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Abstract: Nephropathic cystinosis is a rare lysosomal storage disorder caused by mutations in
CTNS gene leading to Fanconi syndrome. Independent studies reported defective clearance of
damaged mitochondria and mitochondrial fragmentation in cystinosis. Proteins involved in the
mitochondrial dynamics and the mitochondrial ultrastructure were analyzed in CTNS−/− cells
treated with cysteamine, the only drug currently used in the therapy for cystinosis but ineffective
to treat Fanconi syndrome. CTNS−/− cells showed an overexpression of parkin associated with
deregulation of ubiquitination of mitofusin 2 and fission 1 proteins, an altered proteolytic processing
of optic atrophy 1 (OPA1), and a decreased OPA1 oligomerization. According to molecular findings,
the analysis of electron microscopy images showed a decrease of mitochondrial cristae number and
an increase of cristae lumen and cristae junction width. Cysteamine treatment restored the fission
1 ubiquitination, the mitochondrial size, number and lumen of cristae, but had no effect on cristae
junction width, making CTNS−/− tubular cells more susceptible to apoptotic stimuli.

Keywords: Fanconi syndrome; nephropathic cystinosis; mitochondrial dynamics; cysteamine;
mitochondrial fusion; mitochondrial fission; mitochondrial cristae

1. Introduction

Nephropathic cystinosis (MIM 219800) is a rare inherited metabolic disease characterized by an
impaired transport of the amino acid cystine out of lysosomes due to reduced or absent function of the
specific carrier cystinosin, which is encoded by CTNS gene [1–3]. Kidneys are affected at the initial
stage of the disease, leading to early onset Fanconi syndrome, which is characterized by polyuria,
glycosuria, phosphaturia, aminoaciduria, and urinary loss of electrolytes and low-molecular-weight
proteins [4]. The cystine-depleting agent, cysteamine (MEA), significantly delays symptoms [5,6],
but does not treat Fanconi syndrome and is ineffective to prevent the progression of kidney disease.
Fanconi syndrome has also been reported in children with specific mitochondrial syndromes [7]. Renal
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tubular cells are very rich in mitochondria due to the intense reabsorption and excretion processes
that occur in this district. We recently reported, in CTNS−/− cells derived from proximal tubules,
mitochondrial fragmentation associated with respiratory chain dysfunction and low mitochondrial
3′,5′-cyclic adenosine monophosphate (cAMP) levels [8]. Furthermore, enhanced apoptosis [9,10],
defect of autophagic flux [11,12], and endo-lysosomal dysfunction [13,14] were observed.

Communication between mitochondria and the endo-lysosomal system is complex. Increasing
evidences show close relationship between these two cellular compartments [15,16]. Mitochondria
constantly undergo fission and fusion processes to adapt to environmental changes in a continuous
and balanced way, in order to maintain morphology and regulate cellular ATP levels. Mitochondrial
fission regulates the production of new mitochondria and the segregation of damaged mitochondria.
In this process, receptor proteins such as mitochondrial fission factor (Mff), mitochondrial fission
1 protein (Fis1), mitochondrial dynamics protein of 49 kDa (MiD49), and mitochondrial dynamics
protein of 51 kDa (MiD51) recruit the large GTPase dynamin-related protein 1 (Drp1) from the cytosol
to the outer mitochondrial membrane (OMM), which forms a multimeric complex with mitochondrial
membrane adaptors [17,18]. Mitochondrial fusion is mediated by three key regulatory fusion proteins:
the dynamin-related GTPases mitofusin 1 (MFN1) and mitofusin 2 (MFN2), responsible for the
fusion of OMM and the dynamin-related GTPases optic atrophy 1 (OPA1), which mediates fusion
of the inner mitochondrial membrane (IMM) and contributes to the maintenance of mitochondrial
potential, to control respiratory chain activity and apoptosis [19,20]. When mitochondrial dynamics are
impaired, dysfunctional mitochondria are selectively eliminated through mitophagy, which is initiated
by ubiquitin-dependent or ubiquitin-independent signals [21]. The lysosomal alterations in cystinosis
lead to defective autophagic clearance of damaged mitochondria [12], therefore the purpose of our
study was to investigate mitochondrial dynamics in CTNS−/− conditionally immortalized proximal
tubular epithelial cells (ciPTEC) carrying the classical homozygous 57-kb deletion in the intent of
identifying new therapeutic targets and biomarkers for treatment follow-up.

2. Results

2.1. CTNS−/− ciPTEC Showed Deregulation of Proteins Involved in Mitochondrial Fission/Fusion Processes

Recruitment of the GTPase dynamin-related protein 1 (Drp1) to mitochondria is a key step
required for mitochondrial fission and its reversible phosphorylation was implicated in the regulation
of this process. The analysis of phosphorylated Drp1 at Ser-637 (Drp1pS637) showed high variability
of protein phosphorylation with no significant differences in wild type and CTNS−/− ciPTEC, also
24 h treatment with 100 µM cysteamine (MEA) did not affect Drp1pS637phosphorylation (Figure 1).
The western blotting of the pro-fission mitochondrial protein Fis1 revealed the ubiquitinated and
not-ubiquitinated forms of protein. CTNS−/− ciPTEC showed increased level of Fis1 (2.47 ± 0.27 vs.
1.08 ± 0.08, p = 0.0027). Treatment with 100 µM MEA for 24 h further increased total Fis1 protein level
(2.47 ± 0.27 vs. 3.59 ± 0.15, p = 0.011) but almost completely reduced the ubiquitinated counterpart by
96.3% (p < 0.001) (Figure 1). Third key regulatory protein analyzed was mitochondrial fission factor
(Mff), which localizes on OMM and promotes the recruitment of DRP1 to the mitochondrial surface.
This protein, shown in its four isoforms, was not modified in CTNS−/− ciPTEC and the expression was
unchanged after MEA treatment (Figure 1).



Int. J. Mol. Sci. 2020, 21, 192 3 of 11

Figure 1. Analysis of proteins involved in fission process of mitochondrial dynamics in untreated
and cysteamine (MEA)-treated CTNS−/−compared to CTNS+/+. Cell cultures were treated with
100 µM cysteamine (MEA) or DMSO (vehicle) for 24 h as specified in the figure. (a) Representative
immunoblotting analysis in cellular lysate of conditionally immortalized proximal tubular epithelial
cells (ciPTEC) from a healthy subject (CTNS+/+) and cystinotic patient (CTNS−/−). (b–e) The histograms
(Drp1pS637, panel (b), n = 8; mitochondrial fission factor (Mff), panel (c), n = 3; mitochondrial fission 1
protein (Fis1), panel (d), n = 4; ubiquitinated Fis1 (Ub-Fis1), panel (e), n = 3) represent the means values
± SEM of the relative expression normalized on actin level. Densitometric analysis was performed by
Versa-Doc imaging system BioRad, using Quantity One software. p-value less than 0.05 was considered
as statistically significant, (Student’s t test, *** p < 0.001; ** p < 0.01; * p < 0.05). For further details see
under “materials and methods” section.

The inner mitochondrial membrane GTPase OPA1 undergoes constitutive processing leading to
the conversion of the un-cleaved long OPA1 (L-OPA1) in cleaved short variants (S-OPA1). Various stress
conditions, including apoptotic stimuli, trigger the complete conversion of L-OPA1 into S-OPA1. In this
regard, CTNS−/− ciPTEC were characterized by a significant increase of short variants (52.4%, p < 0.05),
but 24 h treatment with 100 µM MEA did not show significant effects (Figure 2). In agreement with
higher S-OPA1 levels, we found that the active form of mitochondrial metallo-endopetidase OMA1,
which catalyze conversion of OPA1 into short isoforms and triggers mitochondrial fragmentation, was
increased by 79.8% in CTNS−/− ciPTEC (p < 0.001), and not rescued by MEA treatment (Figure 2).
OPA1 can oligomerize at the inner mitochondrial membrane to keep the cristae junction tight, therefore
cell fresh pellets were treated with the cross-linker bis-maleimidohexane (BMH) 1 mM or with vehicle
to test the oligomeric state of OPA1. The OPA1 oligomer, immune-revealed as a high molecular-weight
band (≈250 kDa), decreased in CTNS−/− cells by 23.5% compared to CTNS+/+ cells and was not
affected by MEA treatment. The absence of OPA1 oligomerization in cells treated with vehicle (DMSO)
confirmed the specificity of cross-linking (Figure 2).

The expression of MFN2, an outer mitochondrial membrane GTPase involved in fusion processes,
was not changed in CTNS−/− ciPTEC with respect to control cells (Figure 3). However, the higher
molecular weight band, corresponding to ubiquitinated MFN2, indicated an increase of ubiquitination in
CTNS−/− ciPTEC by 70.8% (p < 0.001). Treatment with MEA showed 37.8% reduction of ubiquitination
but the effect was not statistically significant (Figure 3).



Int. J. Mol. Sci. 2020, 21, 192 4 of 11

Figure 2. Processing and oligomerization of optic atrophy 1 (OPA1) fusion protein in untreated and
MEA-treated CTNS−/− compared to CTNS+/+. (a) Representative immunoblotting analysis of ciPTEC
obtained from CTNS+/+ and CTNS−/−. Where indicated, the cells were treated with MEA or DMSO
(vehicle) for 24 h. The histograms of OPA1 (b) represent the percentage of relative expression of L and
S forms of OPA1 in each lane (n = 3). The histograms of OMA1 (c) represent the means values ± SEM
of the relative expression normalized on actin level (n = 3). (d) The fresh collected cells were treated
with the cross-linker 1,6-bismaleimidohexane (BMH) 1 mM or with vehicle (DMSO) for 30 min at 37 ◦C,
then centrifuged and resuspended in sodium dodecyl sulfate (SDS) lysis buffer for western blotting
analysis with the antibody against OPA1. (e) The histograms represent the means values ± SEM of the
relative expression of OPA1 oligomers (n = 3). Densitometric analysis was performed by Versa-Doc
imaging system BioRad, using Quantity One software. Student’s t test, *** p < 0.001; * p < 0.05. For
further details see under “materials and methods” section.

Numerous mitochondrial outer membrane proteins are modified with K48- and K63-linked
ubiquitin chains, including the mitochondrial fusion factors MFN1 and MFN2 and fission factors Fis1
and Drp1, triggering a cascade of events that result in mitophagy. According with previous results,
we found in CTNS−/− ciPTEC a significant increase in protein levels of the E3 ubiquitin ligase parkin
(2.92 ± 0.22 in CTNS−/− vs. 1.0 ± 0.04 in CTNS+/+, p = 0.001). MEA treatment did not change parkin
expression (Figure 4A). Ubiquitin carboxyl-terminal hydrolase 30 (USP30) mediates the removal of
the ubiquitin chains added by parkin to ubiquitilated forms of mitofusins, such as MFN2, therefore
we analyzed the expression of this deubiquitinating enzyme tethered to the OMM and showed in
CTNS−/− ciPTEC 62.9% decreasing compared to wild type cells (p < 0.001). Treatment with MEA
rescued USP30 expression in CTNS−/− ciPTEC by 87.9% (p = 0.037) (Figure 4B).
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Figure 3. Expression and ubiquitination of mitofusin 2 (MFN2) in untreated and MEA-treated CTNS+/+

and CTNS−/−. (a) Representative immunoblotting analysis of untreated and MEA-treated ciPTEC
CTNS+/+ and CTNS−/−. (b) The histogram of MFN2, n = 3, and (c) the histogram of ubiquitinated
MFN2 Ub-MFN2, n = 3, represent the mean values ± SEM of the relative expression normalized on actin
level. Densitometric analysis was performed by Versa-Doc imaging system BioRad, using Quantity
One software. Student’s t test, *** p < 0.001.

Figure 4. Parkin and ubiquitin carboxyl-terminal hydrolase 30 (USP30) proteins levels and MEA effect in
CTNS+/+ and CTNS−/−. (a) Immunoblotting analysis of untreated and MEA-treated ciPTEC CTNS+/+

and CTNS−/−. (b) The histogram represents the means values ± SEM of the relative expression of
Parkin normalized on actin level (n = 3). (c) The histogram represents the means values ± SEM of the
relative expression of USP30 normalized on actin level (n = 3). Densitometric analysis was performed
by Versa-Doc imaging system BioRad, using Quantity One software. Student’s t test, *** p < 0.001;
* p < 0.05.

2.2. Mitochondrial Cristae Organization Was Impaired in CTNS−/− ciPTEC

Comparative ultrastructural analysis of mitochondria in ciPTEC, by transmission electron
microscopy (TEM), showed the presence of smaller mitochondria in CTNS−/− ciPTEC compared
to CTNS+/+ ciPTEC (0.12 ± 0.01 µm2 in CTNS−/− vs. 0.26 ± 0.01 µm2 in CTNS+/+, p < 0.0001).
Mitochondrial area was completely recovered by MEA treatment (0.32 ± 0.04 µm2 in CTNS−/− +

MEA vs. 0.12 ± 0.01 µm2 in CTNS−/−, p < 0.0001). Moreover, TEM showed a substantial reduction
in number of cristae per mitochondrial section in CTNS−/− (5.1 ± 0.6 in CTNS+/+ vs. 1.6 ± 0.2 in
CTNS−/−, p < 0.0001). This parameter was rescued by MEA by 167.5% (p < 0.0001). Because evidences
underlined a critical role of cristae junction in mitochondrial function and organization, we measured
them. It was found an increase in cristae junction width (39.65 ± 4.83 nm in CTNS+/+ vs. 53.21 ±
10.05 nm in CTNS−/−, p < 0.0001) and cristae lumen width (29.68 ± 3.53 nm in CTNS+/+ vs. 37.04 ±
6.13 nm in CTNS−/−, p < 0.0003) partially rescued by cysteamine (Figure 5).
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Figure 5. Comparative ultrastructural analysis of mitochondria in ciPTEC. (a) Representative images of TEM
with magnification 16,000× of untreated and MEA-treated ciPTEC CTNS+/+ and CTNS−/−; scale bar = 1 µm.
As shown in high magnification cropped micrographs and in ad hoc schematic reconstruction, mitochondria
kept preserved ultrastructure in ciPTEC CTNS+/+ and in MEA-treated ciPTEC CTNS+/+ and CTNS−/−,
whereas ciPTEC CTNS−/− showed disruption of mitochondrial cristae and the disarrangement of the internal
structures; scale bar = 200 nm. (b–e) Quantitative analysis was performed with ImageJ v.1.52p in n ≥ 5
double-blind acquisitions for each experimental condition, red lines represent median with interquartile range.
(b) Evaluation of relative mitochondrial size measured as area of n ≥ 27 mitochondrial sections. (c) Average
number of cristae per mitochondrion in each cell (n ≥ 27 mitochondrial sections). (d) The measure of distance
of cristae junction near the inner membrane boundary and (e) the measure of cristae lumen, assessed on cristae
membranes that outline the lumen boundary, were assessed in n≥ 100 cristae. Non-parametric Mann-Whitney
test was applied, *** p < 0.001; * p < 0.05.
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3. Discussion

Nephropathic cystinosis is a rare inherited metabolic disorder, belonging to the group of lysosomal
storage diseases (LSD). The disease is the first cause of Fanconi syndrome in children, characterized by
loss of electrolytes, glucose, amino acid, low-molecular weight proteins in urine caused by proximal
tubule dysfunction [4,22]. The molecular mechanism at the basis of Fanconi syndrome in cystinosis is not
completely understood. Several mechanisms have been suggested to contribute to the pathogenesis of
cystinosis, including lysosomal overload, endo-lysosomal transport defect, altered chaperone-mediated
autophagy, mTOR signaling, transcription factor EB (TFEB) expression [11,13,23–27]. Cysteamine,
a cystine-depleting agent, which allows clearance of cystine from lysosomes, represents the only
specific treatment for cystinosis. However, cysteamine does not correct the above cited cellular
alterations and does not stop the progress of the Fanconi syndrome. Our recent studies have shown in
CTNS−/− ciPTEC a higher mitochondrial fragmentation index associated with lower mitochondrial
potential and mitochondrial cyclic AMP levels, rescued by 24 h treatment with 100 µM cysteamine
or with the cell-permeant analogue of cyclic AMP, 8-Br-cAMP [8]. cAMP, in fact, is one of the major
regulators of mitochondrial function [28–30] and dynamics [31]. In this contest, it should be noted
that MEA has been found to improve mitochondrial function in mitochondrial respiratory chain
diseases [32]. Mitochondrial dynamics is balanced between rates of fusion and fission that respond to
pathophysiologic signals. This finely regulated equilibrium is closely related to the quality control
system, which is mainly ascribed to the ubiquitin protease system (UPS) and to the intra-mitochondrial
proteolytic systems [33]. In our experimental model, no significant differences were observed on
protein levels of phosphorylated Drp1 at Ser-637. The PKA-dependent phosphorylation of Drp1
at Ser-637 is generally recognized to block Drp1 GTPase activity and to suppress mitochondrial
fission. However, and in agreement with data previously reported by Yu et al., Drp1pS637 did not
contribute substantially to mitochondrial fission regulation in CTNS−/− ciPTEC [18]. Several key
effector proteins of mitochondrial fusion (MFN1 and MFN2) and fission (Fis1, Mff) are located at the
OMM with their domains exposed at the cytosolic side of the membrane. This peculiar topology
allows selective removing of fusion or fission components exposed by the UPS, providing fine tuning
of this high-level regulatory processes. In mammalian cells, Fis1 accumulates in the mitochondrial
outer membrane during the fission process, whereas MFN1 and MFN2 are ubiquitinated and degraded
by the proteasome [34]. In this respect, we observed an increase in Fis1, ubiquitinated MFN2 and
of the E3 ubiquitin ligase Parkin in CTNS−/− ciPTEC, indicating the tendency to mitochondrial
fragmentation. The effect of MEA on the reduction of ubiquitilated MFN2 could be ascribed to
the modulation of USP30, a mitochondrion-localized deubiquitilase, which counteracts Parkin by
deubiquitilating OMM proteins and regulate mitophagy [35]. These findings are consistent with data
showing that an increase of parkin expression results in mitochondrial fragmentation [36] and is
associated with MFN2 ubiquitination [37]. In addition, the increase of FIS1, in cystinotic cell, might be
due to Sirt3 protein [38] that was found downregulated in the same cystinotic cell line [8]. OPA1, an
inner mitochondrial membrane GTPase protein, has gained attention because it regulates important
mitochondrial functions, including the balance between mitochondrial fusion and fission processes,
the stability of the mitochondrial respiratory chain complexes, the proapoptotic release of cytochrome
c molecules sequestered within the mitochondrial cristae and the maintenance of mitochondrial cristae
architecture [39]. The protein expression levels of OPA1 were not significantly changed in mutated
cells, compared to control ciPTEC cells (data not shown). However, the activity of OPA1 is also
controlled at the post-translational level by proteolytic and acetylation changes [31]. Various stress
conditions, including apoptotic stimulation, trigger the complete conversion of L-OPA1 into S-OPA1.
The pro-fusion activity of OPA1 depends on the balanced formation of L-OPA1 and S-OPA1 [40].
In this respect, we observed an alteration of OPA1 processing in CTNS−/− ciPTEC cells. In particular,
cystinotic cells were characterized by a significant increase of S-OPA1, associated with an increase in
the protease OMA1 activity, that was not prevented by MEA. In addition to its role as a fusion protein,
OPA1 controls the remodeling of mitochondrial cristae. Specifically, OPA1 forms oligomers in the
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inner mitochondrial membrane that keep the cristae junctions tight. During apoptosis, oligomers are
destabilized causing the opening of cristae and release of cytochrome c out of the mitochondria. OPA1
oligomers were decreased in cystinotic cells. MEA did not rescue this phenotype. This defect correlates
with increased cristae junction width that we observed in our TEM ultrastructural analyses.

In summary, our study shows deregulation of several proteins involved in mitochondrial dynamics
in CTNS−/− cells. We observed mitochondrial fragmentation in cystinotic cells associated with altered
proteolytic processing of OPA1, increased Fis1 and parkin protein levels. The deregulation of parkin
could result in increase of ubiquitination of MFN2. The cristae number was decreased while the
cristae lumen was increased in cystinotic cells, which parallels the previously reported bioenergetic
defects in these cells. The cristae junction width was increased in CTNS−/− cells, which is most likely
secondary to low OPA1 oligomerization levels. MEA treatment restored mitochondrial size, cristae
number, and lumen, but had no effect on cristae junction width, making tubular cells more susceptible
to apoptotic stimuli. In this contest, we highlight several cellular mediators of mitochondrial dynamics
that could be useful to develop new therapeutic interventions [41].

4. Materials and Methods

4.1. Cell Culture

Conditionally immortalized proximal tubular epithelial cells (ciPTEC), from healthy donor and
cystinotic patients were obtained from Radboud University Medical Center, Nijmegen, The Netherlands
and cultured as described in [42]. Cells were grown in a humidified atmosphere with 5% CO2 at 37 ◦C.
Where indicated, the cells were treated with 100 µM MEA or water (vehicle) for 24 h.

4.2. SDS-PAGE and Western Blotting

Monolayer cell cultures were harvested with 0.05% trypsin, 0.02% EDTA. After trypsinization,
cells were centrifuged at 500× g and resuspended in RIPA buffer (150 mM NaCl, 5 mM EDTA, 50 mM
Tris/HCl, 0.1% SDS, 1% Triton X-100, pH 7.4), in the presence of a protease inhibitor (0.25 mM PMSF).
Cell lysate proteins were subjected to SDS-polyacrylamide gel electrophoresis (PAGE), transferred
to a nitrocellulose membrane and immunoblotted with antibodies against OPA1 (Thermo scientific,
Waltham, MA, USA; Pierce Antibodies); Fis1, Mfn2 (Merck Millipore, Burlington, MA, USA); parkin,
USP30 (Santa Cruz Biotechnology, Dallas, TX, USA); OMA1 (Abcam, Cambridge, UK); Drp1, Mff (Cell
Signaling, Danvers, MA, USA) and actin (Merck, Kenilworth, NJ, USA). After being washed in TTBS,
the membranes were incubated for 1 h with anti-mouse or anti-rabbit IgG peroxidase-conjugate
antibody. Immunodetection was performed with the enhanced chemiluminescence (ECL) (Thermo
scientific, Waltham, MA, USA). VersaDoc imaging system (BioRad, Milan, Italy) was used for
densitometric analysis.

4.3. Analysis of OPA1 Oligomers

To investigate on OPA1 oligomerization, cell fresh pellets were treated with the cross-linker
bismaleimidohexane (BMH) 1 mM or with vehicle (DMSO) for 30 min at 37 ◦C. After incubation,
the samples were centrifuged, resuspended in SDS lysis buffer and then subjected to SDS-PAGE and
western blotting analysis with the antibody against OPA1.

4.4. Electron Microscopy

For routine EM the cells were grown in 12 well plates as a monolayer. At the end of the experiment
the cells were fixed with 1% Glutaraldehyde prepared in 0.2 M Hepes buffer. Then the cells were scraped,
pelleted, post-fixed in OsO4 and uranyl acetate and embedded in Epon as described previously [43].
From each sample, thin 60 nm sections were cut using Leica EM UC7 (Leica Microsystems, Vienna,
Austria). EM images were acquired from thin sections using a FEI Tecnai-12 electron microscope
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(FEI, Eindhoven, Netherlands) equipped with a VELETTA CCD digital camera (Soft Imaging Systems
GmbH, Munster, Germany).
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Abbreviations

cAMP 3′,5′-cyclic adenosine monophosphate
Fis1 Mitochondrial fission 1 protein
IMM Inner Mitochondrial Membrane
MEA β-Mercaptoethylamine (cysteamine)
Mff Mitochondrial fission factor
OMM Outer Mitochondrial Membrane
OPA1 Dynamin-related GTPases Optic Atrophy 1
TEMTFEB Transmission Electron MicroscopyTranscription factor EB
UPS Ubiquitin Protease System
USP30 Ubiquitin carboxyl-terminal hydrolase 30

References

1. Cherqui, S.; Sevin, C.; Hamard, G.; Kalatzis, V.; Sich, M.; Pequignot, M.O.; Gogat, K.; Abitbol, M.; Broyer, M.;
Gubler, M.C.; et al. Intralysosomal Cystine Accumulation in Mice Lacking Cystinosin, the Protein Defective
in Cystinosis. Mol. Cell. Biol. 2002, 22, 7622–7632. [CrossRef] [PubMed]

2. Gahl, W.A.; Bashan, N.; Tietze, F.; Bernardini, I.; Schulman, J.D. Cystine Transport is Defective in Isolated
Leukocyte Lysosomes from Patients with Cystinosis. Science 1982, 217, 1263–1265. [CrossRef] [PubMed]

3. Town, M.; Jean, G.; Cherqui, S.; Attard, M.; Forestier, L.; Whitmore, S.A.; Callen, D.F.; Gribouval, O.; Broyer, M.;
Bates, G.P.; et al. A Novel Gene Encoding an Integral Membrane Protein is Mutated in Nephropathic
Cystinosis. Nat. Genet. 1998, 18, 319–324. [CrossRef] [PubMed]

4. Cherqui, S.; Courtoy, P.J. The Renal Fanconi Syndrome in Cystinosis: Pathogenic Insights and Therapeutic
Perspectives. Nat. Rev. Nephrol. 2017, 13, 115–131. [CrossRef] [PubMed]

5. Conforti, A.; Taranta, A.; Biagini, S.; Starc, N.; Pitisci, A.; Bellomo, F.; Cirillo, V.; Locatelli, F.; Bernardo, M.E.;
Emma, F. Cysteamine Treatment Restores the in Vitro Ability to Differentiate Along the Osteoblastic Lineage
of Mesenchymal Stromal Cells Isolated from Bone Marrow of a Cystinotic Patient. J. Transl. Med. 2015, 13, 143.
[CrossRef] [PubMed]

6. Medic, G.; van der Weijden, M.; Karabis, A.; Hemels, M. A Systematic Literature Review of Cysteamine
Bitartrate in the Treatment of Nephropathic Cystinosis. Curr. Med. Res. Opin. 2017, 33, 2065–2076. [CrossRef]
[PubMed]

7. Emma, F.; Montini, G.; Parikh, S.M.; Salviati, L. Mitochondrial Dysfunction in Inherited Renal Disease and
Acute Kidney Injury. Nat. Rev. Nephrol. 2016, 12, 267–280. [CrossRef]

8. Bellomo, F.; Signorile, A.; Tamma, G.; Ranieri, M.; Emma, F.; De Rasmo, D. Impact of Atypical Mitochondrial
Cyclic-AMP Level in Nephropathic Cystinosis. Cell Mol. Life Sci. 2018, 75, 3411–3422. [CrossRef]

9. Park, M.; Helip-Wooley, A.; Thoene, J. Lysosomal Cystine Storage Augments Apoptosis in Cultured Human
Fibroblasts and Renal Tubular Epithelial Cells. J. Am. Soc. Nephrol. 2002, 13, 2878–2887. [CrossRef]

10. Taranta, A.; Bellomo, F.; Petrini, S.; Polishchuk, E.; De Leo, E.; Rega, L.R.; Pastore, A.; Polishchuk, R.; De
Matteis, M.A.; Emma, F. Cystinosin-LKG Rescues Cystine Accumulation and Decreases Apoptosis Rate in
Cystinotic Proximal Tubular Epithelial Cells. Pediatr. Res. 2016, 81, 113. [CrossRef]

http://dx.doi.org/10.1128/MCB.22.21.7622-7632.2002
http://www.ncbi.nlm.nih.gov/pubmed/12370309
http://dx.doi.org/10.1126/science.7112129
http://www.ncbi.nlm.nih.gov/pubmed/7112129
http://dx.doi.org/10.1038/ng0498-319
http://www.ncbi.nlm.nih.gov/pubmed/9537412
http://dx.doi.org/10.1038/nrneph.2016.182
http://www.ncbi.nlm.nih.gov/pubmed/27990015
http://dx.doi.org/10.1186/s12967-015-0494-0
http://www.ncbi.nlm.nih.gov/pubmed/25947233
http://dx.doi.org/10.1080/03007995.2017.1354288
http://www.ncbi.nlm.nih.gov/pubmed/28692321
http://dx.doi.org/10.1038/nrneph.2015.214
http://dx.doi.org/10.1007/s00018-018-2800-5
http://dx.doi.org/10.1097/01.ASN.0000036867.49866.59
http://dx.doi.org/10.1038/pr.2016.184


Int. J. Mol. Sci. 2020, 21, 192 10 of 11

11. Napolitano, G.; Johnson, J.L.; He, J.; Rocca, C.J.; Monfregola, J.; Pestonjamasp, K.; Cherqui, S.; Catz, S.D.
Impairment of Chaperone-Mediated Autophagy Leads to Selective Lysosomal Degradation Defects in the
Lysosomal Storage Disease Cystinosis. EMBO Mol. Med. 2015, 7, 158–174. [CrossRef] [PubMed]

12. Festa, B.P.; Chen, Z.; Berquez, M.; Debaix, H.; Tokonami, N.; Prange, J.A.; Hoek, G.V.; Alessio, C.; Raimondi, A.;
Nevo, N.; et al. Impaired Autophagy Bridges Lysosomal Storage Disease and Epithelial Dysfunction in the
Kidney. Nat. Commun. 2018, 9, 161. [CrossRef] [PubMed]

13. Raggi, C.; Luciani, A.; Nevo, N.; Antignac, C.; Terryn, S.; Devuyst, O. Dedifferentiation and Aberrations of the
Endolysosomal Compartment Characterize the Early Stage of Nephropathic Cystinosis. Hum. Mol. Genet. 2014,
23, 2266–2278. [CrossRef] [PubMed]

14. Ivanova, E.A.; De Leo, M.G.; Van Den Heuvel, L.; Pastore, A.; Dijkman, H.; De Matteis, M.A.; Levtchenko, E.N.
Endo-Lysosomal Dysfunction in Human Proximal Tubular Epithelial Cells Deficient for Lysosomal Cystine
Transporter Cystinosin. PLoS ONE 2015, 10, 120998. [CrossRef]

15. Soto-Heredero, G.; Baixauli, F.; Mittelbrunn, M. Interorganelle Communication between Mitochondria and
the Endolysosomal System. Front. Cell. Dev. Biol. 2017, 5, 95. [CrossRef]

16. Wong, Y.C.; Ysselstein, D.; Krainc, D. Mitochondria-Lysosome Contacts Regulate Mitochondrial Fission via
RAB7 GTP Hydrolysis. Nature 2018, 554, 382–386. [CrossRef]

17. Koirala, S.; Guo, Q.; Kalia, R.; Bui, H.T.; Eckert, D.M.; Frost, A.; Shaw, J.M. Interchangeable Adaptors Regulate
Mitochondrial Dynamin Assembly for Membrane Scission. Proc. Natl. Acad. Sci. USA 2013, 110, 1342–1351.
[CrossRef]

18. Yu, R.; Liu, T.; Ning, C.; Tan, F.; Jin, S.B.; Lendahl, U.; Zhao, J.; Nister, M. The Phosphorylation Status of Ser-637 in
Dynamin-Related Protein 1 (Drp1) does Not Determine Drp1 Recruitment to Mitochondria. J. Biol. Chem. 2019,
294, 17262–17277. [CrossRef]

19. Pernas, L.; Scorrano, L. Mito-Morphosis: Mitochondrial Fusion, Fission, and Cristae Remodeling as Key
Mediators of Cellular Function. Annu. Rev. Physiol. 2016, 78, 505–531. [CrossRef]

20. Zhang, J.; Liu, X.; Liang, X.; Lu, Y.; Zhu, L.; Fu, R.; Ji, Y.; Fan, W.; Chen, J.; Lin, B.; et al. A Novel
ADOA-Associated OPA1 Mutation Alters the Mitochondrial Function, Membrane Potential, ROS Production
and Apoptosis. Sci. Rep. 2017, 7, 5704. [CrossRef]

21. Khaminets, A.; Behl, C.; Dikic, I. Ubiquitin-Dependent and Independent Signals in Selective Autophagy.
Trends Cell Biol. 2016, 26, 6–16. [CrossRef] [PubMed]

22. Emma, F.; Nesterova, G.; Langman, C.; Labbe, A.; Cherqui, S.; Goodyer, P.; Janssen, M.C.; Greco, M.;
Topaloglu, R.; Elenberg, E.; et al. Nephropathic Cystinosis: An International Consensus Document. Nephrol.
Dial. Transplant. 2014, 29, 87–94. [CrossRef] [PubMed]

23. Gaide Chevronnay, H.P.; Janssens, V.; Van Der Smissen, P.; N′Kuli, F.; Nevo, N.; Guiot, Y.; Levtchenko, E.;
Marbaix, E.; Pierreux, C.E.; Cherqui, S.; et al. Time Course of Pathogenic and Adaptation Mechanisms in
Cystinotic Mouse Kidneys. J. Am. Soc. Nephrol. 2014, 25, 1256–1269. [CrossRef] [PubMed]

24. Johnson, J.L.; Napolitano, G.; Monfregola, J.; Rocca, C.J.; Cherqui, S.; Catz, S.D. Upregulation of the
Rab27a-Dependent Trafficking and Secretory Mechanisms Improves Lysosomal Transport, Alleviates
Endoplasmic Reticulum Stress, and Reduces Lysosome Overload in Cystinosis. Mol. Cell. Biol. 2013, 33,
2950–2962. [CrossRef] [PubMed]

25. Ivanova, E.A.; van den Heuvel, L.P.; Elmonem, M.A.; De Smedt, H.; Missiaen, L.; Pastore, A.; Mekahli, D.;
Bultynck, G.; Levtchenko, E.N. Altered mTOR Signalling in Nephropathic Cystinosis. J. Inherit. Metab. Dis.
2016, 39, 457–464. [CrossRef]

26. Andrzejewska, Z.; Nevo, N.; Thomas, L.; Chhuon, C.; Bailleux, A.; Chauvet, V.; Courtoy, P.J.; Chol, M.;
Guerrera, I.C.; Antignac, C. Cystinosin is a Component of the Vacuolar H+-ATPase-Ragulator-Rag Complex
Controlling Mammalian Target of Rapamycin Complex 1 Signaling. J. Am. Soc. Nephrol. 2016, 27, 1678–1688.
[CrossRef]

27. Rega, L.R.; Polishchuk, E.; Montefusco, S.; Napolitano, G.; Tozzi, G.; Zhang, J.; Bellomo, F.; Taranta, A.;
Pastore, A.; Polishchuk, R.; et al. Activation of the Transcription Factor EB Rescues Lysosomal Abnormalities
in Cystinotic Kidney Cells. Kidney Int. 2016, 89, 862–873. [CrossRef]

28. De Rasmo, D.; Signorile, A.; Santeramo, A.; Larizza, M.; Lattanzio, P.; Capitanio, G.; Papa, S.
Intramitochondrial Adenylyl Cyclase Controls the Turnover of Nuclear-Encoded Subunits and Activity of
Mammalian Complex I of the Respiratory Chain. Biochim. Biophys. Acta 2015, 1853, 183–191. [CrossRef]

http://dx.doi.org/10.15252/emmm.201404223
http://www.ncbi.nlm.nih.gov/pubmed/25586965
http://dx.doi.org/10.1038/s41467-017-02536-7
http://www.ncbi.nlm.nih.gov/pubmed/29323117
http://dx.doi.org/10.1093/hmg/ddt617
http://www.ncbi.nlm.nih.gov/pubmed/24319100
http://dx.doi.org/10.1371/journal.pone.0120998
http://dx.doi.org/10.3389/fcell.2017.00095
http://dx.doi.org/10.1038/nature25486
http://dx.doi.org/10.1073/pnas.1300855110
http://dx.doi.org/10.1074/jbc.RA119.008202
http://dx.doi.org/10.1146/annurev-physiol-021115-105011
http://dx.doi.org/10.1038/s41598-017-05571-y
http://dx.doi.org/10.1016/j.tcb.2015.08.010
http://www.ncbi.nlm.nih.gov/pubmed/26437584
http://dx.doi.org/10.1093/ndt/gfu090
http://www.ncbi.nlm.nih.gov/pubmed/25165189
http://dx.doi.org/10.1681/ASN.2013060598
http://www.ncbi.nlm.nih.gov/pubmed/24525030
http://dx.doi.org/10.1128/MCB.00417-13
http://www.ncbi.nlm.nih.gov/pubmed/23716592
http://dx.doi.org/10.1007/s10545-016-9919-z
http://dx.doi.org/10.1681/ASN.2014090937
http://dx.doi.org/10.1016/j.kint.2015.12.045
http://dx.doi.org/10.1016/j.bbamcr.2014.10.016


Int. J. Mol. Sci. 2020, 21, 192 11 of 11

29. Papa, S.; Scacco, S.; De Rasmo, D.; Signorile, A.; Papa, F.; Panelli, D.; Nicastro, A.; Scaringi, R.; Santeramo, A.;
Roca, E. cAMP-Dependent Protein Kinase Regulates Post-Translational Processing and Expression of Complex
I Subunits in Mammalian Cells. Biochim. Biophys. Acta 2010, 1797, 649–658. [CrossRef]

30. Signorile, A.; Micelli, L.; De Rasmo, D.; Santeramo, A.; Papa, F.; Ficarella, R.; Gattoni, G.; Scacco, S.; Papa, S.
Regulation of the Biogenesis of OXPHOS Complexes in Cell Transition from Replicating to Quiescent State:
Involvement of PKA and Effect of Hydroxytyrosol. Biochim. Biophys. Acta 2014, 1843, 675–684. [CrossRef]

31. Signorile, A.; Santeramo, A.; Tamma, G.; Pellegrino, T.; D′Oria, S.; Lattanzio, P.; De Rasmo, D. Mitochondrial
cAMP Prevents Apoptosis Modulating Sirt3 Protein Level and OPA1 Processing in Cardiac Myoblast Cells.
Biochim. Biophys. Acta 2017, 1864, 355–366. [CrossRef] [PubMed]

32. Guha, S.; Konkwo, C.; Lavorato, M.; Mathew, N.D.; Peng, M.; Ostrovsky, J.; Kwon, Y.J.; Polyak, E.; Lightfoot, R.;
Seiler, C.; et al. Pre-Clinical Evaluation of Cysteamine Bitartrate as a Therapeutic Agent for Mitochondrial
Respiratory Chain Disease. Hum. Mol. Genet. 2019, 28, 1837–1852. [CrossRef]

33. Ali, S.; McStay, G.P. Regulation of Mitochondrial Dynamics by Proteolytic Processing and Protein Turnover.
Antioxidants 2018, 7, 15.

34. Bragoszewski, P.; Turek, M.; Chacinska, A. Control of Mitochondrial Biogenesis and Function by the
Ubiquitin-Proteasome System. Open Biol. 2017, 7, 170007. [CrossRef] [PubMed]

35. Liang, J.R.; Martinez, A.; Lane, J.D.; Mayor, U.; Clague, M.J.; Urbe, S. USP30 Deubiquitylates Mitochondrial
Parkin Substrates and Restricts Apoptotic Cell Death. EMBO Rep. 2015, 16, 618–627. [CrossRef] [PubMed]

36. Yu, W.; Sun, Y.; Guo, S.; Lu, B. The PINK1/Parkin Pathway Regulates Mitochondrial Dynamics and Function
in Mammalian Hippocampal and Dopaminergic Neurons. Hum. Mol. Genet. 2011, 20, 3227–3240. [CrossRef]
[PubMed]

37. Tanaka, A.; Cleland, M.M.; Xu, S.; Narendra, D.P.; Suen, D.F.; Karbowski, M.; Youle, R.J. Proteasome and p97
Mediate Mitophagy and Degradation of Mitofusins Induced by Parkin. J. Cell Biol. 2010, 191, 1367–1380.
[CrossRef]

38. Zhou, J.; Shi, M.; Li, M.; Cheng, L.; Yang, J.; Huang, X. Sirtuin 3 Inhibition Induces Mitochondrial Stress in
Tongue Cancer by Targeting Mitochondrial Fission and the JNK-Fis1 Biological Axis. Cell Stress Chaperones
2019, 24, 369–383. [CrossRef]

39. Burte, F.; Carelli, V.; Chinnery, P.F.; Yu-Wai-Man, P. Disturbed Mitochondrial Dynamics and
Neurodegenerative Disorders. Nat. Rev. Neurol. 2015, 11, 11–24. [CrossRef]

40. Lee, H.; Smith, S.B.; Yoon, Y. The Short Variant of the Mitochondrial Dynamin OPA1 Maintains Mitochondrial
Energetics and Cristae Structure. J. Biol. Chem. 2017, 292, 7115–7130. [CrossRef]

41. Bellomo, F.; Medina, D.L.; De Leo, E.; Panarella, A.; Emma, F. High-Content Drug Screening for Rare Diseases.
J. Inherit. Metab. Dis. 2017, 40, 601–607. [CrossRef] [PubMed]

42. Wilmer, M.J.; Emma, F.; Levtchenko, E.N. The Pathogenesis of Cystinosis: Mechanisms beyond Cystine
Accumulation. Am. J. Physiol. Renal Physiol. 2010, 299, 905–916. [CrossRef] [PubMed]

43. Polishchuk, E.V.; Polishchuk, R.S. Pre-Embedding Labeling for Subcellular Detection of Molecules with
Electron Microscopy. Tissue Cell 2019, 57, 103–110. [CrossRef] [PubMed]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.bbabio.2010.03.013
http://dx.doi.org/10.1016/j.bbamcr.2013.12.017
http://dx.doi.org/10.1016/j.bbamcr.2016.11.022
http://www.ncbi.nlm.nih.gov/pubmed/27890624
http://dx.doi.org/10.1093/hmg/ddz023
http://dx.doi.org/10.1098/rsob.170007
http://www.ncbi.nlm.nih.gov/pubmed/28446709
http://dx.doi.org/10.15252/embr.201439820
http://www.ncbi.nlm.nih.gov/pubmed/25739811
http://dx.doi.org/10.1093/hmg/ddr235
http://www.ncbi.nlm.nih.gov/pubmed/21613270
http://dx.doi.org/10.1083/jcb.201007013
http://dx.doi.org/10.1007/s12192-019-00970-8
http://dx.doi.org/10.1038/nrneurol.2014.228
http://dx.doi.org/10.1074/jbc.M116.762567
http://dx.doi.org/10.1007/s10545-017-0055-1
http://www.ncbi.nlm.nih.gov/pubmed/28593466
http://dx.doi.org/10.1152/ajprenal.00318.2010
http://www.ncbi.nlm.nih.gov/pubmed/20826575
http://dx.doi.org/10.1016/j.tice.2018.11.002
http://www.ncbi.nlm.nih.gov/pubmed/30497685
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Results 
	CTNS-/- ciPTEC Showed Deregulation of Proteins Involved in Mitochondrial Fission/Fusion Processes 
	Mitochondrial Cristae Organization Was Impaired in CTNS-/- ciPTEC 

	Discussion 
	Materials and Methods 
	Cell Culture 
	SDS-PAGE and Western Blotting 
	Analysis of OPA1 Oligomers 
	Electron Microscopy 

	References

