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Abstract 8 
In untargeted metabolomics, multiple ions are often measured for each original metabolite, 9 
including isotopic forms and in-source modifications, such as adducts and fragments. Without 10 
prior knowledge of the chemical identity or formula, computational organization and interpretation 11 
of these ions is challenging, which is the deficit of previous software tools that perform the task 12 
using network algorithms. We propose here a generalized tree structure to annotate ions to 13 
relationships to the original compound and infer neutral mass. An algorithm is presented to 14 
convert mass distance networks to this tree structure with high fidelity. This method is useful for 15 
both regular untargeted metabolomics and stable isotope tracing experiments. It is implemented 16 
as a Python package (khipu), and provides a JSON format for easy data exchange and software 17 
interoperability. By generalized pre-annotation, khipu makes it feasible to connect metabolomics 18 
data with common data science tools, and supports flexible experimental designs. 19 
 20 
Introduction 21 
Metabolomics is becoming an increasingly important tool to biomedicine. Untargeted LC-MS 22 
(liquid chromatography-mass spectrometry) metabolomics is key to perform high-coverage 23 
chemical analysis and discoveries. The term "annotation" in metabolomics often includes i) the 24 
assignment of measured ions to their original compounds, and ii) establishing the identity of the 25 
compounds (Domingo-Almenara et al, 2018; Blaženović et al, 2019). For clarity, we refer the first 26 
step as "pre-annotation" in this paper, which is the assignment of isotopes, adducts and fragments 27 
to the unique compounds. Correct pre-annotation will greatly facilitate the later step of 28 
identification, by reducing errors on analyzing and searching the redundant ions. Multiple software 29 
tools have been developed for this purpose of pre-annotation, including CAMERA (Kuhl et al, 30 
2012), Mz.unity (Mahieu et al, 2016), xMSannotator (Uppal et al, 2017), MS-FLO (DeFelice et al, 31 
2017), MetNet (Naake and Fernie, 2018), CliqueMS (Senan et al, 2019), Binner (Kachman et al, 32 
2020) and NetID (Chen et al, 2021). 33 
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In high-resolution mass spectrometry, the m/z (mass to charge ratio) difference between isotopes 34 
is usually resolved unambiguously. Adducts are formed in the ionization process, therefore, those 35 
from the same original compound should have the same retention time in chromatography. 36 
Besides adduct ions, formation of conjugates and fragments (including neutral loss) also belongs 37 
to in-source modifications. Isotopes, adducts and fragments are often referred as redundant or 38 
degenerate peaks in LC-MS literature. All pre-annotation tools utilize the m/z differences between 39 
peaks, which correspond to the mass differential between isotopes, or between atoms or chemical 40 
groups. In addition, having the same retention time is a critical requirement to group these 41 
degenerate peaks. Some tools also use similarity in the shape of elution peaks and sometimes 42 
statistical correlation between peak intensity across samples. Such correlations can be supporting 43 
evidence but are not a prerequisite (Mahieu et al, 2016). 44 
 45 
Most pre-annotation tools use a network representation of degenerate peaks. Because the 46 
pairwise relationships between peaks are established first, then it is natural to connect the pairs 47 
into networks by using pairwise relationships as edges and shared peaks as nodes. Such 48 
networks still contain redundant and often erroneous edges. The main challenge remains to 49 
resolve how all peaks are generated from the same original compound, which requires a) inferring 50 
the neutral mass of the original compound, and b) establishing the relationship of all peaks to the 51 
original compound. Given the difficulty of organizing this information in untargeted metabolomics, 52 
the coverage of untargeted analyses is often called to question. 53 
 54 
A couple of notable studies tried to address the question of coverage using isotope tracing in 55 
untargeted metabolomics, and suggested that a small number of metabolites are actually 56 
measured and the majority of peaks are "junks", either from contaminations, isotopes or LC-MS 57 
artifacts (Mahieu and Patti, 2017; Wang et al, 2019). A new challenge also arose that analyzing 58 
these isotope tracing data by global metabolomic is not trivial. So far, isotope tracing experiments 59 
usually require targeted metabolites and specialized software (Chokkathukalam et al, 2013; 60 

Bueschl et al, 2017; Previs and Downes, 2020; Rahim et al, 2022). In untargeted analysis, without 61 

prior knowledge of the chemical formulas, special experimental designs are required and the 62 
software tools are tied to the designs, which are the cases for X13CMS (Huang et al, 2014; Llufrio 63 
et al, 2019) and PAVE (Wang et al, 2019). It is highly desirable to have a generic and flexible tool 64 
to process untargeted isotope tracing metabolomics, and to enable more flexible data analysis 65 
and modeling. 66 
 67 
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In this study, we propose a generalized tree structure to assign relationship of each ion to the 68 
original compound and infer its neutral mass. The pre-annotation software tool, khipu, is freely 69 
available as a Python package. It is applicable to both regular untargeted metabolomics and 70 
stable isotope tracing data, and helps plug metabolomics data easily into common data science 71 
tools. 72 
 73 
Results 74 
The combination of isotopes and adducts is a 2-tier tree.  75 
The redundant or degenerate ions in mass spectrometry can be from in-source modifications 76 
(adducts, fragments and conjugates) on any of the isotopic forms. For simplicity, we only consider 77 
adducts in the initial steps. The combination of isotopes and adducts leads to a grid of mass 78 
values, relative to the neutral mass of M0, exemplified in Table 1. We use M0 to denote the 79 
molecules with only 12C atoms. The isotopes are denoted as 13C/12C, 13C/12C*2, etc., whereas 80 
the last digit is the number of 13C atoms present in each molecule. 81 
 82 
The adducts can be represented as a tree (Figure 1A), using the neutral form as the root, which 83 
is usually not measured in mass spectrometry. Each edge in the tree corresponds to a specific 84 
mass difference, from the reaction forming the adduct. In fact, the full grid in Table 1 can be 85 
accommodated into the tree, using isotopes as leaves to the adducts. Two arguments favor the 86 
tree as a preferred data structure over a generic network: 1) each ion measured in mass 87 
spectrometry is formed from a specific “predecessor”, and 2) the whole group of ions are from a 88 
unique compound, which is the "root". In computational terms, a network becomes a tree once it 89 
fulfills the two requirements: 1) each node can have no more than one predecessor and 2) a 90 
unique root. The benefit of this tree representation is important, allowing automated interpretation 91 
of all ions via defined semantics. 92 
 93 
Because the isotopes are present independently from each other at the time of measurement, we 94 
treat them equally as one tier of the tree here. It is noted that the generation of them may have 95 
biochemical significances in isotope tracing experiments, but that problem is outside data 96 
processing and annotation. Therefore, the combination of isotopes and adducts, as exemplified 97 
in Table 1, can be represented as a 2-tier tree. The tree can either use adducts as tier 1 or isotopes 98 
as tier 1. The decision is to use adducts as tier 1, because a) adduct mass patterns are more 99 
distinct, and b) isotopes are often limited by abundance, resulting only M0 ions in many 100 
compounds. 101 
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 102 
An algorithm to convert a mass distance network to a 2-tier tree.  103 
Annotation methods in MS metabolomics commonly start by searching mass difference patterns, 104 
e.g. 1.0034 for 13C/12C in isotopes and 22.9893 for Na+ in adducts. Each match leads to a pair 105 
of ions (also called features), and many pairs are connected via shared ions into a network of ions 106 
(Figure 1B). During the mass difference search, additional redundancy is introduced, e.g. the 107 
mass difference between 13C and 12C is the same as between 13C/12C*2 and 13C/12C*3, and 108 
so forth. This network redundancy is apparent in the top part of the network in Figure 1B. The 109 
objective in annotation is to identify the true root (original compound) from the network, which has 110 
been challenging in previous works. 111 
 112 
As biological reactions are not part of data annotation here, the edges in our mass distance 113 
networks belong to one of the two categories: isotopic differences or in-source modifications 114 
(Figure 1B). A key observation is that all ions connected by isotopic edges belong to the same 115 
adduct. Therefore, subnetworks per adduct can be defined from a mass distance network (Figure 116 
1C). Once these isotopic subnetworks are abstracted into individual network nodes, we can find 117 
the best alignment between this abstracted network (Figure 1C) and the adduct tree (Figure 1A). 118 
The algorithm is designed as two-step optimization: to obtain a tree with optimal number of ions 119 
explained in the alignment of adduct trees, then in the alignment of isotopes. The result of this 120 
algorithm on our example network is shown in Figure 1D. To match our 2-tier tree structure, the 121 
networks have to become directed acyclic graph (DAG). During this process, erroneous edges 122 
are weeded out because they do not satisfy DAG and a rooted tree. This method yields a 123 
structured and unique annotation of each ion in the tree. Based on the matched m/z values, the 124 
neutral mass of M0 compound is obtained by a regression model. Once the core structure of a 125 
tree is established, additional adducts and fragments can be searched in the data. The algorithm 126 
is implemented into a freely available Python package khipu. 127 
 128 
Khipu plots allow intuitive interpretation of isotope tracing data. 129 
After ions are grouped into a tree for each original compound, they are recorded into transparent 130 
JSON format, as defined for empirical compounds (see examples in Supplemental notebook). 131 
An “empirical compound” refers to a tentatively defined compound in metabolomics data, used in 132 
our previous projects (Li et al, 2013, Pang et al, 2020), as the technology may not deliver definitive 133 
identification or resolve a mixture (e.g. isomers not successfully separated).  134 
 135 
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We continue using the compound in Figure 1 B-D to illustrate the khipu plotting functions. Each 136 
ion is measured with an intensity value in one of more biological samples. While the tree 137 
visualization in Figure 1D is useful, khipu includes multiple functions to visualize the features, m/z 138 
values, intensity values as data frame tables (Supplemental notebook), to facilitate intuitive 139 
interpretation of each compound. An enhance visualization of the tree is demonstrated in Figure 140 
2A, where the adducts are organized as a “trunk” and isotopes as “branches”. It’s clear that 141 
several isotopes are present as the protonated ion; Na and K adducts are present for the more 142 
abundant isotopes. Because this visualization style resembles the khipu knot records used by 143 
Andean South Americans, we named our software “khipu”. 144 
 145 
This experimental dataset was from cultured E. coli, containing three unlabeled samples and three 146 
samples grown on U-13C-glucose. Figure 2B visualizes the intensity values across samples for 147 
the M+H+ ion. The three unlabeled samples have high M0 peaks, and smaller 13C/12C (M1) 148 
peaks due to the naturally occurring isotopes. The U-13C labelled samples have the highest 149 
peaks at 13C/12C*9 (M9), with smaller peaks of other isotopes. This indicates that the latter 150 
samples are almost fully labelled by 13C, and the compound should contain 9 carbon atoms. The 151 
neutral mass inferred by khipu is 187.1686, which matches to acetylspermidine, which has a 152 
chemical formula C9H21N3O, perfectly consistent with the isotopic pattern. 153 
 154 
As a pre-annotation took, khipu is positioned to feed organized data for downstream data 155 
analysis. Users can choose to model the isotopes and compute flux using other tools (Moseley 156 
2010; Millard et al, 2012). Khipu results can be easily used by other software and analyzed 157 
using common data science tools (demo notebooks included in the code repository). JSON 158 
(JavaScript Object Notation) is a common format for data exchange between software programs 159 
and web applications, and one of khipu export formats. This enables an effective way for 160 
sharing metabolite annotation, which is human friendly, computable, and neutral to software 161 
platforms. A snippet of khipu export in JSON is as follows: 162 

{'interim_id': 'root@187.1686', 163 
 'neutral_formula_mass': 187.1686, 164 
 'MS1_pseudo_Spectra': [ 165 
      {'id': 'F2353', 166 
      'mz': 188.1759, 167 
      'rtime': 20.57, 168 
      'representative_intensity': 25299447.0, 169 
      'isotope': 'M0', 170 
      'modification': 'M+H+', 171 
      'ion_relation': 'M0,M+H+'}, 172 
      {'id': 'F1741', 173 
      'mz': 197.2061, 174 
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      'rtime': 20.57, 175 
      'representative_intensity': 16395781.0, 176 
      'isotope': '13C/12C*9', 177 
      'modification': 'M+H+', 178 
      'ion_relation': '13C/12C*9,M+H+'}, 179 
      ..., 180 
  ], 181 
 'MS2_Spectra': []} 182 

 183 
How many metabolites do we measure? 184 
Proper pre-annotation is key to answer the question of how many metabolites/compounds are 185 
measured in an experiment, which is a matter that has been debated for over a decade. Many 186 
studies overestimated the coverage because the database search was inflated by 187 
redundant/degenerate features/ions. Studies from the Patti and Rabinowitz labs used isotope 188 
tracing techniques, and suggested the numbers are around 1,000~2,000 in E. coli and yeast 189 
(Mathieu and Patti, 2017; Wang et al, 2018). Our khipu software now provides systematic and 190 
fast pre-annotation on metabolomic datasets. 191 
In our E. coli data (reverse phase ESI+), 3,602 LC-MS features were measured, and khipu 192 
annotated 548 empirical compounds (trees) from 1,745 features. Among the 548 empirical 193 
compounds, 445 have multiple isotopes (Figure 3A). The remaining 1,857 features are 194 
singletons, i.e., not grouped with any other features. In two yeast datasets from Rabinowitz lab, 195 
khipu annotation resulted in 1,775 and 908 empirical compounds, respectively in ESI+ and ESI- 196 
modes (Figure 3B&C). In the yeast datasets, we included additional adducts from Wang et al 197 
(2021), which by design did not increase the number of empirical compounds, but increased the 198 
explained ESI+ features from 6,310 to 8,049, and from ESI- features 2,601 to 2,912. These results 199 
suggest that less than 2,000 compounds were reliably measured in these experiments. Of note, 200 
closer examination of each dataset should also remove contaminants, which is not part of khipu.  201 
 202 
Discussion 203 
Annotation of untargeted metabolomics data, including isotopic tracing data, is still not fully 204 
solved. Many current tools take a network approach but depend on assumed base ions or 205 
formulas to assign relationship between ions. We present a new algorithm here to resolve the 206 
mass distance networks into a tree structure, unambiguously defining ion relationships and 207 
inferring neutral mass. This approach shall reduce false annotations, and facilitate new compound 208 
identification and discoveries. We consider the pre-annotation with khipu a key step forward, also 209 
because it ships with generalized annotation format, which will greatly facilitate data exchange 210 
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and software interoperability. With this foundation, future benchmarking and improvements are 211 
expected.  212 
 213 
Multiple Jupyter notebooks are provided as part of the software package to demonstrate how 214 
khipu is plugged into common data science tools. This gives great flexibility to people in using 215 
both regular and isotope tracing metabolomics data, because the computational methods, as well 216 
as experimental designs, are no longer limited by rigid software designs. This is an emerging 217 
model in data science. Traditional software development is often too costly, and its maintenance 218 
is even more challenging (Chang et al, 2021). Fundamentally, no software developer can meet 219 
every demand via point-and-click interface. Scientific data analysis has to depend greatly on 220 
scripting. The combination of modular software components, transparent data structures and 221 
Jupyter notebooks opens up many opportunities for collaborations and scientific progress (Pittard 222 
et al, 2020). 223 
 224 
Khipu can be easily reused by other software tools. We plan to integrate it with the preprocessing 225 
software asari (Li et al, 2022), whereas elution patterns can be better determined than from 226 
standalone feature tables. The standard input to khipu is tab delimited feature tables, which 227 
should be compatible with any LC-MS preprocessing software. Therefore, it will be easy to 228 
incorporate it into metabolomics workflows, where complete annotation can take into 229 
consideration of contaminants, authentic libraries and tandem mass spectrometry data. 230 
 231 
 232 
Methods 233 
Python implementation: Khipu is developed as an open source Python 3 package, and available 234 
to install from the standard PyPi repository via the pip tool. It is freely available on GitHub 235 
(https://github.com/shuzhao-li/khipu) under a BSD 3-Clause License. The graph operations are 236 
supported by the networkx library, tree visualization aided by the treelib library. Khipu uses our 237 
package mass2chem for search functions. The data model of “empirical compound” is described 238 
in the metDataModel package. The package is designed in a modular way to encourage reuse. 239 
The classes of Weavor and Khipu contain main algorithms, supported by numerous utility 240 
functions. All functions are documented in the source via docstrings. Examples of reuse are given 241 
in wrapper functions and in Jupyter notebooks. It can be run as a standalone command line tool. 242 
Users can use a feature table from any preprocessing tool as input and get annotated empirical 243 
compounds in JSON and tab delimited formats. 244 
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 245 
LC-MS metabolomics data. The dry extracts of unlabeled and 13C labeled E. coli (Cambridge 246 
Isotope Laboratories, Inc.; Catalog number: MSK-CRED-DD-KIT) were reconstituted in 100 μL of 247 
ACN/H2O (1:1, v/v) then sonicated (10 mins) and centrifuged (10 mins at 13,000 rpm and 4°C) 248 
before overnight incubation at 4°C. The supernatant for each 12C/13C E. coli extract was collected 249 
and then prepared for LC-MS analysis. Metabolite extraction was carried out using 250 
acetonitrile:methanol (8:1, v/v) containing 0.1% formic acid. All samples were vortexed and 251 
incubated with shaking at 1000 rpm for 10 min at 4°C followed by centrifugation at 4°C for 15 min 252 

at 15,000 rpm. The supernatant was transferred into mass spec vials and 2 µl injected into 253 
UHPLC-MS. All samples were maintained at 4 °C in the autosampler, and analyzed using a 254 
Thermo Scientific Orbitrap ID-X Tribid Mass Spectrometer coupled to a Thermo Scientific 255 
Transcen LX-2 Duo UHPLC system, with a HESI ionization source, using positive ionization. A 256 
Hypersil GOLDTM RP column (3 µm, 2.1 mm x 50 mm) maintained at 45 ºC was used. 0.1% 257 
formic acid in water and 0.1% formic acid in acetonitrile were used as mobile phase A and B 258 
respectively. The following gradient was applied at a flow rate of 0.4 ml/min: 0-0.1 min: 0% B, 259 
0.10-1.9 min: 60% B, 1.9-5.0 min: 98% B, 5.00-5.10 min: 0% B and 4.9 min cleaning and column 260 
equilibration. The chromatographic run time was 5 min followed by 5 min washing step after each 261 
sample. The MS settings are: spray voltage, 3500 V; sheath gas, 45 Arb; auxiliary gas, 20 Arb; 262 
sweep gas, 1 Arb; ion transfer tube temperature, 325 °C; vaporizer temperature, 325 °C; mass 263 
range, 80-1000 Da; maximum injection time, 100 ms; resolution 60,000. 264 
 265 
The yeast data from Chen et al. 2021 were retrieved from the MassIVE repository 266 
(https://massive.ucsd.edu, ID no. MSV000087434). The yeast ESI+ data contain both unlabeled 267 
and 13C isotope labeled samples, while the ESI- data did not involve isotope tracing, The data 268 
from Mathieu and Patti (2017) and Wang et al (2018) were not found publicly. All datasets were 269 
processed using asari version 1.9.2 (https://github.com/shuzhao-li/asari). The yeast ESI- dataset 270 
was quality filtered for signal-noise-ratio > 100 to serve as a cleaner demo.  271 
  272 
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Tables 273 
 274 
Table 1. Combinations of isotopes and adducts generate mass differences as a grid. 275 
The mass values are relative to the 12C only neutral mass. Examples are using a limited 276 
number of isotopes and in-source modifications in positive ionization.  277 
 278 

 M+H[+] M+NH4[+] M+Na[+] M+HCl+H[+] M+K[+] M+ACN+H[+] 
M0 1.007276 18.033826 22.989276 36.983976 38.963158 42.033825 
13C/12C 2.010631 19.037181 23.992631 37.987331 39.966513 43.03718 
13C/12C*2 3.013986 20.040536 24.995986 38.990686 40.969868 44.040535 
13C/12C*3 4.017341 21.043891 25.999341 39.994041 41.973223 45.04389 
13C/12C*4 5.020696 22.047246 27.002696 40.997396 42.976578 46.047245 
13C/12C*5 6.024051 23.050601 28.006051 42.000751 43.979933 47.0506 
13C/12C*6 7.027406 24.053956 29.009406 43.004106 44.983288 48.053955 

  279 
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Figures 280 
Figure 1. The khipu algorithm converts a mass distance network to a tree structure.  281 
A) An adduct tree base on Table 1. Mass differences on the edges are relative to the 282 
predecessor nodes. 283 
B) An example mass distance network from our credentialed E. coli dataset, which contains 284 
both unlabeled and 13C labeled samples. Edges in red are from isotopic patterns and edges in 285 
black from adduct patterns. 286 
C) The isotopic subnetworks can be treated as individual nodes, then the abstracted network 287 
has only adduct edges, which facilitates the alignment to the theoretical adduct tree in A).  288 
D) Resulted 2-tier tree. The root is inferred neutral mass. No ion is assigned to ACN or HCl 289 
adducts. Decimal numbers should be consistent with that in Table 1. 290 

 291 
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 292 
Figure 2. Visualization using khipu facilitates interpretation of isotope tracing data. 293 
A) An example khipugram plot for the compound in Figure 1, with its 13 ions aligned to the tree 294 
in Figure 1D. Each dot represents an ion measured in the data, the size of dots proportional to 295 
average intensity. The vertical dashed lines are colored for easy navigation, and the colors are 296 
of no particular meaning. 297 
B) Bar plot for intensity values of the M+H+ ion in different isotopes (x-axis) for three 12C 298 
samples and three 13C samples (in color legend). This is from the first branch in A). 299 
 300 

 301 
 302 
 303 
 304 
 305 
 306 
 307 
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Figure 3. Number of measured compounds in three metabolomic datasets. 308 
A) Credentialed E. coli data generated in this study. B) Previously published yeast ESI+ and C) 309 
ESI- datasets from Rabinowitz lab (Wang et al. 2021). Khipu annotation on these datasets took 310 
2~6 seconds on a laptop computer of Intel i7 CPU. The orange portions are referred as 311 
“singletons”. 312 
 313 

 314 
  315 
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Supplemental File:  316 
 317 
data_analysis_ecoli_pos.pdf 318 
A Jupyter Notebook printed to PDF format to demonstrate khipu applications.  319 
  320 
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