may play a role in promoting renal fibrosis as one of the mechanisms. (2) TMEM16A stimulated by chloride channel accessory 1
(CLCA1) activates mTORC1-mediated matrix protein synthesis, and GSK-1 induces pro-fibrotic expression in response to TMEM16A-induced
activation by increased Cl-concentration. (3)ClC-5 overexpression inhibits NF-κB/MMP-9. FZD: Frizzled; DVL: Dishevelled; AJ: Adherens junctions;
ClC-5: voltage-gated chloride channel-5.
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TMEM16A knockout mice cause reduced glomeruli numbers

and subsequently albuminuria and tubular injury (Faria et al.,

2014; Schenk et al., 2018), which may be related to TMEM16A

regulation of albumin uptake and endosomal acidification

functions (Faria et al., 2014). Therefore, TMEM16A

contributes to the regulation of renal function, but also plays

an important role in response to environmental stimuli such as

obstruction and high fat in renal injury.

Recently, an unexpected association between TMEM16A and

senescence-associated secretory phenotype (SASP)-associated

renal fibrosis was found. Aging kidney injury is an important

driver of interstitial fibrosis, in part because senescent cells

secrete important pro-inflammatory and pro-fibrotic

mediators in the senescence-associated secretory phenotype,

which directly affects the surrounding microenvironment,

thereby triggering the persistent fibrotic process (Docherty

et al., 2019; Docherty et al., 2020). Cellular senescence can

therefore be considered as a pathological feature of renal

fibrosis. It was found that chloride channel accessory 1

(CLCA1) expression was increased in aged mice and its

overexpression enhanced TMEM16A activity in a paracrine

manner (Sala-Rabanal et al., 2015), subsequently activating

mTORC1 in the process. Activation of mTORC1 signaling is

not only involved in renal fibroblast activation and collagen

synthesis, but also increases the expression of TGF-β1, which
mediates the development of fibrosis, and finally

mTORC1 regulates oxidative stress injury and stem cell failure

to accelerate cell and tissue aging (Zoncu et al., 2011; Jiang et al.,

2013; Fantus et al., 2016). Inhibition of TMEM16A reduced

mTORC1 activation and matrix protein synthesis in

CLCA1 overexpressing cells, while also inhibiting SASP (Lee

et al., 2021). Based on the above findings, TMEM16A is

considered a potential target to prevent senescence-associated

renal injury. However, the mechanism of how the process of cell

surface anion secretion should trigger SASP remains unclear.

In diabetic nephropathy, TMEM16A activation also

promoted podocyte apoptosis in diabetic mice by activating

the P38/c-jun N-terminal kinase (JNK) signaling pathway

(Lian et al., 2017). In conclusion, the important role of

TMEM16A in promoting kidney injury through the regulation

of multiple signaling pathways suggests that is TMEM16A may

be a potential new molecular target for preventing the

progression of renal fibrosis and chronic kidney disease.

2.3 Voltage-gated Cl− channels

The voltage-gated chloride channel (ClC) family is a class of

dimers consisting of nine isomers in mammals further divided

into three groups: 1) ClC-1, ClC-2, ClC -Ka, and ClC -Kb; 2) ClC-

3 to ClC-5; and 3) ClC-6 and ClC-7 (Jentsch and Pusch, 2018). It

is found that ClC-3 to ClC-7 are mainly present in the

endolysosomal membrane where they actually function as

2 Cl−/H+ exchangers, whereas the other types are plasma

membrane Cl− channels (Picollo and Pusch, 2005; Scheel

et al., 2005; Jentsch and Pusch, 2018). By exchanging chlorine

for hydrogen, ClCs provide a Cl− shunt conductance in the

lysosomes to neutralize the positive charge and promotes

acidification (Gunther et al., 2003; Hara-Chikuma et al.,

2005). Recently, the role of ClC in renal fibrosis has been

gradually recognized.

As a members of the ClC superfamily, ClC-5 is an

intracellular Cl− channel encoded by the chloride voltage-

gated channel 5 (CLCN5) gene, which is involved in cell

proliferation, apoptosis, cellular electrical activity and volume

homeostasis in addition to controlling acidification (Devuyst and

Luciani, 2015). Like all other eukaryotic ClCs, ClC-5 is

homodimeric with 18 transmembrane domains per subunit

containing an independent ion-permeable pore where it is

labeled by three anion-binding sites (Dutzler, 2004). ClC-5 is

highly expressed in different renal tubular segments as well as in

podocytes, and is upregulated in glomeruli of proteinuric

nephropathy patients, suggesting that ClC-5 may play a role

in the formation of proteinuric nephropathy (Ceol et al., 2012;

Solanki et al., 2018). Previous studies indicated that aging ClC-5

knockout mice significantly increased renal tubular atrophy,

interstitial fibrosis, renal calcinosis and had elevated TGF-β1
compared to wild-type mice, and that high citrate food feeding

protected renal function and delayed the progression of renal

disease (Cebotaru et al., 2005). In contrast, Yang’s group showed

that mice with ClC-5 upregulation using a specialized adeno-

associated virus vector largely protected against the development

of renal fibrosis and inflammatory lesions after unilateral ureteral

obstruction (UUO), and restored E-cadherin synthesis and

reduced vimentin, α-SMA, and collagen fibril expression in

the renal cortex (Yang et al., 2019b). Moreover, in renal

tubular epithelial cells, ClC-5 overexpression prevented the

epithelial-to-mesenchymal transition induced by TGF-β1 and

matrix metalloproteinase-9 (MMP-9) expression (Yang et al.,

2019b). Matrix metalloproteinases (MMP) are a large class of

proteins that require metal ions as active forms of cofactors and

have different roles in different pathological conditions (Zitka

et al., 2010). MMP-9 has been shown to be critically involved in

the pro-fibrotic microenvironment in the obstructed kidney by

promoting growth factor release and communication between

the epithelial and interstitial compartments (Tan et al., 2010;

Wang et al., 2019a). ClC-5 expression inhibits immune cell

infiltration and inflammatory cytokine release and ameliorates

renal fibrosis by inhibiting NF-κB-mediated activation of MMP-

9 pathway signaling (Yang et al., 2019b) (see Figure 1).

Interestingly, MMP9 appears to have a strong positive

correlation with ClC-3, which regulates the extracellular

environment and promotes the migration and invasion of

cancer cells through multiple pathways of upregulation of

MMP9 expression (Guan et al., 2016; Wang et al., 2017; Guan

et al., 2019). ClC-3 and ClC-5 are very similar in basic biophysical
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properties, both of them are expressed intracellularly in almost all

cell types and have been shown by several studies to be actually

Cl−/H+ reverse transporter proteins, but ClC-3 is more widely

distributed compared to ClC-5 (Steinmeyer et al., 1995). In

human keratinocytes and human fetal lung fibroblasts, ClC-3

overexpression showed significantly more α-smoothmuscle actin

(α-SMA) expression as well as increased myofibroblast activation

(Yin et al., 2008), suggesting a role for ClC-3 in fibroblast

transformation. It is well known that renal oxidative stress

production is the key to the development of renal fibrosis.

Although ClC-3 is mainly expressed in endosomes and

lysosomes, extracellular production of superoxide flux can

mediate intracellular signaling through plasma membrane

ClC-3 channels, further activating the production of

mitochondrial reactive oxygen species (ROS) (Hawkins et al.,

2007; Jha et al., 2016). However, the exact role and mechanism of

ClC-3-mediated renal oxidative stress and fibrosis remains

unclear. Because ClC-3 or ClC-5 are expressed primarily on

organelle membranes, it is difficult to record their currents, and

thus many of their proposed roles in a variety of biological

processes may need to be reevaluated, although it is an interesting

and relatively unexplored target in renal fibrosis.

It is worth mentioning that other ClC members, such as ClC-

2 channels promote the migration transition of myofibroblasts

and ECM synthesis (collagen I and fibronectin) via PI3K/Akt

signaling (Sun et al., 2016), and that deletion of ClC2 alters the

integrity of adherens junctions, leading to the release of

membrane-bound β-catenin and activation of Wnt target

genes (Jin et al., 2018a).

2.4 Volume-regulated anion channel
(VRAC)

VRAC is an important anion channel that regulates cell

volume in response to swelling stress, and was initially

identified primarily as a way for cells to release Cl− ions or

specific organic osmolytes, such as halides or glutamate, followed

by osmotic water, during regulated volume reduction (RVD)

(Pedersen et al., 2015; Jentsch, 2016). Under these conditions, the

Cl− current through the VRAC, named IClswell, displays a slight

outward rectification and is independent of voltage activation

and time (Schlichter et al., 2011). Recent studies have identified

the leucine-rich-repeat-containing 8A (LRRC8A), a hexamer

consisting of four transmembrane helices per subunit, was an

essential contributor to VRAC current triggering. To show

functional gating selectivity and volume sensitivity, LRRC8A

was usually found to act in conjunction with at least one

other LRRC8 member (LRRC8B-E) (Voss et al., 2014; Gaitan-

Penas et al., 2016). A multitude of studies have proposed that

LRRC8A is involved in a variety of pathophysiological processes,

including cell apoptosis, proliferation, migration, metabolism

and secretion, all of which involve changes in local cell

volume (Chen et al., 2019a). VRAC facilitate cell survival

under hypotonic conditions as detailed above. Increased cell

volume has been reported to lead to increased membrane

tension, activation of mechanosensitive and Ca2+ permeable

channels, leading to cell damage and death, and increased

deposition of matrix proteins (Warntges et al., 2001). Also,

increased proximal tubular hyperosmotic stress responds to

mechanical stress and osmotic pressure, rearranging focal

adhesions in tubular epithelial cells to induce EMT, which in

turn leads to renal fibrosis (Miyano et al., 2021). Regardless of

hypo- or hyperosmotic stress conditions, cell volume recovery is

critical for homeostasis and renal function of the organism.

However, the mechanism between increased cell volume and

VRAC activation is not yet fully understood, which may be partly

through downstream signaling or sensing changes in intracellular

ionic strength (Voets et al., 1999; Syeda et al., 2016). Also, the

actin cytoskeleton may be involved in this process. In RVD, the

actin cytoskeleton (filaments) depolymerizes during cell swelling,

which also stimulates microtubule expression and is involved in

VRAC stimulation (Burow et al., 2015). The functional integrity

of actin filaments and microtubules is a prerequisite in

maintaining the effective RVD responses. Additionally,

disruption of the cytoskeleton of glomerular and tubular cells,

especially of the actin and microtubule network, is strongly

associated with pro-fibrotic effects (Parrish, 2016). Therefore,

we hypothesized that VRAC may have an important role in

mediating cytoskeletal protein-driven renal fibrosis through

regulation of cell volume.

In addition, in the absence of osmotic challenge, other stimuli

such as hypoxia, serum, intracellular Ca2+, ATP, phospholipids

and other intracellular signals have been reported to stimulate

VRAC (Patel et al., 1998; Catacuzzeno et al., 2011; Kunzelmann,

2015). Friard et al. (2019) found that TGF-β1 also activated

VRAC/LRRC8A channels to trigger chloride currents, but at a

relatively slow rate and with weak current amplitude. Using a

biochemical or pharmacological approach, they further showed

that inhibition of VRAC/LRRC8A attenuated TGF-β1-induced
expression of the EMT phenotype and associated markers in

human proximal tubular epithelial cells, and that this mechanism

may be related to its ability to permeabilize glutathione (GSH)

and thus counteract increased intracellular ROS levels (Friard

et al., 2019). Studies on the association of volume-sensitive Cl−

-channels in renal tubular epithelial cells may provide interesting

models for better understanding the process of renal epithelial

mesenchymal transition under stress. Furthermore, establishing

a new approach based on VRAC/LRRC8A for the treatment of

renal fibrosis has great potential, which requires more research.

2.5 Voltage-dependent anion channels

The voltage-dependent anion channel (VDAC) is a

multifunctional channel that controls cellular energy,
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metabolism, oxidative stress and apoptosis (Shoshan-Barmatz

et al., 2010). They are a class of bidirectional transport porins

located in the mitochondrial outer membrane different from

classical ion channels. Three types of VDAC (VDAC1-3) have

been identified in higher eukaryotes, of which VDAC1 is highly

expressed in most cell types. Nowak et al. (2020) recently found

that VDAC1 expression was reduced in mitochondria of an

ischemia/reperfusion (I/R) kidney injury mouse model

compared to WT mice, and that VDAC1 deficiency resulted

in reduced mitochondrial respiration and ATP levels with

increased mitochondrial fission in non-injured kidneys,

supporting the role of VDAC1 in maintaining mitochondrial

dynamics and energy metabolism. Importantly, the overall

absence of VDAC1 impedes the morphological regeneration

of proximal tubules and the recovery of renal function,

increases collagen deposition in the post-ischemic kidney and

exacerbates interstitial renal fibrosis (Nowak et al., 2020). In

contrast, Li et al. (2022b) found that knockdown of

VDAC1 significantly attenuated ischemic injury-induced

apoptosis and mitochondrial damage in renal tubular cells.

This discrepancy may be related to complex mechanisms,

differences in disease and cell types. Interestingly, Tf-D-LP4, a

peptide targeting VDAC1, was found to be effective in treating

nonalcoholic fatty liver disease (NAFLD), reducing

inflammation, liver fibrosis, and normalizing liver enzymes

(Pittala et al., 2019), and VBIT-4, an inhibitor of

VDAC1 oligomerization, attenuates fibrosis caused by

increased cardiac aldosterone (Klapper-Goldstein et al., 2020).

Thus, VDAC1 appears to be a promising treatment for fibrotic

disease. Although the role of VDAC1 in different renal diseases

has been established, valuable evidence to support the claim that

VDAC perturbation causes or exacerbates renal fibrosis remains

to be determined.

2.6 Chloride intracellular channels

Chloride intracellular channel 4 (CLIC4) belongs to a

highly conserved and most extensively studied member of

the CLIC family of proteins (Shukla and Yuspa, 2010). It is

present in the inner cell membrane and abundant in the

cytoplasm as the soluble form. CLIC4 is involved in various

cellular functions, including regulation of cell proliferation,

apoptosis, pH homeostasis, cell cycle, angiogenesis and

differentiation (Shukla et al., 2009; Shukla and Yuspa,

2010). In the kidney, CLIC4 null mice support vacuolar

acidification and are associated with abnormal dilatation of

proximal tubules (Ulmasov et al., 2009). Using biochemical

and morphological analysis, CLIC4 was reported to be

overexpressed in the proximal tubular region of rats with

hypertensive nephropathy compared to normal rats

(Hatziioanou et al., 2018), inhibition of CLIC4 largely

reduced TGF-β1-induced transdifferentiation of fibroblasts

from myofibroblasts and α-SMA as well as ECM component

expression (Shukla et al., 2014). Indeed, CLIC4 directly

enhances TGF-β signaling by binding to Smad2/3 and

preventing their dephosphorylation (Shukla et al., 2009).

Furthermore, CLIC4 is able to regulate the matrix

degradation activity of MMP-14 (Hsu et al., 2019), which

has been shown to be a relevant mediator of vascular senescent

renal fibrosis (Vasko et al., 2014). We are looking forward to

new research in this area as it is an interesting and relatively

unexplored target in renal fibrosis.

2.7 Claudin proteins-associated channels

The paracellular channel through the tight junctions are

an important pathway for transepithelial Cl− transport in the

kidney, which provides approximately 70% of Cl−

reabsorption (Sansom et al., 1984; Schild et al., 1988). The

claudin proteins (CLDNs), forming the channels that connect

two extracellular compartments by passing perpendicular to

the membrane plane, are the main components of tight

junction generation (Hou et al., 2013). Paracellular

permeability depend on the complement of CLDNs in each

nephron segment, where they are expressed in a nephron-

specific manner. The localization of CLDNs in the nephron

varies among mammals, with several CLDNs normally

expressed in the renal tubule (2, 10a, 17), podocytes (5, 6)

and collecting ducts (3, 4, 7 and 8) (Hou et al., 2013). Claudins

are reported to be altered during cellular EMT and are

involved in the feedback regulation of epithelial cell

phenotypic transformation (Quaresma et al., 2020). Dan

et al, (2019) showed that CLDN-2 expression was initially

increased and then decreased in a mouse obstructive

nephropathy model, and silencing of CLDN-2 enhanced

Ras homolog family member A (RHOA)-mediated

activation of myocardin-related transcription factor

(MRTF), a major regulator of EMT, to promote epithelial

reprogramming in renal fibrosis. In addition, CLDN5-specific

deletion in podocytes significantly exacerbated interstitial

renal fibrosis after UUO by blocking WNT inhibitory

factor-1 (WIF1) secretion (Sun et al., 2022). Therefore, it is

possible that deletion of CLDNs contributes to the

pathogenesis of renal fibrosis. See Table 1 for a full listing

of ion channels in renal fibrosis.

3 Ca2+ channels

Ca2+ signaling is a key determinant of homeostasis and

cellular function. As a ubiquitous and essential second

messenger, the cytosolic Ca2+ is involved in the regulation of

various cellular functions, such as cell activation, proliferation,

development, differentiation, survival, homeostasis and effector
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TABLE 1 The expression and function of various ion channels for renal fibrosis.

Target Model/species Expression Treatment Action/effect Comments References

CFTR UUO mice models;
MDCK/HK-2 cells

↓ Gene mutation, Knockdown of
CFTR, inh172/GlyH101
(inhibitor)

↑ Interstitial ECM, α-SMA,
tubular atrophy,
inflammation

Activating Wnt/β catenin
pathway

Zhang et al.
(2017)

Type 2 diabetes mice;
RTECs

NA Up-regulation of CFTR by CDX2 ↓EMT, ↑cell junction proteins Interfered with β-catenin
activation

Liu et al. (2021)

TMEM
-16A

UUO/high-fat diet
murine models; HK-2
cells

↑ Knockdown of TMEM16A,
CaCCinh-A01 or T16Ainh-A01
(specific inhibitor)

↓EMT, α-SMA, fibronectin,
collagen I

Inhibiting Smad2/3 and
ERK1/2 phosphorylation

Li et al. (2022a)

MCT cells NA Upregulation of TMEM16A by
CLCA1; T16Ainh-A01

↑Matrix protein, SASP;
↓matrix protein, SASP

Drive akt-mTORC1 axis
by activating TMEM16A

Lee et al. (2021)

ClC-5 UUO mice models;
HK-2 cells

↓ Infected with AdClC-5; ClC-5
-knockout cells

↓EMT, renal atrophy, CTGF,
collagen III/IV,
Inflammatory; ↑EMT

ClC-5 upregulation
inhibits activation of NF-
κB/MMP-9 signaling
pathway

Yang et al.
(2019b)

ClC-5 knockout mice NA High citrate diet ↓Tubular atrophy, interstitial
fibrosis, cystic changes vs.
zero citrate diet groups

Inhibiting TGF-β1
signaling pathways

Cebotaru et al.
(2005)

VRAC HEK-293/HK-2 cells
under TGF-β1

↑ Knockdown of VRAC, DCPIB,
20 μM (VRAC inhibitors)

↓EMT, E-cadherin, GSH,
↑ROS, fibronectin, MMP9,
collagen IV

Inhibition of VRAC
permeability to GSH→
increased ROS

Friard et al.
(2019)

VDAC1 VDAC1-deficient mice;
WT mice

↓ Ischemia ↑Extracellular matrix
proteins

Increased mitochondrial
fission, reduced renal ATP
content

Nowak et al.
(2020)

Orai1 UUO/high-fat diet
murine models; HK-2
cells

↑ Knockdown of Orai1,
SKF96365(Orai1 Inhibitors)

↓Fibrotic lesions, EMT,
fibronectin, TGF-β1, α-SMA,
collagens I/III/IV

Enhancing Ca2+ influx,
suppressing Smad2/
3 phosphorylation

Mai et al.
(2016)

I/R injury recovery rats
under high salt diet/
angiotensin II; renal
CD4 T cells

↑ YM58483/BTP2(SOCE inhibitors) ↓Ca2+ influx,
Th17 expression, renal
function, fibrosis,
inflammation

Blocking IL-17 activation Mehrotra et al.
(2019)

P2X7R UUO mice models ↑ P2X7R knockout ↓Collagen, TGF-β,
myofibroblasts, tubular
atrophy, macrophage
infiltration, apoptosis

Inhibited TGF-β signaling
pathway and macrophage
infiltration

Goncalves et al.
(2006)

Pyelonephritis
postrenal scar mice

NA P2X7R knockout brillian blue G
(P2X7R antagonist)

↓ Interstitial fibrosis Inhibited macrophage
infiltration

Therkildsen
et al. (2019)

Diabetic mice; Primary
human mesangial cells

↑ P2X7R knockout
AZ11657312(P2X7R inhibitors)

↓Collagen IV, macrophage,
MCP-1

Inhibited macrophage
infiltration by reducing
MCP-1

Menzies et al.
(2017)

P2X4R UUO mice models ↑ P2X4R knockout ↑Collagen I, TGF-β,
fibronectin, α-SMA

Enhanced TGF-β
expression

Kim et al.
(2014)

TRPC3 UUO mice models;
renal fibroblasts

↑ TRPC3 knockout, pyr3 10 μM
(TRPC3 specific inhibitors),
TRPC3 knockdown

↓Fibroblast activation, ECM,
myofibroblast differentiation

Inhibited Ca2+ influx,
ERK1/2 phosphorylation

Saliba et al.
(2015)

TRPC6 UUO mice models;
HEK293 cells

↑ Trpc6 knockout, BTP2 (TRPC
inhibitors)

↓Collagen-1, CTGF, α-SMA,
MMP-2, MMP-9, fibrosis

Protected the kidney
through soluble klotho

Wu et al.
(2017b)

UUO murine
models; TEC

↑ Trpc6 knockout ↓EMT, fibrotic injury Negatively regulates the
AKT-mTOR and ERK1/
2 signaling pathways

Zhang et al.
(2020)

TRPV1 DOCA-salt
hypertension mice

NA TRPV1⁻/⁻ mutant ↑glomerulosclerosis, ECM,
tubular injury vs. WT mice

Inhibition of TGF-β and
its downstream pathways

Wang and
Wang, (2011)

TRPV4 DOCA-salt
hypertension rats

NA Dietary apigenin
(TRPV4 activator)

↓Extracellular matrix
proteins

Ca2+ influx→ activated
AMPK/SIRT1→inhibited
TGF-β1/Smad2/
3 signaling pathway

Wei et al.
(2017)

TRPM7 UUO murine; normal
rat kidney fibroblast
cell and epithelial cell

↑ NS8593 (TRPM7 inhibitor) ↓Collagen I, kidney atrophy,
α-SMA, cell proliferation
fibronectin

Inhibited TGF-β1/Smad
signaling pathway

Suzuki et al.
(2020)

(Continued on following page)

Frontiers in Physiology frontiersin.org08

Yan et al. 10.3389/fphys.2022.1019028

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2022.1019028


functions (Berridge, 2016). In the kidney, Ca2+ is also involved in

the endocrine regulation of renal blood flow, glomerular

filtration, and tubular handling of water and electrolytes.

Dysregulation of Ca2+ signaling is often thought to play an

important role in the development of renal diseases such as

polycystic kidney, acute kidney injury, glomerular disease, and

diabetic nephropathy (Yang and Yang, 2013; Ning et al., 2021). In

addition, critical regulation of intracellular Ca2+ levels during

driving EMT is necessary for the translation of extracellular

signals into gene expression effects and execution of cellular

behavior. In this scenario, Ca2+-permeable ion channels that

regulate Ca2+ signaling can have a dramatic impact on cellular

phenotypes. This review will discuss the role of Ca2+-release-

activated Ca2+ channels (CRACs), purinergic P2 receptors, and

transient receptor potential (TRP) channels in the process of

renal fibrosis.

3.1 Ca2+ release-activated Ca2+ channels

The influx of extracellular Ca2+ or the release of intracellular

Ca2+ stores (about 90% stored in the endoplasmic reticulum (ER)

and mitochondria) is the main source of increased cytoplasmic

Ca2+ levels (Prakriya and Lewis, 2015). As a major pathway

mediating critical Ca2+ entry in several non-excitable and

excitable cells, store-operated Ca2+ entry (SOCE), triggered by

Ca2+-dependent depletion in the ER through the store-operated

Ca2+ (SOC) channel (mechanistically we also call Ca2+ release-

activated Ca2+ channel (CRAC), has been explored in detail. In

this process, two highly conserved molecular proteins play a

decisive role: one is stromal interaction molecule (STIM)

responsible for sensing ER Ca2+, including STIM1 and STIM2,

and another is Orai, the store-operated channel protein, divided

into three subtypes, Orai1 to Orai3, which are all important

TABLE 1 (Continued) The expression and function of various ion channels for renal fibrosis.

Target Model/species Expression Treatment Action/effect Comments References

ENaC Nedd4-2−/− mice ↑ Amiloride (ENaC specific
inhibitor)

↓Na+ reabsorption, fibrosis,
Kim-1

Reduced Na+

reabsorption, aldosterone,
hypertension

Henshall et al.
(2017)

NKA Porcine proximal
tubular cell (LLC-PK1)

NA Marinobufagenin (NKA activator) ↑EMT Increased the protein
levels and nuclear
localization of Snail

Fedorova et al.
(2009)

UUO mice ↓ pNaKtide (NKA mimic) ↓ TGF-β1, ECM,
myofibroblasts, ROS

Inhibited Src and its
downstream effector

Cheng et al.
(2019)

5/6 nephrectomy mice NA DRm217(NKA specific antibody) ↓Renal tubular cells
apoptosis, interstitial injury,
renal fibrosis

Blocked Src activation Wang et al.
(2019b)

NHE1 Rat mesangial cells
under aldosterone

↑ Knockdown of NHE1 by shRNA ↓Fibronectin Stimulated NHE1 via the
ERK1/2 pathway

Zhang et al.
(2010)

Nephrectomy-induced
CKD mice; Rat renal
tubular cells
(NRK-52E)

NA Fucoxanthin (NHE1 activator) ↓Fibronectin, collagen, cell
apoptosis

Upregulation of NHE1 via
the PPARα pathway

Chen et al.
(2018)

KCa3.1 UUO mice model;
Mouse kidney
fibroblasts

↑ KCa3.1 Knockout TRAM-
34(KCa3.1 selective inhibitor)

↓Fibroblasts proliferation,
collagen I/III, α- SMA

Inhibited fibroblast
proliferation by cell cycle
arrest in G0-G1 phase

Grgic et al.
(2009a)

Diabetic mice; Human
renal interstitial
fibroblasts

NA KCa3.1 Knockout, TRAM-34 ↓ECM, fibroblasts activation,
MMP2, MMP9

Inhibited activation of
fibroblasts and
phosphorylation of
Smad2/3 and ERK1/2

Huang et al.
(2014a)

KCa1.1 UUO and folic acid
mice models; HK-2,
NRK-49F,
NRK52E cells

↓ KCa1.1 knockout; NS1619/
BMS191011 (channel openers)

↑Fibronectin, α- SMA,
collagen III/I; ↓fibrosis,
fibronectin, α-SMA, p-Smad2
and p-Smad3

KCa1.1 activation
accelerates TGF-β receptor
degradation through
caveolae pathway

Wang et al.
(2022)

Kv1.3 5/6 nephrectomy rat ↑ Margatoxin (selective
Kv1.3 inhibitor)

↓Leukocytes, collagen III, cell
cycle marker, Cdk4

Inhibited cell cycling,
cellular proliferation

Kazama et al.
(2012)

UUO rat ↑ Margatoxin ↓Leukocytes, α- SMA,
myofibroblast

Inhibited leukocytes
proliferation

Abe et al.
(2019)

KATP Spontaneously
hypertensive rats

↓ Iptakalim (sensitive KATP opener) ↓Blood pressure, proteinuria,
collagen IV, fibronectin,
MMP9

Inhibited endothelin 1 and
TGF-β1

Xue et al.
(2005)

Abbreviations: ↓, Decreased; ↑, Increased; UUO, unilateral ureteral occlusion; MDCK, renal distal tubular Madin–Darby canine kidney cells; HK-2, human proximal tubule cells; RTECs,

normal rat kidney tubular epithelial cells; CDX2, caudal-type homeobox transcription factor 2; MCT, murine proximal tubular epithelial cells; CTGF, connective tissue growth factor; HEK,

human Embryonic Kidney; AMPK, AMP-activated protein kinase; CLCA1, chloride channel accessory 1; SASP, senescence associated secretory phenotype.
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components of SOCE. Specifically, when the inositol 1,4,5-

trisphosphate receptor (IP3) receptor is activated, the

intracellular space in the ER is depleted by Ca2+ release, which

is sensed by STIM1 and subsequently relocated by binding to the

microtubule plus-end binding protein EB1 (shifted to the

Orai1 protein in the plasma membrane), activating CRAC and

thus facilitating Ca2+ influx (Prakriya and Lewis, 2015; Chen

et al., 2019b). SOCE plays an important role in regulating cell

migration, proliferation, apoptosis, gene regulation, and

secretion (Kim et al., 2011) (see Figure 2).

STIM/Orai-dependent SOCE is closely associated with the

progression of renal fibrosis. It was shown that Orai1 expression

was upregulated in the kidneys of UUO and high-fat diet (HDF)-

induced renal fibrosis mouse models and in renal tubular

epithelial cells from kidney biopsies of patients with fibrotic

nephropathy, such as focal proliferative sclerosis and

tubulointerstitial nephritis (Mai et al., 2016). Investigations in

HK2 cells revealed that TGF-β1-driven EMT as well as

fibronectin and α-SMA expression were significantly reduced

by Orai1 silencing that was attributed to the prevention of

abnormal Ca2+ influx and inhibition of Smad2/

3 phosphorylation (Mai et al., 2016; Ma et al., 2018). The

renoprotective effect of Orai1 deficiency was similarly

confirmed in vitro experiments in UUO mice and high-fat fed

ApoE−/− mice (Mai et al., 2016). Studies on podocytes from

diabetic nephropathy mice suggest that specific Orai1 deletion

prevents insulin-stimulated SOCE, slit-diaphragm disruption

and proteinuria, possibly due to chronic stimulation of

Orai1 activation or aberrant Ca2+ signaling, which in turn

activates Ca2+-regulated phosphatases leading to remodeling of

the actin cytoskeleton (Kim et al., 2021). Furthermore, using

siRNA to down-regulate STIM1 expression in cultured

podocytes from diabetic nephropathy rats serum could reverse

the decrease in autophagy and inhibit EMT by restoring Ca2+

homeostasis (Jin et al., 2018b; Jin et al., 2019). Spontaneously

hypertensive rats with truncated STIM1 exhibit albuminuria,

FIGURE 2
Regulation of CRAC, P2XR, TRP channels. (1) GPCR activates PLC, then further decompose the phosphorylated PIP2 into DAG and IP3. IP3 acts
on IP3R on the ER, triggering Ca2+ release leading to depletion, which is sensed by STIM and then binds and activates theORAI pore-forming channel
CRAC, facilitating Ca2+ entry. Enhanced Ca2+ promotes the phosphorylation of Smad2/3 to enhance the TGF-β1 signaling pathway, and binds to
calcineurin and promotes NFAT activity. (2) Activated P2X7R induces NLRP3 inflammasome activation by K+ efflux and catalyzes pro-IL -1β
cleavage to IL-1β, which not only promotes the TGF signaling pathway but also enhances c-myc transcriptional enhancement of fibrosis. (3)
TRPC6 promotes the fibrotic process by enhancing AKT-mTOR and ERK1/2 pathways as well as the calcineurin/NFAT pathway. DAG: diacylglycerol;
GPCR: G protein coupled receptor; IP3: 1, 4, 5-triphosphoinositol; IP3R: inositol 1,4,5-triphate receptor; PIP2: phosphorylated phosphatidylinositol
4, 5-diphosphate; PLC: phospholipase C; NFATs: nuclear factor of activated T cells; IL-1β: Interleukin-1β; NLRP3: nucleotide-binding
oligomerization domain-like receptor family pyrin domain-containing-3.
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glomerular and interstitial fibrosis (Dhande et al., 2020). Notably,

in cultured human mesangial cells, activation of glucagon-like

peptide-1 receptor (GLP-1R) or thapsigargin on SOCE inhibited

high glucose- and TGF-β1-stimulated matrix protein synthesis

(Wu et al., 2015; Huang et al., 2019). In contrast, knockdown of

Orai1 using targeted nanoparticle siRNA delivery significantly

increased fibronectin and type IV collagen expression in

mesangial cells as well as mesangial expansion by a

mechanism running through inhibition of pre-fibrotic

Smad1 and Smad3 phosphate activation (Wu et al., 2017a;

Chaudhari et al., 2017). This suggests that SOCE appears to

have complex functions in mesangial cells, with different

functions in response to high glucose or high fat stimuli in

different cell types and technical approaches. Collectively, these

results support that STIM/Orai-dependent SOCE may be an

important therapeutic approach to study the progression of renal

fibrosis.

Strong T helper 17 (Th17) cells inflammatory response

exacerbates ischemia-reperfusion-induced acute kidney injury

(AKI) and mediates inflammatory cell infiltration promoting

renal fibrosis (Peng et al., 2015; Mehrotra et al., 2017). In studies

of Th17 differentiation in AKI rats, Mehrotra et al. (2019)

revealed the important role of orai1-dependent SOCE

involved in Th17 differentiation and inflammatory responses

during AKI and AKI to CKD transformation. This was

manifested as Orai1 mutation leading to Th17 cell damage,

and almost no IL-17 was expressed in Oria1−/− cells, whereas

stimulated IL-17 expression was inhibited by SOCE antagonist.

In addition, Orai1 was consistently expressed in CD4 T cells after

recovery from AKI and the use of the SOCE pathway inhibitor

(YM58483/BPT2) significantly attenuated ischemia-reperfusion

kidney injury, which was associated with reduced Th17 cells.

Similarly, YM58483/BPT2 attenuated the progression of

inflammation, proteinuria and interstitial fibrosis induced by

exposure to angiotensin II or high salt diet I/R recovery in mice,

which is thought to be reactivated by Th17 cells (Mehrotra et al.,

2019). Thus, continued Orai1 expression may underlie the

susceptible activation of Th17 cells, suggesting that Orai-

mediated Ca2+ mechanisms may be an attractive therapeutic

target against CKD progression or immune-mediated

inflammatory renal fibrosis.

3.2 Rurinergic P2 receptors

Adenosine 5′-triphosphate (ATP) is not only an important

intracellular energy carrier, but its extracellular release also has a

role as a signaling molecule (Linden et al., 2019), for example, as a

damage-associated molecular pattern (DAMP) signal involved in

the inflammatory response to kidney tissue injury (Arulkumaran

et al., 2013). ATP signaling acts through purinergic P2 receptors,

including metabolic P2Y and ionotropic P2X, to participate in

intracellular Ca2+ regulation, fluid secretion, glomerular filtration

rate and epithelial transport (Ralevic and Burnstock, 1998;

Vallon et al., 2020). P2Y receptors have eight subtypes (P2Y1,

2, 4, 6 and 11–14) and act as a class of G protein-coupled

receptors that initiate second messenger cascade signaling by

binding ATP, thereby increasing intracellular Ca2+ release (Geyti

et al., 2008), and the P2X receptor family has seven subtypes

(P2X1~7), which are widely distributed in various cell types and

form permeable Ca2+ non-selective cation channels. In renal

tubular epithelial cells, stimuli triggered by a range of factors

including cellular mechanical stretch (e.g., increased sensory

blood flow and tubular fluid flow), pathogen invasion, cell

injury, or agonist binding can induce the release of ATP into

the extracellular space, activating the P2X receptor and allowing

the influx of Ca2+, Na+, and other cations, thereby triggering

biological effects (Monaghan et al., 2021). P2X7R and P2X4R are

key subtypes in the pathophysiology of the kidney, while they

share some commonalities including structural commonalities

and physical and functional interactions but may even have

opposite properties (Craigie et al., 2013).

P2X7R was initially identified in macrophages and

monocytes and plays an important role in the regulation of

pro-inflammation and pro-apoptosis (Arulkumaran et al., 2011).

Persistent interstitial inflammation drives worsening kidney

injury, fibrosis and functional impairment. P2X7R is involved

in the rapid processing and release of cytokines IL-1β and IL-18

and promotes apoptosis and necrosis, which is associated with

the activation of the nucleotide-binding oligomerization domain-

like receptor family pyrin domain-containing-3 (NLRP3)

inflammasome (Baron et al., 2015). Recently, it has been

observed that P2X7R serves as a possible target with potential

pro-fibrotic function in several types of fibrotic diseases (Gentile

et al., 2015). The distribution of transient expression of P2X7R

was identified in fibrotic kidneys of UUO-induced mouse model

(Goncalves et al., 2006), whereas P2X7R is usually expressed at

low levels in normal kidneys (Turner et al., 2003). Using genetic

tools, P2X7 knockout mice showed significantly reduced renal

interstitial macrophage infiltration and myofibroblast numbers

as well as TGF-β1 expression compared to wild-type mice in a

UUO model (Goncalves et al., 2006). Consistent with this

finding, Therkildsen et al. studied sporadic renal cortical

fibrosis in mice exposed to E. coli producing the virulence

factor alpha-hemolysin (HlyA), and the functional significance

of P2X7R was demonstrated by using the most potent antagonist,

brillian blue G, which significantly reduced fibrosis and

macrophage infiltration in mice with renal scarring caused by

pyelonephritis (Therkildsen et al., 2019). These results suggest

that deletion of P2X7R effectively inhibit renal fibrosis after

obstruction and infection, and macrophage infiltration seems

to be an important part of the process.

In diabetic patients, extensive renal expression of P2X7R is

associated with severe mesangial expansion and fibrosis (Menzies

et al., 2017). P2X7R activation is involved in TGF-β secretion and
ECM production in mesangial cells (Solini et al., 2005), in turn
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P2X7R deficiency prevents glomerular macrophage

accumulation and collagen IV deposition (Menzies et al.,

2017). Long-term high-fat feeding of mice resulted in renal

inflammation and oxidative stress as well as alterations in

renal structure, which were associated with

NLRP3 inflammasome activation (Stienstra et al., 2011). It

was found that P2X7R activation, NLRP3 inflammasome

formation, caspase-1 induction, pro-IL-1β, pro-IL-

18 activation all increased after “metabolic” renal injury and

were all inhibited by P2X7R silencing (Solini et al., 2013). IL-1β
activates autophagic flux to promote transcription factor MYC

accumulation, and up-regulation of MYC target genes are

essential for driving progressive renal tubulointerstitial fibrosis

(Lemos et al., 2018). Therefore, blocking the axis of P2X7R-

NLRP3 inflammasome may be an important target to protect

kidney function from fibrosis progression. This mechanism has

also been validated in the UUO model (Nam et al., 2019) (see

Figure 2). Interstitial fibroblasts in early kidney injury contribute

to kidney repair. After acute kidney injury, ATP released from

necrotic tubular cells rapidly acts on adjacent interstitial

fibroblasts by binding to P2X7R, inducing cell death

(Ponnusamy et al., 2011). P2X7 receptor blockade not only

reduces interstitial fibroblast loss but, interestingly, also

promotes renal recovery by reducing the infiltration of innate

and adaptive effector cells, increasing the infiltration of

regulatory T cells (Tregs) during recovery, and delaying renal

fibrosis and scar formation (Ponnusamy et al., 2011; Koo et al.,

2017). Thus, these reports confirm that P2X7R plays a key role in

the development and progression of renal fibrosis, providing a

critical target and direction for the treatment of renal fibrosis.

In contrast to P2X7R, P2X4R has a nephroprotective effect in

the UUO mouse model (Kim et al., 2014). Vallon et al. (2020)

speculated that the reason may be related to the fact that P2X4R

controls T cell migration and induces its toxic function

subsequently promoting fibroblast apoptosis. However, the

role of P2X4R in fibrosis progression needs to be carefully

understood, as ATP-P2X4 signaling can likewise induce

activation of the NLRP3 inflammasome, exacerbating the

progression of renal tubulointerstitial inflammation and

fibrosis (Chen et al., 2013; Han et al., 2020).

3.3 TRP channels

Transient receptor potential (TRP) channels are a large

family of Ca2+ permeable channels that are widely expressed

in a variety of cells types. Since the original TRP genes appeared

in Drosophila, at least 27 TRP genes have been identified in

mammals (Wu et al., 2010). As an important pathway for Ca2+ to

flow into the cytoplasm, TRP channels regulate Ca2+ to

depolarize cell membranes, change enzyme activities, and

achieve signal cascade response (Zheng, 2013). Based on

differences in their amino acid sequences and topologies, TRP

channels can be divided into seven subfamilies (canonical TRPC,

vanilloid TRPV, melastatin TRPM, polycystin TRPP, ankyrin

TRPA, mucolipin TRPML, and NompC-like TRP) (Nelson et al.,

2011). Although TRP channels belong to the non-voltage gated

Ca2+ superfamily, they share similarities in structural features,

including six transmembrane segments (S1-S6) as well as

intracellular NH2 and COOH terminations and a pore lining

(composed of S5 and S6), which subunits complement each other

to form a tetramer (Hardie, 2011). As an integral membrane

protein of cells, TRP channels integrate multiple stimuli

including temperature, smell, pH, pressure, mechanical

stimuli, chemical reagents, herbs as well as poisons and

respond to intracellular Ca2+ signaling, participating in a

variety of pathophysiological processes (Vriens et al., 2008;

Moran et al., 2011). Several studies have linked different

fibrotic disease types, including renal fibrosis, to TRP channels

(Inoue et al., 2019; Okada et al., 2021). Here, we will describe a

few typical examples of the role of TRP channels in renal fibrosis,

due to the large size of the TRP channel family and limited space.

TRPC3/6/7 is a constitutively active receptor-operated

channel that can be regulated by various signaling molecules

such as phosphatidylinositol 4,5-bisphosphate (PIP2),

diacylglycerol (DAG), ATP, calmodulin and reactive oxygen

species (Lemonnier et al., 2008). These TRPC proteins can be

activated by stretching under mechanical stress and amplify

downstream cellular signals coupled by the integrated

stimulus via calcium permeation and membrane

depolarization (Scott et al., 2006). The potential role of

TRPC3 and TRPC6 in renal fibrosis has been studied in an

animal model of UUO induction, and both of them are

upregulated in the obstructed kidney (Saliba et al., 2015; Wu

et al., 2017b). TRPC3 channels, accompanied by direct Ca2+

influx, have been shown to promote renal fibroblast

proliferation, myofibroblast differentiation, and extracellular

matrix remodeling upon the DAG and the DAG generating

angiotensin II (Ang II), which was notably reduced by the

TRPC3 channels inhibitor pyr3 or siRNA knockdown (Saliba

et al., 2015). The mechanism underlying increased interstitial

fibroblasts proliferation and inflammation may involve Ca2+

entry via TRPC3, which activates and phosphorylates

extracellular signal-regulated kinase (ERK1/2), a major

regulator of the cell cycle (Saliba et al., 2015). TRPC3−/− mice

exhibit diminished renal injury, inflammation, and protection

against UUO-induced renal fibrosis (Saliba et al., 2015). The

contribution of TRPC3 to the fibroblast fibrogenic response may

also be related to its physical interaction with NADPH oxidase 2

(NOX2), a membrane-bound reactive oxygen species (ROS)-

producing enzyme (Numaga-Tomita et al., 2017).

TRPC6, as described above, is considered to be another key

TRPC channel subtype in the progression of renal fibrosis. The

functional significance of TRPC6 channels in pathogenesis of

renal diseases, including focal segmental glomerulosclerosis

(FSGS), diabetic nephropathy, immune-related nephropathy
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and chronic kidney disease was extensively studied [more details

see the review (Hall et al., 2019)]. TRPC6 expression is

significantly increased in UUO induced fibrotic mice as

compared to normal renal tissue (Wu et al., 2017b), and also

activated under ROS produced by NADPH oxidase (NOX) as

TRPC3 (Kim et al., 2013; Ilatovskaya et al., 2018). Directly tested

for its involvement in the activation of EMT by AKT-mTOR and

ERK1/2 pathways in UUO mouse kidneys, BTP2 (a nonselective

TRPC6 inhibitor) or TRPC6 knockdown was found to blunt this

effect (Kong et al., 2019; Zhang et al., 2020) (Figure 2). Blockade

of TRPC6 with another selective inhibitor BI-749327 observed

similar protection in obstructed kidneys (Lin et al., 2019). Indeed,

TRPC6-dependent elevation of cellular solute Ca2+ activates

calcineurin, which stimulates the nuclear factor of activated

T cells (NFAT) transcriptional pathway to induce fibroblast

differentiation (Davis et al., 2012; Lin et al., 2019; Gu et al.,

2020). Studies have demonstrated that TRPC6 and NFAT form a

mutual positive feedback loop that aggravates the renal fibrosis

(Nijenhuis et al., 2011). TRPC6 channel also affects components

of the innate immune response. It has been reported that

TRPC6 channels regulate CXC chemokine receptor 2

(CXCR2)-related chemotaxis by mediating Ca2+ influx

(Lindemann et al., 2013), promoting renal tubular cell

senescence and renal fibrosis by inducing mitochondrial

dysfunction (Meng et al., 2022). Interestingly, Klotho, a

single-channel type 1 transmembrane protein with anti-renal

fibrotic effects, had no effect on obstruction-induced fibrosis in

TRPC6 knockout mice, suggesting that the renal protective effect

of Klotho in UUO is partly mediated through inhibition of

TRPC6 (Satoh et al., 2012; Wu et al., 2017b). In diabetic

nephropathy, excessive activation of TRPC6 channel activity

plays an important role in podocyte apoptotic injury

(Staruschenko et al., 2019), and Wnt/β-catenin signaling

pathway may be active in this process (Li et al., 2013).

Notably, TRPC6 knockdown had no effect on

tubulointerstitial inflammation and fibrosis in autoimmune

glomerulonephritis and aging rats, although it significantly

reduced glomerular sclerosis (Kim et al., 2019; Kim and

Dryer, 2021), indicating that targeting TRPC6 may have

disease specificity in the treatment of glomerular diseases.

Overall, the understanding of TRPC3 and TRPC6 in renal

fibrosis pathogenesis has expanded in recent years and may

facilitate the development of emerging therapeutic strategies.

The TRPV1 channel subtype is a polymodal cation channel

involved in cellular environmental crosstalk and has emerged as

an important player in the regulation of related diseases such as

inflammation, cancer and immune diseases through the

integration of physical or chemical stimuli (Bujak et al., 2019).

TRPV1 is abundantly expressed in renal tissues, especially in the

renal pelvis, and is involved in the regulation of renal

hemodynamics and excretory function (Feng et al., 2008; Li

and Wang, 2008). Capsaicin activation of TRPV1 greatly

alleviated renal fibrosis in UUO and hyperadenine-fed mouse

models by reducing myofibroblast activation and preventing

phenotypic alterations in renal tubular epithelial cells, and this

mechanism is associated with inhibition of TGF-β1-Smad2/

3 signaling (Liu et al., 2022). In a mouse model of

deoxycorticosterone acetate (DOCA) -salt induced

hypertension, TRPV1 knockdown exaggerated renal injury

including renal cortical tubulointerstitial injury, fibrosis, and

macrophage infiltration, accompanied by increased ECM

protein and activation of TGF-β signaling pathway (Wang

et al., 2008; Wang and Wang, 2011). In addition, the

nephroprotective effect of TRPV1 activation has also been

demonstrated in models of diabetic nephropathy and ischemic

renal injury (Chen et al., 2014; Wei et al., 2020). Interestingly,

TRPV1 knockout mice exhibit a younger metabolism as well as a

longer lifespan, predicting that TRPV1 is associated with

metabolic disorders, obesity, and aging (Riera et al., 2014).

The vanilloid TRPV4 channel appears to act differently in

different models of fibrosis. Increasing evidence suggests that key

vanilloid TRPV4 channel subtypes regulate myofibroblast

differentiation in cardiac fibrosis, pulmonary fibrosis by

integrating mechanical and soluble signals from ECM stiffness

and TGF-β1 (Adapala et al., 2013; Rahaman et al., 2014).

However, in hypertensive kidney, Wei et al. found that

TRPV4-dependent rise of cytosolic Ca2+ activated by apigenin

triggered AMP-activated protein kinase (AMPK)/sirtuin 1

(SIRT1) pathway and further inhibited TGF-β1/Smad2/

3 signaling pathway and extracellular protein expression in

renal mesangial and tubular epithelial cells.

TRPV4 knockdown abolished this beneficial effect of

hypertension-induced renal fibrosis (Wei et al., 2017). The

underlying mechanism between TRPV4 and renal fibrosis still

needs further elaboration.

The melastatin TRPM7 channel subtype is a bifunctional

protein comprised of a cation channel segment linked to an α-
type protein kinase domain (Takezawa et al., 2004).

TRPM7 promotes SOCE enhancement through its kinase

function and increases Ca2+-dependent pro-inflammatory and

pro-proliferative cytokine effects (Schilling et al., 2014; Faouzi

et al., 2017). TRPM7 is significantly upregulated in UUO kidneys

compared to normal mice (Suzuki et al., 2020), and its

upregulation reportedly contributes to fibrosis (Xu et al.,

2015a). Suzuki et al. (2020) showed that inhibition of

TRPM7 using NS8593, a small conductance K+ channel

inhibitor, directly blocked TRPM7 currents, reduced UUO

kidney injury, and attenuated renal fibrosis and atrophy. Also,

the TGF-β1/Smad signaling pathway was inhibited in this

process. Indeed, Smad2 is a substrate of TRPM7 kinase, and

inhibition of TRPM7 reduces the expression of TGF-β1/Smad

signaling pathway, which contributes to the reduction of renal

interstitial and tubular epithelial cell proliferation and ECM

production. TRPM7 channel activity is critical for intracellular

Mg2+ homeostasis (Ryazanova et al., 2010), and alterations in

Mg2+ metabolism may be associated with
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TRPM7 downregulation (Sontia et al., 2008). Aldosterone

mediates blood pressure-independent renal fibrosis and

inflammation via Mg2+-sensitive pathways (Sontia et al.,

2008), suggesting that TRPM7 is involved in the pathogenesis

of aldosterone-associated renal fibrosis. However, additional

fundamental research is needed to identify specific

mechanisms of TRPM7 and Mg2+ in renal fibrosis.

4 Na+ transport

Na+ is an important extracellular cation that maintains

cellular excitability and is involved in the regulation of water-

electrolyte homeostasis, acid-base balance, vascular,

neurological, and secretory functions (Greger, 2000). Renal

Na+ reabsorption is a precisely regulated and controlled

process by multiple physiological mechanisms, and has

recently received widespread attention. In particular,

mechanistic studies of sodium-glucose co-transport have been

used as a promising approach for treatment in diabetic

nephropathy, and in addition, Na+ transport is an important

pathological mechanism in salt-sensitive hypertension and cystic

kidney fibrosis. Na+ channels are usually altered under

pathological regulation, for example, TGF-β1-induced EMT is

accompanied by an increase in intracellular Na+ and water

content, suggesting that Na+ channels may be relevant in

mediating the EMT process (Lamouille and Derynck, 2007;

Rajasekaran et al., 2010). Here, we focus on the role of the

epithelial sodium channel (ENaC), Na+, K+-ATPase (NKA), and

Na+-H+ exchangers (NHE) in renal fibrosis.

4.1 ENaC

ENaC is a non-voltage gated amiloride-sensitive ion channel

and is involved in maintenance of Na+ homeostasis and fluid

balance by controlling Na+ transport in the extracellular fluid of

the lumen to epithelial cell (Rotin and Staub, 2021). ENaC is

typically composed of structurally similar α, β and γ subunits and
formed a heterotrimer expressed in several epithelia, including

those of the renal collecting duct, urinary bladder, distal colon,

and lung (Hanukoglu and Hanukoglu, 2016). In addition to the

regulation of aldosterone sensitivity, extracellular Na+, proteases,

lipids, angiotensin and other factors also regulate ENaC activity

through complex mechanisms (Rotin and Staub, 2021). Chronic

ENaC dysregulation has been shown to be the perfect culprit for

salt-sensitive hypertension in humans, given its power to

accelerate Na+-induced damage and water movement through

the plasma membrane (Mutchler et al., 2021). However. the

functional significance of ENaC channels in renal fibrosis

independent of hypertension has been less studied.

In pulmonary and cardiac fibrotic diseases, increased ENaC

activity has been shown to be an important mechanistic

participant (Jia et al., 2018; Duerr et al., 2020). Increased Na+

flux uptake in response to ENaC activation promotes skin

fibroblast activation and collagen marker synthesis through

the PI3K/Akt signaling pathway, which can be reduced by

ENaC blockade (Xu et al., 2015b). However, the deletion of

ENaC subunit reportedly causes decreased myogenic self-

regulation, leading to renal inflammation and injury with

elevated TGF-β1 and collagen III (Drummond et al., 2011),

and in turn increased TGF-β1 can reduce ENaC functional

activity in epithelial cells (Chang et al., 2008), implying that

ENaC decreases in a positive feedback manner in response to

renal injury. Li et al. (2007) previously showed that the

expression of α, β and γ-ENaC is significantly decreased in

the kidney of ureteral obstruction rats when compared to

normal tissues, and these changes may lead to the dysfunction

of water and Na+ metabolism partly through upregulation of

cyclooxygenase-2 (COX-2) signaling (Norregaard et al., 2005).

Using the same UUO rat model in another study, Yang et al.

demonstrated that breviscapine (a flavonoid derived from the

herb) prevented the downregulation of γ-ENaC in the obstructed

kidney induced by UUO, and significantly reduced the response

to renal tubular interstitial fibrosis (Mei et al., 2016). To date, the

exact mechanisms of ENaC regulation and release in renal

fibrosis remain uncertain, and there are numerous

controversies, particularly regarding ENaC expression in

different fibrotic disease states and at different stages of

fibrosis development.

ENaC on the plasma membrane of the distal nephron, as

mentioned above, is normally regulated by various hormones

such as aldosterone. As an important regulator of salt

reabsorption by mineralocorticoids, serum- and

glucocorticoid-inducible protein kinase1(SGK1) triggers a

cascade reaction that phosphorylate NEDD4-2, a

Nedd4 family ubiquitin protein ligase, to interacts with ENaC

via the carboxy-terminal Pro-Tyr motif on the channel subunit.

NEDD4-2 deletion prevents this interaction and serves as a

ligand for increased ENaC activity (Harvey et al., 2001). For

example, in ADPKD, increased apical ENaC expression and

enhanced Na+ reabsorption due to mislocalization of NEDD4-

2 are important pathogenic mechanisms (Kaimori et al., 2017).

Henshall et al. (2017) showed that renal-tubule-specific NEDD4-

2-deficient mice, accompanied by increased Na+ reabsorption,

resulted in significant fibrotic kidney injury, inflammation and

apoptosis of renal tubular epithelial cells as compared to normal

mice, and using amiloride, a specific inhibitor of ENaC, inhibited

ENaC activity and reduced the extent of kidney lesions. In

addition, NEDD4-2-deficient mice are sensitive to dietary Na+

due to dysregulation of ENaC (Manning et al., 2020), which

further drives the progression of renal interstitial injury and

fibrosis through activation of Wnt/β-catenin and TGF-β
signaling under a high-Na+ diet, and interestingly low Na+

diets can rescue this effect, suggesting an important role of

ENaC-regulated Na+ homeostasis in renal fibrosis (Manning
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et al., 2021) (Figure 3). High levels of Na+ also affect vascular

tissue remodeling and fibrosis by impairing phenotypic changes

in endothelial cells. Studies have shown that amiloride inhibition

of ENaC improves endothelial function, reduces cortical stiffness,

and significantly reduces arterial fibrosis and sclerosis in mice

(Martinez-Lemus et al., 2017). Moreover, ENaCα subunit

deficiency in endothelial cells protects the kidney from

ischemic injury by promoting eNOS activation, increasing

dependent NO production, and renal perfusion (Tarjus et al.,

2019). However, the mechanism by which this elevated Na+

reabsorption by ENaC in renal tubules and endothelial cells

causes kidney injury and fibrosis remain to be fully understood.

Furthermore, ENaC dysfunction can promote renal fibrosis

by facilitating the development of polycystic kidney disease

(PKD), and the mechanism may be related to the elimination

of antisecretory absorption and purinergic signaling regulation

(Pavlov et al., 2015; Sudarikova et al., 2021). Although inhibition

of ENaC such as amiloride is not a routine treatment for

hypertension because of its lower efficacy compared to other

diuretics, the refracted regulatory mechanism of ENaC in fibrosis

cannot be ignored andmay become a new tool in the treatment of

renal fibrosis.

4.2 Na+, K+-ATPase

Na+, K+-ATPase (NKA) is a cell membrane P-type active

cationic hetero-oligomer composed of three subunits, the

catalytic α-subunit, the glycosylated β-subunit and the γ-
subunit (Feraille and Dizin, 2016). NKA is located primarily

in the basolateral membrane and provides the driving force for

Na+ reabsorption in the apical renal epithelium. ATP-dependent

transport of one pump enables three Na+ outputs in exchange for

two K+ entering the cell (Dyla et al., 2020). In addition to acting as

an ion transporter protein to maintain cellular ion homeostasis,

NKA is also involved in other important cellular processes such

as signaling through protein interactions and cell adhesion.

Long-term and systematic studies emphasized the

importance of NKA in the pathology of renal fibrosis. Firstly,

NKA activity and expression were significantly reduced in renal

FIGURE 3
ENaC, NKA, NHE1 and renal fibrosis. Aldosterone binds to the intracellular salt corticosteroid receptor (MR), induces the expression of Na+

transport regulators such as SGK1, and phosphorylation inhibits NEDD4-2, which ubiquitinates and degrades ENaC. Increased ENaC activity
contributes to PKD disease progression and affects blood pressure throughNa+ reabsorption, andNEDD4-2 deficiency also promotes fibrosis via the
Wnt/β-catenin and TGF-β pathways. Na+, K+-ATPase acts as a scaffolding protein that interacts with CTS to activate Src and then trans-activates
EGFR involving a cascade reaction leading to reactive oxygen species generation, which leads to downstream activation of ERK, AKT, MAPK in
addition to further activation of NKA. NHE1 promotes renal tubule survival through PI3K/Akt and regulation of cell volume. In addition, ENaC is
located in the apical membrane, while NKA and NHE -1 are mainly located in the basolateral membrane. CTS, cardiotonic steroids; PKD, polycystic
kidney disease; EGFR, epidermal growth factor receptor; FAK, focal adhesion kinase; FAK, focal adhesion kinase; ERK, extracellular-signal-regulated
kinase; MAPK, mitogen-activated protein kinase; PI3K, Phosphatidylinositol 3-kinase.
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fibrous tissue from patients with diabetic nephropathy and in the

kidneys of acute UUO-induced animal models (Li et al., 2003;

Rajasekaran et al., 2010). The cardiotonic steroid (CTS)

marinobufagenin (MBG) stimulates NKA signaling has many

adverse pathological effects on kidney disease, such as

upregulating the expression of the EMT-related transcription

factor Snail (Fedorova et al., 2009). Elkareh et al. (2007) also

found that MBG stimulates fibroblast collagen synthesis and lead

to fibrosis in renal and cardiovascular tissues, which appears to be

associated with amplification of ROS production in feed-forward

mechanisms via activation of Src-EGFR (Yan et al., 2013).

Passive immunization against MBG improves renal function

and attenuates renal fibrosis in a model of kidney disease

(Haller et al., 2014). In addition, Cheng et al. (2019) found

that targeting NKA-mediated signaling with pNaKtide (a peptide

inhibiting NKA) markedly attenuated UUO-induced renal

fibrosis. They further found that inhibition of Src activation

and its downstream ERK1/2, p38 mitogen-activated protein

kinase (MAPK) and AKT signaling pathways were the main

mechanisms of the antifibrotic effects of pNaKtide.

Telocinobufagin is a novel cardiotonic steroid with similar

mechanistic effects in the kidney (Kennedy et al., 2018).

Further study demonstrated that target-specific NKA was also

effective. In a 5/6 nephrectomized rat model, using the NKA

antagonist DRm217 alleviated glomerular atrophy and inhibited

tubulointerstitial injury and fibrosis (Wang et al., 2019b).

Therefore, targeting NKA inhibition is an important target for

renal fibrosis (see Figure 3). CD40 receptor activation in the renal

tubular epithelium is known to contribute to kidney injury and

fibrosis (Haller et al., 2017). Recent studies have shown that

knockdown of the NKA α1 heterodimer or loss of the functional

NKA/Src cascade complex leads to a decrease in CD40, whereas

rescue of the α1 heterodimer restores CD40 expression in renal

epithelial cells (Xie et al., 2018), suggesting that NKA is a novel

signaling mechanism for CD40 in the pathogenesis of renal

injury and fibrosis.

Notably, in renal epithelial cells, RNAi-mediated specific

knockdown of NKA-β1 induced loss of fibroblast phenotype,

whereas ectopic expression of NKA-β1 reduced TGF-β1-
mediated EMT, suggesting that NKA plays an important role

in maintaining and shaping a well-differentiated phenotype of

epithelial cells (Rajasekaran et al., 2010). Indeed, this may be

related to the involvement of NKA-β1 in the assembly of tight

junctions and the generation of epithelial cell polarity by

including intracellular ion gradients, synergistic effects of

E-cadherin, and regulation of MAPK, RhoA GTPase, and

stress fibers (Rajasekaran and Rajasekaran, 2003).

4.3 NHE

Na+-H+ exchangers (NHEs) are membrane proteins

widely present in mammals and are directly or indirectly

involved in maintaining intracellular pH, cell volume

regulation, cell proliferation migration and apoptosis

(Orlowski and Grinstein, 1997). Nine well-characterized

isoforms have been identified, of which NHE1-NHE5 are

mainly located on the plasma membranes of different cell

types and NHE6-NHE9 are restricted to intracellular

organelles (Zhao et al., 2016). All NHE members appear to

exist in the form of dimers, although the transfer function is in

the form of monomers. NHE1 was the first to be identified,

and in the kidney it is commonly expressed in the proximal

tubule along the basolateral membrane of polarized epithelial

cells (Coupaye-Gerard et al., 1996).

Apoptosis of renal tubular epithelial cells usually leads to

tubular atrophy and renal fibrosis associated with CKD

progression (Grgic et al., 2012; Schelling, 2016). It is well

known that an important feature of apoptosis is a decrease in

cell volume. Well-characterized ion channels and transporter

proteins such as Cl−/HCO3
−-exchanger and the Na+-K+-2Cl−

cotransporters (NKCC) are largely not expressed in the

proximal tubule, making NHE1 particularly important as a

regulatory volume increase (RVI)-mediated defense of renal

tubular epithelial cells against apoptosis (Okada et al., 2001).

Reduced expression of NHE1 in proximal tubules was noted

in ureteral obstruction models (Manucha et al., 2007). A

recent study found that fucoxanthin (extracted from

brown seaweed) increased NHE1 expression, reduced

tubular apoptosis and interstitial fibrosis, and improved

renal function in CKD mice. This process involves the

peroxisome activated receptor alpha (PPARα) pathway

(Chen et al., 2018). The pro-survival effect of NHE1 has

been demonstrated in various animal models of kidney

disease (Wu et al., 2003; Khan et al., 2006; Manucha et al.,

2007). In addition, Hydrogen ion extrusion-induced

cytoplasmic alkalinization (Lagadic-Gossmann et al., 2004)

and activation of the PI3K/Akt pathway induced by NHE1

(Wu et al., 2004) are equally important pro-survival

mechanisms. As late NHE1 activity decreases, sustained

apoptotic stimulation overcomes the pre-NHE1 effect,

allowing the cells to move toward apoptosis and fibrosis.

In addition to facilitating Na+-H+ exchange and acting as a

pro-survival factor, NHE1 is able to act as a molecular

scaffolding platform to direct the formation of signaling

complexes (Karydis et al., 2009). Indeed, NHEs are

common targets of various inflammatory, oxidative stress

stimuli and the increase in cell volume itself induces

multiple changes in cell function and gene expression

through the activation of osmotic signaling pathways (Lang

et al., 1998). It was reported that NHE1 expression was

stimulated after aldosterone treatment and that NHE1 was

able to mediates aldosterone-associated fibronectin

accumulation in rat mesangial cells through the ERK1/

2 pathway, this direct effect could be ameliorated by

shRNA-NHE1 (Zhang et al., 2010). Another study stresses
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the critical role of NHE-1 in an adriamycin (ADR)-induced

glomerulosclerosis rat model, where NHE-1 mRNA

expression was significantly enhanced, and high sodium

diet accelerated interstitial fibrosis and further increased

NHE1 expression, this effect could be prevented by

amiloride (although not a specific NHE1 inhibitor) (Okuda

et al., 1994). In addition, long-term lithium exposure is

associated with chronic interstitial fibrosis, and the use of

amiloride to partially reduce NHE1 activity can attenuate

lithium-induced interstitial fibrosis, but the exact

mechanism is not clear (Kalita-De Croft et al., 2018).

Interestingly, activated NHE1 is required for early cardiac

hypertrophy and hepatic stellate cell proliferation in mice, yet its

effect on renal fibroblasts has been poorly studied (Benedetti

et al., 2001; Mraiche et al., 2011). Thus, we believe that NHE is a

promising but understudied new direction for renal fibrosis

research, since NHE1 can act as a predictor of fibrosis and

targeting NHE1 does not inhibit basal exchange activity,

which is the basis of ion homeostasis, but the mechanism

needs to be better understood by more studies.

5 K+ channels

K+ channels are the most common and diverse superfamily of

ion channels that are widely distributed in a variety of cell types and

selectively allow the movement of K+ ions across the cell. K+

channels play an important role in the physiological and

pathophysiological processes of cells, are involved in regulating

cell proliferation, apoptosis, inflammation, immunity, and

epithelial transport across a broad spectrum of the kidney

(Welling, 2016). Importantly, K+ channels regulate resting

membrane potential and therefore play a key role in cellular

excitability. As an important contributor to setting membrane

potential, K+ channels regulate cell cycle progression (membrane

potential is not constant in the cell cycle, e.g., plasma membrane

hyperpolarization occurs between G1 and S phases, while

depolarization is necessary for cells to move from G2 to M) and

help ensure the driving force of Ca2+ entry to influence cell cycle

progression (Urrego et al., 2014). Dysregulation of the renal cell cycle

is closely associated with renal fibrosis (Wu et al., 2021), especially

renal tubular epithelial cells (TEC), and therefore we can speculate

that K+ channels play an important role in renal fibrosis.

Furthermore, as previously mentioned, the promotion of K+

efflux through K+ channels promotes the activation of

NLRP3 inflammasome, which release inflammatory factors and

thereby promote fibrogenesis (Solini et al., 2013; Di et al., 2018).

There are generally four functional classes of K+ channels defined

based on their structure, biophysical properties, and physiology:

Ca2+-activated K+ channels (called KCa), voltage-gated K+ channels

(called Kv), and others (inwardly rectifying K+ channels (Kir)and

tandem pore domain K+ channels (K2P)channels) (Gonzalez et al.,

2012).

5.1 Ca2+-activated K+ channels

As the name implies, KCa channels, a subgroup of K+

channels, are activated by intracellular micromolar Ca2+ and

display different single-channel conductance to K+ ions, serving

as an important link between cellular Ca2+ and electrical signaling

(Rothberg, 2012). KCa channels are widely distributed in almost

all cell types where they regulate a variety of cellular functions,

including vascular tone, blood pressure, transmitter delivery, cell

volume, membrane potential, and proliferation (Stocker, 2004).

Based on their single channel conductance, the KCa channels

were initially divided into three main types: large conductance

Ca2+ -activated K+ channels (BK or KCa1.1), small (SK or

KCa2.1–2.3), and intermediate conductance (IK or KCa3.1)

(Wei et al., 2005).

Differences regarding the mechanisms of Ca2+ activation

have revealed the division of KCa channels into two well-

defined classes, as KCa1.1 is usually activated by the

synergistic effect of voltage and cytoplasmic Ca2+ increase,

while KCa2.1–2.3 and KCa3.1 channels, which share the same

Ca2+/calmodulin (CaM)-mediated gating mechanism, are only

gated by cytoplasmic Ca2+ increase (Fanger et al., 1999;

Kaczmarek et al., 2017). To obtain the properties required for

targeted activation, KCa channels are usually positioned close to

physiological Ca2+ release sites, such as cell surface, endoplasmic

reticulum storage release sites, and ultimately controlled by their

switches. When a Ca2+ channel opens, the increased Ca2+

concentration activates all nearby KCa channels. The opening

of KCa channels such as KCa3.1 regulates the rapid K+ efflux,

leading to a high degree of hyperpolarization of the plasma

membrane (a negative shift of the membrane potential

towards the K+ equilibrium potential), which in turn increases

the electrochemical driving force of Ca2+. Importantly this has

been shown to occur during renal fibrosis, with increased

KCa3.1 expression reportedly recorded from fibrotic kidneys

of patients with diabetic nephropathy compared to normal

(Huang et al., 2013), as well as KCa1.1 in fibrotic kidneys of

mice (Wang et al., 2022). Here in this review we will discuss the

intermediate conductance KCa3.1 channels and the large

conductance BK channels that are most relevant to the

particular topic.

5.1.1 The KCa3.1 channel
The KCa3.1 channel is a tetrameric trans-membrane protein

encoded by the gene KCNN4. Each subunit consists of six

transmembrane structural domain with a pore between the

fifth and sixth domain. The channel is insensitive to voltage

due to the lack of a voltage-sensing structural domain, and is

gated solely by internal Ca2+ ranging from 100 to 300 nM

(Mcmanus, 1991; Ishii et al., 1997). Unlike KCa1.1 channels

(binding directly to the channel), Ca2+ is normally bound to CaM,

which is constitutively associated with the intracellular channel

through the C-terminus, leading to a conformational change and
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subsequent opening of the KCa3.1 channel (Fanger et al., 1999).

Functionally, KCa3.1 is involved in the regulation of membrane

potential, Ca2+ signaling and cell volume in almost all cells. It was

found that KCa3.1 channels play an important role in the RVD

response in different cell types (Khanna et al., 1999; Wang et al.,

2003), deletion of KCNN4 inhibits the ability of T lymphocytes

and erythrocytes to regulate osmotic changes in mice (Begenisich

et al., 2004), and as mentioned before, activation of

KCa3.1 channels and the resulting K+ efflux would cause an

exaggerated Ca2+ influx by hyperpolarization/repolarization of

the plasma membrane and loss of electric potential against Ca2+

influx (see Figure 4A). KCa3.1-mediated Ca2+ influx is

pathologically associated with various diseases including

inflammation, atherosclerosis, autoimmune diseases, and

cancer, and has been shown to play an important role in

promoting mitogenic and proliferative features of tissues

(Chou et al., 2008; Feske et al., 2015).

Recent studies have examined the role of KCa3.1 in

mediating renal fibrosis. Grgic and colleagues showed that in

mouse renal fibroblasts, mitogenic stimulation with the mitogen

basic fibroblast growth factor (bFGF) upregulated

KCa3.1 expression, and the KCa3.1-specific inhibitor TRAM-

34 suppressed renal fibroblast proliferation in a dose-dependent

manner through cell cycle arrest in the G0/G1 phase, which

normally requires membrane hyperpolarization and increased

Ca2+ inward flow (Grgic et al., 2009a). They also indicated that

KCa3.1 was upregulated in fibrotic kidneys of mice induced by

UUO, and again KCa3.1-deficient mice or mice treated with

TRAM-34 markedly reduced the number of myofibroblasts and

delayed renal fibrosis in mice after ureteral obstruction when

compared to control mice (Grgic et al., 2009a). Huang et al.

(2014a) further demonstrated that blockade of

KCa3.1 attenuated renal fibrosis in a diabetic mouse model,

and the downregulation of collagen synthesis, α-smooth

muscle actin as well as the reduction in fibroblast activation

supported this result. Importantly, in human renal interstitial

fibroblasts, TRAM34 inhibited cell activation induced by TGF-β1
and also reduced the expression of fibrosis-related genes matrix

metalloproteinase-2 (MMP2) and MMP9 (Huang et al., 2014a),

suggesting a prominent role of targeting KCa3.1 in reversing

renal fibroblast activation.

KCa3.1 plays an important role in TGF-β1 signaling andmay

be mediated through Smad3, P38, or ERK1/2 phosphorylation

pathways (Huang et al., 2014b). Huang et al. (2014b)

demonstrated that TGF-β1-induced current through

KCa3.1 channels was inhibited by TRAM34 using patch

clamp technique in human proximal tubule cells. Actually,

TGF-β enhanced KCa3.1 activity, which in turn contributed

to the activation of mitogen-activated protein kinase signaling

and increased expression of monocyte chemoattractant protein-1

(MCP-1), which is critical to the pathogenesis of renal fibrosis

(Huang et al., 2014b). Furthermore, both in human proximal

tubule cells and in mouse kidney, high glucose-induced elevation

of cytokine CCL20 expression and NF-κB binding activity were

significantly associated with KCa3.1 (Huang et al., 2014c),

suggesting that cytokine-induced renal injury may be

FIGURE 4
Diagram illustrating KCa3.1 channels activity regulating Ca2+ influx-dependent fibrosis pathway and regulation of KATP channels opening. (A).
KCa3.1 channels form a positive feedback loop with Ca2+ channels. TGF -β exposure promotes Ca2+ inward flow, and Ca2+ binding to the
KCa3.1 channel CAM allosterically opens the channel, creating a membrane hyperpolarization or repolarization that further promotes Ca2+ inward
flow, thereby triggering Ca2+ channels-mediated renal fibrosis. (B). ATP binds to Kir6 subunits to inhibit the channel, while KATP opens in
response to ADP dissociation at the SUR subunit. The iptakalim (a novel KATP channel opener) can open KATP channels to inhibit renal fibrosis. CAM,
calmodulin; KCa3.1, Ca2+-activated K+ channel 3.1; KATP, ATP-sensitive K+ channels.
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mediated through modulation of K-channel activity. At the

immune level, KCa3.1-mediated intracellular Ca2+ influx and

membrane potential are required for T cell, macrophage and

mast cell migration and inflammatory chemokine and cytokine

production (Cruse et al., 2006; Toyama et al., 2008), and

inhibition of KCa3.1 using TRAM34 reduces renal fibrosis in

diabetic mice by inhibiting the generation of pro-inflammatory

cytokines and macrophage infiltration (Huang et al., 2014c).

KCa3.1 is also associated with TGF-β1-induced premature

senescence and mesangial cell proliferation (Fu et al., 2014).

Taken together, these results suggest that KCa3.1 may

represent a highly promising approach for the future

treatment of renal tubulointerstitial fibrosis, and that

inhibition of KCa3.1 may have more benefits than inhibition

of myofibroblasts, possibly through direct effects on a variety of

cells including fibroblasts, but also through indirect effects on

inflammatory and immune cells.

5.1.2 BK channels
BK channels, also called as KCa1.1, maxiK, slo1, are activated

in response to elevated intracellular Ca2+ and membrane

depolarization. Structurally BK channels are homotetramers in

which the four α-subunits of the pore formation are encoded by

the gene KCNMA1 (Lee and Cui, 2010). Each α subunit consists

of seven transmembrane regions (S0-S6), with these different

structural domains responsible for various functions. The

S0 region at the N-terminus on the outer side of the

membrane is usually associated with regulatory BKβ subunits,

and the S1-S4 regions contain voltage sensors (with several

positively charged residues) that make these channels sensitive

to voltage. Four structural domains (S7- S10) carrying

hydrophobic fragments extend from the intracellular

C-terminus. the S7 and S8 domains form the regulator of

conductance of K (RCK1) region, while the S9 and

S10 regions allow Ca2+ binding in the so-called “Ca2+ bowl”

(Cui et al., 2009; Ge et al., 2014). Activated K+
fluxes are variably

modulated by intracellular voltage or ligand sensors through pore

structures in response to various stimuli, thereby linking cellular

signaling and membrane excitability.

A recent study indicates that BK channels play a key role in

the prevention of renal fibrosis. Wang et al. (2022) reported that

BK protein expression was reduced in renal tissue of UUO- or

folate-induced fibrotic mice when compared to control mice, and

that BK-deficient mice were more susceptible to renal fibrosis.

Pharmacological activation of BK channels effectively prevented

the development of renal fibrosis and protected renal function by

inhibiting TGF-β/Smad signaling. Their further study of the

mechanism revealed that BK channels could accelerate the

degradation of TGF-β receptors through caveolae pathway,

thereby achieving inhibition of the TGF-β signaling pathway

(Wang et al., 2022). Inconsistent with these studies, BK channels

appear to mediate glomerular pathological processes in high

glucose cultured rat mesangial cells and induce the expression

of collagen IV, fibronectin, TGF-β1 and Smad2/3 (Wu et al.,

2020). This may be related to BK cell specificity as well as

complex mechanisms. Studies on how BK channels alter

epithelial cell responses to TGF-β via ion flux or downstream

signaling mediators and which are the key cell types remain

poorly understood.

5.2 Kv1.3

Kv1.3 is a member of the large and common voltage-

dependent K+ channel (Kv) superfamily that is widely

expressed in all organisms and is known to consist of several

subfamilies (Kv1-4), of which Kv1.1-1.7 has been extensively

studied. Kv1.3 was originally identified in T lymphocytes, and

consists of four identical α subunits forming a homotetramer,

each consisting of six transmembrane structural domains (S1-S6)

and a P-loop. Among them, S4 segment is responsible for

channel membrane voltage sensing, while S5 and S6 form a

central pore structural domain, which has a highly sensitive

selectivity for K+ ions (Perez-Verdaguer et al., 2016). Kv 1.3 is

involved in a wide range of physiological and pathological

processes, including Ca2+ signaling, cell volume regulation,

cytokine secretion, energy homeostasis, cell proliferation and

migration, and plays an important role in chronic inflammation,

cancer progression, autoimmune diseases and other processes

(Wulff et al., 2009; Serrano-Albarras et al., 2018; Wang et al.,

2019c).

Kv1.3 is a key regulatory protein in the immune response and

is highly expressed in activated effector T cells. Selective blockade

of Kv1.3 channels modulates Ca2+ signaling influx patterns and

inhibits T cell transcription and proliferation, thereby exerting

immunosuppressive actions (Orban et al., 2013; Perez-Garcia

et al., 2018). Kv1.3-mediated renal fibrosis is closely associated

with inflammatory immune responses and fibrogenic cytokines.

Previous studies have shown that Kv1.3 in T lymphocytes is

involved in the pathogenesis of renal diseases, including acute

glomerulonephritis, lupus nephritis and chronic kidney disease,

and that its expression would contribute to disease progression

(Grgic et al., 2009b; Hyodo et al., 2010; Kazama et al., 2012;

Khodoun et al., 2020). In the advanced stages of congestive heart

failure (CHF), upregulation of Kv1.3 channels activates the

proliferation of regulatory T cells (Tregs), which promotes

cardiac fibrosis by secreting the fibrotic cytokine TGF-β (Shao

et al., 2018). Kazama et al. (2012), Kazama (2015) found diffuse

interstitial fibrosis with leukocyte infiltration in the kidney of 5/

6 nephrectomy rats, and Kv1.3 channel expression was

upregulated in proliferating leukocytes in fibrotic kidneys.

Importantly, inhibition of Kv1.3 channels using the selective

blocker margatoxin significantly inhibited renal lymphocyte

proliferation and ameliorated the progression of renal fibrosis.

Their team further demonstrated the effectiveness of targeting

lymphocyte Kv1.3 channels in the treatment of renal fibrosis
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using the UUO mouse model (Abe et al., 2019). Furthermore,

stimulation with TGF-β significantly induced an increase in

Kv1.3 density and outward K+ current amplitude, and the

Kv1.3 channel inhibitor regulated the expression of the TGF-β
in mouse microglia (Schilling et al., 2000), hypothesizing that

Kv1.3 channel inhibitors have a similar mechanism to alleviate

renal fibrosis by regulating the expression of the cytokine TGF-β.
In conclusion, it is necessary to conduct a more thorough

study on the protective effect of Kv1.3 on renal fibrosis through

the regulation of immune cell function to provide attractive ideas

for the prevention and treatment of renal diseases.

5.3 ATP-sensitive K+ channels

The typical ATP-sensitive K+ (KATP) channels are

ubiquitous hetero-octameric complexs consisted of at least

two proteins: the pore-forming subunit belonging to the

Kir6.0 family (Kir6.1 or Kir6.2) and the sulfonyl binding

regulatory subunit (SUR1 or SUR2) (Rodrigo and Standen,

2005; Tinker et al., 2018). Structurally, the tetramer composed

by the kir6 family subunits forms a K+-selective pore-forming

channel that is surrounded by four SUR protein subunits.

Energy switch located at the cytoplasmic end of the channel

lumen, where ATP binds to the Kir6 subunit to provide energy

for channel closure, while SUR has an ADP binding site and

ADP dissociation leads to a sustained “activation state”

(Nichols et al., 2013). In other words, KATP channels open

in response to a decrease in cellular ATP (see Figure 4B).

However, cells ordinarily contain millimolar ATP, while

channels open in response to micromolar concentrations,

which makes channel opening rare. In this way, as

endogenous metabolic sensors, KATP channels have been

suggested to play a key role in matching membrane

electrical excitability to the energy metabolic state, as well

as in processes including maintenance of glucose homeostasis,

energy, systemic blood pressure, and vascular tone regulation

(Seino and Miki, 2003; Flagg et al., 2010). The evidence on the

role of KATP in renal fibrosis is limited and remains of

particular interest. Xue et al. (2005) reported that KATP

channel subunit SUR2, Kir6.1 mRNA expression was

upregulated in renal tissue of hypertensive rats. Iptakalim,

a novel KATP channel opener, regulated Kir6.1 overexpression

(no effect on SUR2) and inhibited the accumulation of

extracellular matrix components [fibronectin, collagen IV,

MMP-9 and tissue inhibitor of MMP 1 (TIMP-1)] in the

kidney of hypertensive rats, protecting renal function and

preventing fibrosis progression. They also found that this

effect was accompanied by a decrease in the expression of

TGF-β1, endothelin 1 in the kidney during hypertensio (Xue

et al., 2005). Despite the limited data, we believe that KATP is a

promising new direction for research in renal fibrosis and look

forward to new research findings in this area.

6 Conclusion

Undoubtedly, years of research established that studies

regarding physiology, pathology and mechanism of ion

channels in renal fibrosis have gradually become a hotspot in

our description, and the feasibility of ion channels in the

treatment and intervention of diseases has been confirmed by

an increasing number of trials. In addition to their function as

channels, the interactions between ion channels and proteins

indicate their involvement in different processes such as

proliferation, apoptosis, atrophy, cell cycle, cell acidity,

cytoskeletal structure, immune and cell volume regulation, all

of which are related to renal fibrosis. Although efforts to

characterize how ion channels perform these important

functions have somewhat provided us with mechanistic

insight, there are still numerous unanswered questions and

even controversy. It is important to emphasize that chloride

channels are a promising and novel direction in renal fibrosis

research, but the potential relationship between them and

intracellular acidification, how they connect as channel

regulators and integrate cellular signaling and function still

needs to be catalogued. The availability of new pharmacology

based on the genetic properties, structural differences and gating

mechanisms of different chloride channels may allow for more

successful therapies in the future. Although STIM and Orai have

emerged as core elements of highly evolutionarily conserved Ca2+

channels, there are still large gaps in signaling pathways, isoform

differences as well as cell and tissue specificity. There is an urgent

need to develop specific drugs targeting the exciting P2X7/TRPC

channel, however, research on the differential regulatory

mechanisms of different subtypes and drug development are

still worth exploring. The role of Na channels and transporters in

the renal fibrosis pathway should not be ignored. We are looking

forward to the pharmacological and genetic targeting studies of

ENaC protein on renal fibrosis. An equally exciting pathways in

renal fibrosis is potassium handling; in the future, hopefully more

K+ channel agonists or inhibitors will be used in this area. It must

be emphasized that the crosstalk between various ion channels is

complex and the coordinated functioning of the entire channel

network determines ion homeostasis in the kidney, which is

reflected in the complex pathological features of most renal

diseases. Understanding the rules of channel interactions

remains an important challenge for successful intervention in

various forms of renal fibrosis. In addition, the abundance of

scientific research tools is essential for the accurate measurement

of channel regulation within some cells. At last, since ion

channels are widely expressed in most cells and tissues, drugs

designed for channel-related diseases should focus more on tissue

and subtype specificity to avoid safety issues, and precise

intracellular delivery of novel modulators based on

nanoplatforms might be a promising option. Overall,

continually refining our understanding of the ion channel

transport mechanisms that underlie renal fibrosis will
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undoubtedly expand therapeutic possibilities, and more research is

needed to decipher the complex chain of events in renal fibrosis.
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