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Abstract

Objectives The aim of this study was to evaluate the feasibil-
ity and accuracy of dual-layer spectral detector CT (SDCT) for
the quantification of clinically encountered gadolinium
concentrations.

Methods The cardiac chamber of an anthropomorphic tho-
racic phantom was equipped with 14 tubular inserts con-
taining different gadolinium concentrations, ranging from
0 to 26.3 mg/mL (0.0, 0.1, 0.2, 0.4, 0.5, 1.0, 2.0, 3.0, 4.0,
5.1, 10.6, 15.7, 20.7 and 26.3 mg/mL). Images were ac-
quired using a novel 64-detector row SDCT system at 120
and 140 kVp. Acquisitions were repeated five times to
assess reproducibility. Regions of interest (ROIs) were
drawn on three slices per insert. A spectral plot was ex-
tracted for every ROI and mean attenuation profiles were
fitted to known attenuation profiles of water and pure
gadolinium using in-house-developed software to calcu-
late gadolinium concentrations.

Results At both 120 and 140 kVp, excellent correlations
between scan repetitions and true and measured gadolin-
ium concentrations were found (R>0.99, P<0.001;
ICCs>0.99, CI 0.99-1.00). Relative mean measurement
errors stayed below 10% down to 2.0 mg/mL true
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gadolinium concentration at 120 kVp and below 5% down

to 1.0 mg/mL true gadolinium concentration at 140 kVp.

Conclusion SDCT allows for accurate quantification of gad-

olinium at both 120 and 140 kVp. Lowest measurement errors

were found for 140 kVp acquisitions.

Key Points

* Gadolinium quantification may be useful in patients with
contraindication to iodine.

* Dual-layer spectral detector CT allows for overall accurate
quantification of gadolinium.

o Interscan variability of gadolinium quantification using
SDCT material decomposition is excellent.

Keywords Dual-energy CT - Dual-layerspectral detector CT -
Contrast media - Gadolinium - Material decomposition

Abbreviations
CI Confidence interval
CT Computed tomography

DECT Dual-energy computed tomography
HU Hounsfield units

ICC Intraclass correlation coefficient
keV Kilo electron volt

kVp Kilovoltage peak

mAs Milliampere second

MDI  Material decomposition imaging

MR Magnetic resonance

NIST  National Institute of Standards and Technology
ROI Region of interest

SBI Spectral-based images

SDCT Dual-layer spectral detector computed tomography
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Introduction

Material decomposition imaging (MDI) using dual-energy
computed tomography (DECT) was first described by
Hounsfield in 1973 [1]. Different materials, which cannot be
distinguished on the basis of attenuation number, can be dis-
tinguished with the use of material decomposition algorithms
using DECT acquisitions [2—4]. Materials with high atomic
numbers, such as iodine (Z=53) and gadolinium (Z=64),
show characteristic high attenuation profiles at low energies
owing to a substantial contribution of the photoelectric effect
to the attenuation [5]. MDI uses these characteristic attenua-
tion profiles to differentiate these contrast agents from other
materials. MDI has not been widely applied in clinical practice
until recently. Over the past few years several CT vendors
have made DECT commercially available for daily clinical
practice. Recently a novel DECT technique has become com-
mercially available, which uses a single tube with a dual-layer
detector capable of differentiating between low and high en-
ergy X-ray photons, and is further investigated in this study.
One of the most widely researched MDI applications is quan-
titative mapping of iodine distribution in tissues. The resulting
maps can be used as a surrogate for tissue perfusion. Early evi-
dence has shown the clinical capability of iodine quantification
with DECT at a specified time point for the detection of myocar-
dial [6-12] and pulmonary perfusion defects [13—16]. In addi-
tion, DECT iodine mapping is capable of tumour mass charac-
terization and therapy response assessment [17-19]. However,
iodine contrast administration, while safe in most patients, is
associated with contrast-induced allergic reactions and nephrop-
athy which can cause acute renal dysfunction [20, 21] and sig-
nificant morbidity and mortality, especially in high-risk patients
[22, 23]. In patients with contraindications to iodinated contrast
media, gadolinium-enhanced magnetic resonance (MR) angiog-
raphy can be used as an alternative. However, depending on the
indication, MR angiography may have poor diagnostic value
compared to (DE)CT angiography. Gadolinium-based CT has
been used off-label in higher doses as an alternative for conven-
tional CT angiography with diagnostic image quality [24, 25].

Fig. 1 Phantom setup. a
Anthropomorphic thoracic
phantom with a plastic holder
placed in the cardiac chamber. b
Representative plastic holder
filled with 5 tubular inserts, with
surrounding 2% agar gel solution
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With the use of DECT, higher attenuation can be achieved at low
(monochromatic) energies, which could enable the use of much
lower gadolinium concentrations [26, 27]. In addition, accurate
gadolinium quantification using DECT could allow for a quanti-
tative evaluation of contrast agent distribution in tissue as a sur-
rogate for tissue perfusion using MDI. Therefore, accurate gad-
olinium quantification combined with increased attenuation
could potentially open up the possibility for gadolinium as an
alternative contrast agent for DECT imaging in patients with
contraindications to iodinated contrast media.

In several studies the feasibility of gadolinium-enhanced
DECT has been reported in phantom and animal models
[28-31]. These studies described the capability of spectral dif-
ferentiation and visualisation [28-30] and accuracy of quantifi-
cation [31] of gadolinium using DECT. However, the accuracy
of gadolinium quantification using the novel dual-layer spectral
detector CT system (SDCT) is unknown. Therefore, the aim of
the current study was to evaluate the feasibility and accuracy of
gadolinium quantification using a SDCT system.

Materials and methods
Phantom design

An anthropomorphic chest phantom (QRM GmbH,
Moehrendorf, Germany) was used. The phantom resembles a
chest with corresponding X-ray attenuation behaviour. The phan-
tom has a cylindrical cardiac chamber in which a plastic holder
was placed (Fig. 1). Three plastic holders were made, two
consisting of five tubular inserts, and one consisting of three
tubular inserts with surrounding 2% agar gel solution. In addi-
tion, a plastic holder with one tubular insert containing water with
surrounding 2% agar gel solution served as control. The fourteen
32-mL tubular inserts contained different concentrations of the
gadolinium-based contrast agent gadobutrol (Gadovist 1.0,
Bayer Healthcare, Berlin, Germany). One millilitre of this con-
trast agent contains 157.25 mg gadolinium. Different amounts of
gadobutrol were diluted in water, resulting in the following
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concentrations of gadolinium: 0.0, 0.1, 0.2, 0.4, 0.5, 1.0, 2.0, 3.0,
4.0,5.1, 10.6, 15.7,20.7 and 26.3 mg/mL, which is equivalent to
0.000, 0.001, 0.002, 0.002, 0.003, 0.006, 0.013, 0.019, 0.026,
0.032, 0.068, 0.100, 0.132 and 0.167 mmol/mL, respectively.

Concentrations were chosen to mimic an estimated clinical
range of gadolinium concentrations encountered after injec-
tion of 0.1-0.2 mmol of gadolinium per kilogram. Strich et al.
[32] measured percentage dose of gadolinium-based contrast
agent per gram of tissue in healthy rabbit organs 5 min after
admission, resulting in the following percentages: 0.052%/g
heart, 0.073%/g lungs, 0.037%/g liver, 0.037%/g spleen and
0.250%/g kidney. On the basis of these percentages, an esti-
mation of gadolinium concentrations encountered at each or-
gan can be calculated. At 31.5 mg/kg bodyweight (equal to
0.2 mmol/kg) gadolinium administration, a human subject of
70 kg would receive a total of 2201.5 mg gadolinium. On the
basis of the percentages determined by Strich and colleagues,
gadolinium distribution in the heart 5 min after injection
would be 0.00052 % 2201.5 mg, or 1.15 mg per gram myocar-
dium. Myocardial muscle has a specific gravity of 1.05 g/mL
[33], implicating an estimated gadolinium concentration en-
countered in the myocardium of 1.15 mg/g x 1.05 g/mL, or
1.21 mg/mL. Using the aforementioned distribution percent-
ages these calculations can also be applied to the lungs, liver,
spleen and kidney, with a calculated estimated specific gravity
(weight/volume) of 1.34, 1.01, 0.71 and 0.85 g/mL, respec-
tively [34-36]. Thus, it is to be expected that gadolinium
concentrations of 2.15, 0.82, 0.58 and 4.67 mg/mL are en-
countered in healthy lung, liver, spleen and kidney tissue,
respectively. These concentrations are in the range of concen-
trations evaluated in this study. As it is expected that in tissue
with a perfusion defect lower concentrations of gadolinium
will be encountered, we also evaluated ultra-low concentra-
tions of gadolinium down to 0.1 mg/mL.

Image acquisition

Images were acquired using the newest generation 64-detector
row SDCT system (iQon Spectral CT, Philips Healthcare,
Best, the Netherlands). This system uses a single X-ray tube
and a dual-layer detector. The detector separates the X-ray
beam into low (upper layer) and high (lower layer) energy
data, which is used to reconstruct spectral-based images
(SBI). The SBI contain the raw data of both layers and are
used to reconstruct any dual-energy image and/or analysis. In
addition, by combining the output of both layers, a conven-
tional image is reconstructed from the data. The phantom was
imaged in spiral mode at 120 and 140 kVp. The tube current—
time product was set to a fixed value of 200 mAs, resulting in
a volumetric CT dose index (CTDI,,) of 18.4 and 26.5 mGy
for 120 and 140 kVp acquisitions, respectively. The following
parameters were used: detector collimation 64 x 0.625 mm,
rotation time 0.4 s and pitch 1.046. At both tube voltages,

acquisitions were repeated five times with small displace-
ments between each acquisition to take into account interscan
variation. Thus, the phantom was translated a few millimetres
in the left-right direction, as well as along the z-axis of the CT
scanner. After the five repetitions, the phantom was set back to
the starting position.

Image reconstruction

The raw projection data from both detector layers were auto-
matically reconstructed into SBI. Subsequently, MDI was per-
formed in the projection domain, which efficiently eliminates
beam hardening artefacts [37]. All images were reconstructed
with standard chest reconstruction filter B and spectral level 3.
Spectral is a model-based iterative reconstruction developed
for the SDCT, it is an equivalent to iterative model-based
reconstruction (IMR). Spectral consists of six levels, whereby
a higher spectral level implies more noise reduction. Slice
thickness and increment were both 1 mm. The reconstructed
images were evaluated on a dedicated workstation using the
Spectral CT Viewer (IntelliSpace Portal v6.5.0.02080, Philips
Healthcare, Best, the Netherlands).

Image analysis and gadolinium quantification

On three different slices of each data set a region of interest
(ROI) with a fixed size of 225 mm? was drawn in the centre of
each insert (Fig. 2a). Subsequently spectral plots of every ROI
were obtained, in which mean Hounsfield units (HU) were
plotted as a function of different energy levels expressed in
kilo electron volt (keV) (Fig. 2b). These mean HU values of
the spectral plots were extracted in steps of 10 keV and used as
an input for the analysis. The currently used SDCT system
uses traditional integrated detectors at two energy spectra
and is therefore not able to image and/or quantify a material-
specific K-edge [37]. Materials with a K-edge within the
SDCT range (40-200 keV) will not show a discontinuity in
their attenuation function on the SDCT spectral plot. When
evaluating the mean attenuation across monochromatic ener-
gies, this does not pose a problem and therefore the whole
energy spectrum can be used (40-200 keV). However, for
the quantitative analyses of gadolinium concentrations a com-
parison is made with the attenuation profile of pure gadolini-
um which does contain the discontinuity in their attenuation
function at the K-edge. Therefore, to take into account the
non-linear energy dependency close to the K-edge of gadolin-
ium (50.2 keV), only the energy range from 70 to 200 keV
was used for the quantitative analysis. With in-house-
developed software, attenuation profiles were reconstructed
from the provided mean HU, and gadolinium concentrations
were calculated by fitting combinations of known attenuation
profiles of pure gadolinium and water to the reconstruct-
ed attenuation profiles (Fig. 2¢). For each ROI drawn in the
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Fig. 2 Axial CT image and measurements. a Axial conventional SDCT
image of the phantom with 5 tubular inserts, surrounded by 2% agar gel.
ROIs with a fixed area of 225 mm? drawn in the centre of each insert. b A
spectral plot of each ROI was conducted, showing mean Hounsfield units
plotted against energy in keV. Hounsfield unit values of the spectral plots
were extracted in increments of 10 keV. ¢ Using in-house-developed
software, we reconstructed attenuation profiles between 70 to 200 keV
from the extracted Hounsfield units, and a combination of known
attenuation profiles of pure gadolinium and water was fitted to the
reconstructed attenuation profile. This case concerns ROI S3, containing
5.1 mg of gadolinium per millilitre

phantom, the in-house-developed software assumed that all
voxels within this ROI were composed of only gadolinium
and water and that the sum of these fractions added up to
100%. Known attenuation profiles of pure gadolinium and
water were obtained from the National Institute of
Standards and Technology (NIST) database [38]. Therefore,
no calibration scans with water and/or gadolinium concentra-
tions were needed. For all thirteen different gadolinium con-
centrations, 15 measurements were performed at both 120 and
140 kVp (three slices, five repetitions). In addition, 30 mea-
surements (15 at both 120 and 140 kVp) were performed on
the control phantom. Gadolinium concentrations were calcu-
lated for each measurement.

@ Springer

Attenuation coefficient

CT attenuation during injection of low gadolinium concentra-
tions (i.e. 0.1-0.2 mmol/kg bodyweight) will generally lead to
lower HU values compared to the use of iodinated contrast
agents [24, 25] . To investigate the ability of SDCT to visually
identify an increase in HU values due to the presence of a
gadolinium-containing contrast agent we extracted mean at-
tenuation coefficients across monochromatic energies (40—
200 keV) for the different gadolinium concentrations used in
this study (Fig. 3).

Statistical analysis

To evaluate the quantification accuracy of gadolinium concen-
trations, we defined measurement errors in milligrams per
millilitre and relative measurement errors in percentages.
Measurement errors were calculated by subtracting true gad-
olinium concentrations from the measured gadolinium con-
centrations. Subsequently, relative measurement errors (%)
were calculated as follows:

Relative measurement error(%)

mg
measurement error
m

= x 100(%)
true gadolinium concentration(ﬁ>

All measurement error analyses were performed sepa-
rately for 120 and 140 kVp. In addition, sub-analyses were
done for each concentration. The Shapiro—Wilk test was
used to identify normally distributed data. For each con-
centration, statistical differences of measurement errors
between 120 and 140 kVp were analysed using paired ¢
test for normally distributed data. A Bonferroni corrected
P <0.004 (0.05/number of comparisons) was considered
significant. Pearson’s correlation coefficient was used to
evaluate correlations between measured and true gadolin-
ium concentrations at different tube voltages and for each
scan repetition. In addition, reproducibility was evaluated.
To define agreement of results, the two-way random single
measure intraclass correlation coefficient (ICC) with cor-
responding confidence interval (CI) was used for all pos-
sible two-way interactions. ICCs between 0.61 and 0.80
were considered good and ICCs greater than 0.80 excel-
lent [39]. Measurement interscan variabilities of all scan
repetitions were plotted in one single plot by using a mod-
ified Bland—Altman plot described by Jones et al. [40]. In
this figure the measurement differences of every measure-
ment compared to the mean measurement of all scans are
plotted against the mean measurement of all scans. As
described by Jones et al., the limits of agreement were
calculated as mean+1.96 x SD, where the SD is an
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Fig. 3 Mean CT attenuation a
coefficients across all 2750
monochromatic energies. Mean
CT attenuation of all
measurements for each
gadolinium concentration,
constructed in steps of 10 keV.
Graphs were used to investigate
the ability of SDCT low
monochromatic energies to
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to indicate statistical significance. IBM SPSS version 21.0
(IBM corp., Armonk, New York, USA) was used for sta-
tistical analyses.

Results

Measurements of the water-filled insert, which served as
control, yielded 0.0+0.0 mg/mL with a measurement
error of 0.0 £0.0 mg/mL for all measurements. To avoid
influence on measurement accuracy, these control
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measurements were not included in further statistical
analyses.

Accuracy and reproducibility

At both 120 and 140 kVp, excellent correlations (R >0.99,
P<0.001; ICCs>0.99, CI 0.99-1.00) were found between
true and measured gadolinium concentrations for each scan
repetition. In addition, reproducibility between all scan repe-
titions was excellent (R>0.99, P<0.001; ICCs>0.99, CI
0.99-1.00). The interscan agreement is displayed in Fig. 4a
for 120 kVp and Fig. 4b for 140 kVp. Because excellent
correlations were found, all scan repetitions were analysed
combined together in subsequent analyses.
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120 kVp

All gadolinium concentrations were overestimated. Mean
measurement errors for the 15 ROIs per concentration ranged
between 0.1 and 2.4 mg/mL (Table 1, Fig. 5a). For each con-
centration, measurement errors at 120 kVp were significantly
(Bonferroni P < 0.004) higher compared to measurement er-
rors at 140 kVp, except for the lowest two concentrations of
0.1 and 0.2 mg/mL. Relative measurement errors (%) were
below 10% down to 2.0 mg/mL true gadolinium concentra-
tions and increased up to 29.4% at 0.5 mg/mL and 100.9% at
0.1 mg/mL true gadolinium concentration (Table 1, Fig. 5b).

140 kVp

Per concentration (N =15), mean measurement errors varied
from —0.2 to 0.4 mg/mL (Table 1, Fig. 5a). Relative measure-
ment errors (%) stayed below 5% down to 1.0 mg/mL true
gadolinium concentration. At true gadolinium concentrations
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Mean gadolinium concentration measurement of all observers

between 0.1 and 0.5 mg/mL, mean measurement errors were
low with 0.1 + 0.0 mg/mL deviation; expressed in percentages
this varied between 93.5+26.8% and 14.1 +4.1% deviation,
respectively (Fig. 5b).

Attenuation coefficient

Overall mean attenuation increased when lowering keV
(Fig. 3). At the lowest possible monochromatic energy
(40 keV), mean attenuation for the estimated clinical gadolin-
ium range of 0.5, 1.0, 2.0, 3.0, 4.0 and 5.1 mg/mL yielded 28,
74, 164, 260, 349 and 416 HU at 120 kVp and 34, 84, 180,
284, 382 and 464 HU at 140 kVp, respectively.

Discussion

This study showed that it is feasible to quantify a commonly
clinically encountered range of gadolinium concentrations in a
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Table 1 Mean errors of

gadolinium concentration True concentration (mg/mL) 120 kVp 140 kVp

measurements with a dual-layer

spectral detector CT scanner Measurement error Measurement error

mg/mL % mg/mL %

26.3 24+0.1% 9.0+0.2 0.4+0.2 1.6+0.6
20.7 1.5+0.0% 7.0£0.1 -0.2+0.1 -0.8+0.5
157 1.2+0.1% 7504 —0.1+0.1 -0.5+0.7
10.6 0.6+0.0% 59+0.3 -0.2+0.1 -2.1+£0.6
5.1 0.2+0.0* 3.9+0.8 -0.2+0.0 —42+0.8
4.0 0.2+0.0* 5.5+0.7 -0.1£0.0 -1.6+1.0
3.0 0.3+0.0%* 84+13 0.0+0.0 0.1+0.6
2.0 0.1+0.0% 73+1.6 -0.0£0.0 -22+15
1.0 0.1+0.0% 12.1+3.7 0.0+0.0 27+1.7
0.5 0.1+0.0% 29.4+5.0 0.1+0.0 14.1+4.1
0.4 0.1+0.0% 30.0+44 0.1+0.0 19.3+45
0.2 0.1£0.0 39.8+13.1 0.1+0.0 36.1+8.5
0.1 0.1£0.0 100.9+23.1 0.1+0.0 93.5+26.8
0.0 0.0+0.0 0.0£0.0

Data are given as mean =+ standard deviation. For each true concentration 15 measurements were done at both 120

and 140 kVp

*Significantly (Bonferroni P < 0.004) higher compared to measurement error at 140 kVp

phantom model with overall high accuracy and reproducibility
using an in-house-developed material decomposition method
on a novel clinical dual-layer spectral detector CT system.
Whereas conventional CT displays anatomical structures
as a function of tissue density, DECT enables enhanced tissue
characterization using MDI. Quantitative assessment of con-
trast agent uptake and its provided distribution map can be
used as a surrogate for tissue perfusion [6—12, 14]. In the
current study we showed that clinically encountered low con-
centrations of gadolinium, down to 0.5 mg/mL, can be accu-
rately quantified with a mean measurement error of 0.1 mg/
mL using SDCT at both 120 and 140 kVp. In the ultra-low
gadolinium concentration range (0.1-0.4 mg/mL), expected to
be encountered in tissues with a perfusion defect, the mean
measurement error remained around 0.1 mg/mL at both 120
and 140 kVp. However, at these low concentrations the mar-
gin of error increased substantially and approached the gado-
linium concentration itself, indicating that the lower limit of
reasonably accurate gadolinium quantification using SDCT
lies between 0.5 and 1.0 mg/mL. In the range of clinically
encountered gadolinium concentrations (0.5-5.1 mg/mL) af-
ter administration of 0.1-0.2 mmol/kg bodyweight, mean CT
numbers at 40 keV ranged between 28 and 464 HU (Fig. 3).
The combination of high(er) attenuation at lower monochro-
matic energies and accurate quantification of low gadolinium
concentrations opens up the possibilities for DECT scanning
with the use of gadolinium as a contrast agent. Potential clin-
ical applications include detection of myocardial [6—12] and

pulmonary perfusion defects [14—16] and the characterization
of tumour masses and therapy response assessment [17—19].
In clinical routine, adequate tissue contrast and contrast
agent density maps are important for the diagnosis and evalu-
ation of organ perfusion defects. However, to be able to create
a gadolinium density map as a surrogate for tissue perfusion,
accurate gadolinium quantification is essential, as the post-
processing is based on these measurements. This is the first
study to describe the accuracy of gadolinium quantification
using MDI on SDCT. Gabbai et al. [28] described the capabil-
ity of spectral differentiation of gadolinium using SDCT,
which is in accordance with our study. However, no quantita-
tive values were described and high concentrations (4.7—
187.6 mg/mL) of gadolinium were used, which is at least one
to two orders of magnitude above the estimated range encoun-
tered in healthy cardiac, lung, liver, spleen and kidney tissue
(0.58-4.66 mg/mL). Zhang et al. [30] showed a high sensitiv-
ity and specificity for gadolinium-enhanced dual-source
DECT pulmonary angiography to detect pulmonary embolism
in rabbits. However, as in the study by Gabbai et al. gadolin-
um concentration was not quantified. In addition, high intra-
venous doses of gadolinium contrast agent, 1.5 and 2.5 mmol/
kg bodyweight, were administrated. Bongers et al. [31] evalu-
ated the potential of gadolinium as a CT contrast agent using
dual-source DECT in a phantom setup. In accordance with our
study they found that monochromatic images at low energy
(e.g. 40 keV) allow for higher attenuation. Additional quanti-
fication was performed by using the material-specific dual-
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Fig. 5 Accuracy of gadolinium quantification. Accuracy expressed as
mean measurement error (a) and mean relative measurement error (b).
Symbol represents mean and error bar the standard deviation

energy ratio for gadolinium. For the true gadolinium concen-
trations 6.3, 3.2, 1.6, 0.8, 0.4 and 0.2 mg/mL relative measure-
ment errors were 11.5, 12.0, 21.6, 21.6, 104.2 and 159.4%,
respectively. In our study we found a higher accuracy with
relative measurement errors of less than 10% down to
2.0 mg/mL at 120 kVp and 1.0 mg/mL at 140 kVp. A possible
explanation for this difference can be found in the algorithm.
The post-processing algorithms used by Bongers et al. [31] was
originally designed for iodine, whereas our algorithm was spe-
cifically designed for gadolinium quantification.

We found a slightly lower measurement error, and thus
higher accuracy, for scans acquired at 140 kVp compared to
120 kVp. When scanning with a higher tube voltage, more
high energy X-ray photons are produced. This decreases the
spectral overlap between high- and low-energy spectra, and
thereby improves the accuracy of material decomposition,
which is in accordance with the findings of Gabbai and col-
leagues [28]. Moreover, 140 kVp acquisitions resulted in
higher CT numbers of different gadolinium concentrations at
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monochromatic 40 keV images (34464 HU) compared to
120 kVp acquisitions (28 to 416 HU), indicating a superior
spectral separation at a higher tube voltage.

Even though gadolinium chelates are generally considered to
be safe contrast agents, with acute reaction rates of approximately
0.001-0.07% [41], recently concerns have arisen about their
long-term safety after the discovery that administration of multi-
ple doses has led to detectable gadolinium levels in the brain [42,
43]. In addition, gadolinium contrast has been linked to an in-
creased risk of nephrogenic systemic fibrosis (NSF) in patients
with impaired renal function [44]. In both conditions the linear
non-ionic and linear ionic contrast agents have primarily been
implicated, whereas macrocyclic gadolinium agents, such as
used in the current study, have not been linked conclusively to
either of these conditions [45—47]. Although both iodine and
gadolinium contrast agents pose a risk for patients with impaired
renal function, gadolinium is thought to be preferred in patients
with renal failure and a glomerular filtration rate greater than
30 mL/min since the risk of NSF is low in these patients, while
the risk of iodine contrast-induced nephropathy clearly exists
[41]. Furthermore, using gadolinium could potentially obviate
the need for pre- and post-imaging hydration as well as
premedication protocols that are commonly used in patients with
impaired renal function who undergo contrast-enhanced CT
scanning, or patients with known allergies to iodinated contrast
agents. In the current study a relatively simple method for mate-
rial decomposition using in-house-developed software is pro-
posed. Our method is based on the mass attenuation coefficient
across monochromatic energies. Monochromatic reconstructions
take into account the function of two independent factors: the
photoelectric and the Compton effect [2]. The photoelectric effect
is strongly related to the atomic number of a material in the CT
energy range and is therefore material-specific [37]. Our method
takes into account this material-specific effect by evaluating the
attenuation across monochromatic energies.

The strength of our study is that we evaluated accuracy of
gadolinium quantification in an optimal controlled setting
with a wide and clinically relevant range of gadolinium con-
centrations, which provides the basis for further research and
clinical applications. Our study also has some limitations. The
most important is that we used a static phantom in which
organ motion was not taken into account. In addition, a fixed
concentration is not the same as a bolus injection. However,
we tried to mimic the clinical situation as best as possible by
using low concentrations of gadolinium, which are expected
to be typically encountered clinically. A second limitation is
that our study only takes into account water and gadolinium
when calculating the amount of gadolinium concentration.
Since human tissue does not only consist of water and gado-
linium, future phantom and patient research will have to ad-
dress (healthy) tissue attenuation as well using a three- or
multi-material decomposition method. A third limitation is
the need for relatively high peak tube voltage (120 or
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140 kVp) settings to ensure sufficient spectral separation.
However, the higher radiation dose due to the use of
high kVp acquisitions can be addressed by reducing tube cur-
rent (mAs). The fourth limitation is that we only evaluated one
DECT technique; therefore, our results may be limited to the
vendor used in this study.

In conclusion, SDCT allows for accurate quantification of
commonly clinically used gadolinium concentrations at both
120 and 140 kVp. Lowest measurement errors were found for
140 kVp acquisitions.
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