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1  | INTRODUC TION

Infertility is defined by the International Committee for Monitoring 
Assisted Reproductive Technologies as the incapacity to conceive 
after at least one year of regular, unprotected, and well-timed inter-
course,1 and has become a global problem faced by one out of five 
couples. Although approximately 50% of these cases are associated 
with male infertility,2 the etiology of male infertility is multifacto-
rial and the average incidence of unexplained male infertility is ap-
proximately 15%.2 Furthermore, approximately 40% of cases were 
unexplained in a recent survey on infertility among Japan males.3 

Many studies have reportedly revealed the pathophysiologies of un-
explained male infertility, but the causes of most cases remain un-
known. Many studies on the effect of seminal oxidative stress (OS) 
on male fertile capacity have been reported since Aitken et al first 
reported reactive oxygen species (ROS) in washed human semen in 
1987 using a chemiluminescence assay.4 OS results from a distur-
bance of homeostatic balance between ROS production and antioxi-
dant capacity in seminal plasma in human semen 5 (Figure 1). It is well 
known that a small amount of ROS is vital for the steps involved in 
the essential physiological response of fertilization—sperm matura-
tion, hyperactivation, capacitation, acrosome reaction of sperm, and 

 

Received: 18 April 2020  |  Revised: 19 September 2020  |  Accepted: 28 September 2020

DOI: 10.1002/rmb2.12353  

M I N I  R E V I E W

Oxidative stress and male infertility

Teppei Takeshima  |   Kimitsugu Usui |   Kohei Mori |   Takuo Asai |   Kengo Yasuda |   
Shinnosuke Kuroda  |   Yasushi Yumura

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, 
provided the original work is properly cited.
© 2020 The Authors. Reproductive Medicine and Biology published by John Wiley & Sons Australia, Ltd on behalf of Japan Society for Reproductive Medicine.

Department of Urology, Reproduction 
Center, Yokohama City University Medical 
Center, Yokohama city, Japan

Correspondence
Teppei Takeshima, Department of Urology, 
Reproduction Center, Yokohama City 
University Medical Center, Urafune-Cho 
4-57, Minami-ku, Yokohama city, Kanagawa, 
Japan.
Email: teppeitalia@gmail.com

Funding information
JSPS KAKENHI, Grant/Award Number: 
18K16739

Abstract
Background: Between 30% and 80% of patients with male infertility produce ex-
cessive reactive oxygen species (ROS) in their ejaculate even though the cause of 
male infertility is unexplained in approximately half of cases. The strong connection 
between oxidative stress (OS) and male infertility has led recent investigators to pro-
pose the term “Male Oxidative Stress Infertility (MOSI)” to describe OS-associated 
male infertility.
Methods: We searched the PubMed database for original and review articles to sur-
vey the effects of OS on male infertility, and then verified the effects and treatments.
Main findings: Seminal plasma contains many antioxidants that protect sperm from 
ROS, because low amounts of ROS are required in the physiological fertilization pro-
cess. The production of excessive ROS causes OS which can lower fertility through 
lipid peroxidation, sperm DNA damage, and apoptosis. Several assays are available 
for evaluating OS, including the MiOXSYS® analyzer to measure oxidation-reduction 
potential. Several measures should be considered for minimizing OS and improving 
clinical outcomes.
Conclusion: Accurately diagnosing patients with MOSI and identifying highly sensi-
tive biomarkers through proteomics technology is vital for better clinical outcomes.
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sperm-oocyte fusion.6,7 However, lipid peroxidation (LPO) within 
the cellular membrane, deoxyribonucleic acid (DNA) fragmentation 
in nuclei and mitochondria, and apoptosis8 can occur when the pro-
duction level of ROS gets excessive. All these events negatively af-
fect sperm parameters,9-15 male fertility,12 and pregnancy outcome 
of their partners. Clinically, several studies have demonstrated that 
OS in human semen resulted in significantly poor assisted reproduc-
tive technology (ART) outcomes, such as lower fertilization rates, 
arrest of embryonic development, implantation failure, recurrent 
pregnancy loss, and lower live birth rates.16-18 Agarwal et al pro-
posed the term and concept of “Male Oxidative Stress Infertility 
(MOSI)”,19 and it has been determined that there are many patients 
with MOSI among those who were previously classified as having 
idiopathic male infertility.19 Understanding the effects of ROS on 
male fertile capacity, measuring OS accurately, and treating patients 
based on their pathophysiologies will contribute to improving male 
infertility outcomes. The following short review will describe the 
pathophysiologies of OS and discuss its treatments.

2  | PATHOPHYSIOLOGY OF ROS IN 
HUMAN SEMEN

ROS are typically classified as either free radicals (hydroxyl radicals 
(.OH), superoxide anion (.O2

−), or peroxyl radicals (.RO2)), or non-
radicals (hydrogen peroxide (H2O2) or hypochlorous acid (HOCl)).20 
Strictly speaking, reactive nitrogen species, such as nitric oxide 
(.NO), nitric dioxide (.NO2), and peroxynitrite (ONOO−), are consid-
ered a subclass of ROS. Free radicals are unstable short-lived reac-
tive chemical compounds that contain an unpaired valence electron. 
The electrons form pairs by depriving other compounds of an un-
paired electron, which can cause oxidation. One of the representa-
tive free radicals, superoxide anion, reacts to form a precursor of 
hydroxyl radicals and hydrogen peroxide. Hydrogen peroxide is one 
of the non-radical species and is not very reactive. However, it gen-
erates hydroxyl radicals,21 which are highly reactive and oxidative, 

when endogenous metal ions are present. It is therefore the most 
important factor causing oxidative damage, including DNA damage 
and in vivo cellular LPO, especially in human semen.

It has become apparent over the past 20 years that the physio-
logical levels of ROS have an impact on several signaling pathways 
that regulate biological and physiological redox-sensitive pro-
cesses.22 These redox processes usually require ROS for interaction 
with the amino acid cysteine on proteins. ROS typically mediate cell 
proliferation and apoptotic pathways that regulate the cell cycle and 
programmed cell death. Likewise, ROS in semen plays a low-level 
role as a second messenger in the fertilization processes, including 
sperm maturation, hyperactivation, capacitation, acrosome reac-
tion, egg penetration, and sperm head decondensation.6,7 Human 
sperm generates ROS through several pathways which induce cy-
clic adenosine monophosphate in sperm, activate tyrosine kinases, 
and increase the tyrosine phosphorylation level. The localization of 
tyrosine phosphorylation in the flagellum causes spermatozoal hy-
peractivation within the female genital tract; furthermore, it causes 
binding of the sperm to the zona pellucida which is essential for ac-
rosome reaction.6,7

OS caused by excessive ROS production has various detrimental 
effects on certain components of the human body, such as the cranial 
nervous system, cardiovascular system, digestive system, and endo-
crine and metabolic systems, even though low levels of ROS have 
important physiological functions.23-26 An excess of seminal ROS has 
been reported in 30% to 80% of infertile men.11,15,27 It is well known 
that seminal OS induces LPO of the sperm cell membrane, sperm 
DNA fragmentation (SDF) and, consequently, apoptosis.

OS results from not only excessive ROS production but also from 
low antioxidant capacity. All human semen contains endogenously 
produced antioxidants in the seminal plasma to protect the sperm 
from OS via three mechanisms: prevention, interception, and repair. 
These antioxidants are classified as enzymatic and nonenzymatic an-
tioxidants.28 Representative enzymatic antioxidants include super-
oxide dismutase (SOD), catalase, and glutathione peroxidase (GPX). 
Nonenzymatic antioxidants include ascorbic acid (vitamin C) and 

F I G U R E  1   Factors that can cause 
oxidative stress. Oxidative stress results 
from a disturbance of homeostatic balance 
between ROS production and antioxidant 
capacity in seminal plasma [Colour figure 
can be viewed at wileyonlinelibrary.com]
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alpha-tocopherol (vitamin E), coenzyme Q10, astaxanthin, myo-ino-
sitol, urate, taurine, melatonin, transferrin, L-carnitine, and lactofer-
rin.28-30 These antioxidants function as ROS scavengers to maintain 
redox homeostasis. The total antioxidant capacity (TAC) assay was 
often used to measure the total amount of nonenzymatic antioxi-
dants in seminal plasma.31

3  | MAIN SOURCES OF ROS

The two major sources of endogenous ROS in human semen are 
leukocytes (extrinsic ROS) in seminal fluid4,32 and immature sperm 
(intrinsic ROS) having a morphologically abnormal head and cyto-
plasmic retention.32-34

When leukocyte chemotaxis and activation stimulate male geni-
tal tract inflammation and infection, extrinsic ROS is produced. ROS 
production occurs when leukocytes break down pathogens by acti-
vating the myeloperoxidase system.27 This excessive production of 
ROS by leukocytes can lead to OS in seminal fluid.

Intrinsic ROS is produced by abnormal and immature spermato-
zoa. Cytoplasm deposits in the mid-piece fall off to cause cell elon-
gation and condensation during the normal spermiogenesis process. 
The morphologically abnormal, immature spermatozoa retain the 
excess residual body containing large amounts of cytosolic glu-
cose-6-phosphate dehydrogenase enzyme and produce intracellu-
lar nicotinamide adenine dinucleotide phosphate (NADPH). NADPH 
then produces ROS via NADPH oxidase called NOX5 located in 
the intramembrane.35 Therefore, immature spermatozoa are char-
acterized by the presence of cytoplasm in the residual body of the 
mid-piece which produces excessive ROS. It is very important to de-
termining the source of excessive ROS production in semen because 
infiltrating leukocytes and immature spermatozoa have very differ-
ent clinical implications.

Myeloperoxidase staining is effective for distinguishing gran-
ulocytes such as neutrophils, polymorphonuclear leukocytes from 
germ cells to determine the source of excessive ROS production in 
semen.36,37 Leukocytes positive for peroxidase staining in semen 
stain brown, which reflects their capacity for producing excessive 
ROS through phagocytosis.38 These activated leukocytes increase 
NADPH production via the hexose monophosphate shunt, al-
lowing them to produce 100 times more ROS than non-activated 
leukocytes.39

On the other hand, nitroblue tetrazolium (NBT) staining is ef-
fective for detecting ROS production by immature spermatozoa.40 
NBT is a yellow, water-soluble, nitro-substituted aromatic tetra-
zolium compound that reacts with cellular superoxide ions to form 
a blue-colored formazan derivative, which can be observed either 
microscopically or spectrophotometrically using an enzyme-linked 
immunosorbent assay (ELISA) plate reader. Oxidation within the cy-
toplasm helps transfer electrons from NADPH to NBT and reduces 
NBT to blue-colored diformazan. The intensity of staining is there-
fore correlated with that of intracellular ROS.41 NBT staining is a 

user-friendly technique used to predict the level of ROS production 
and detect the source of ROS production.

4  | OTHER SOURCES OF ROS

Table 1 shows the well-established external sources of ROS roughly 
classified into five factors. Many investigations have focused on the 
impact of these factors on seminal OS. For example, alcohol abuse 
reportedly causes excessive ROS production, partly due to under-
nutrition resulting in insufficient antioxidant intake.42 Alcohol abuse 
also decreases the success rate of IVF and increases the rate of mis-
carriage,43 and tobacco smokers could exhibit higher ROS production 
than nonsmokers.44 However, the mechanism of smoking toxicity is 
complicated because tobacco contains many kinds of chemical com-
pounds, including nicotine, tar, carbon monoxide, and heavy met-
als.45 Many of these toxic compounds have an oxidizing effect and 
can induce in vivo chromosomal aberrations and SDF.46 Smoking 
can recruit proinflammatory leukocytes which increase seminal ROS 
levels. A small cohort study reported that smokers had 48% higher 
seminal leukocyte levels and 107% higher seminal ROS production 
than nonsmokers.47 The mean sperm DNA fragmentation index (DFI) 
of infertile smokers was also reported as being higher than in infer-
tile nonsmokers (37.66% vs. 19.34%, P < .001).48 Furthermore, the 
levels of endogenous antioxidants, such as vitamins C and E, were 
decreased in the seminal plasma of smokers, which indicates lower 
protection against OS.49

TA B L E  1   Origin of OS

Lifestyle

Smoking

Insufficient diet

Obesity

Alcohol

Age

Environmental

Pollution

Heavy metals

Heat

Phthalate

Mobile phone radiation

Infection

Genitourinary tract infection

Testicular

Clinical varicocele

Iatrogenic

Cryopreservation

Centrifugation

Drugs
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Obesity is often associated with impaired spermatogene-
sis due to endocrinological abnormalities. Adipose fibroblasts 
contain aromatase which converts testosterone into estradiol. 
Moreover, cytokines are generated from adipose tissues leading 
to the recruitment of proinflammatory leukocytes and an increase 
in NADPH oxidase activity, which induces OS.50 Previous investi-
gations have reported a positive correlation between body mass 
index and DFI.51

Environmental pollution and heavy metals can also induce OS. 
For example, phthalates are a class of chemicals used as plasticiz-
ers, which are also endocrine disrupters. They are widely found in 
polyvinyl chloride plastics and have been implicated in OS induction. 
Phthalate esters act as peroxisome proliferators and can produce 
H2O2 and other oxidants.52

Wearing tight-fitting underwear, using a sauna, bathing 
for long periods of time, using a laptop on closed legs, and cy-
cling53-56 may result in an elevated scrotal temperature. The lo-
cation of the scrotum keeps the temperature of the testes lower 
than body temperature by approximately 2°C.57 Increased scrotal 
temperature may inversely, but reversibly, affect spermatogene-
sis. Several authors have reported a correlation between scrotal 
heat stress and SDF. Furthermore, intermittent heat exposure 
reportedly impedes spermatogenesis more than continuous heat 
exposure.56 Immature spermatozoa may produce excessive ROS 
since the process of spermiogenesis is susceptible to heat stress 
and heat stress may alter the normal function of the epididymis.58 
OS may contribute to spermatogenesis suppression in response 
to heat.

Previous investigations have shown the effect of mobile phone 
radiation on increasing ROS production and decreasing the activity 
of antioxidants, such as catalase, SOD, and glutathione peroxidase 
(GPX).59Recently, Gautam et al demonstrated that significant in-
crease in ROS and lipid peroxidation level with simultaneously de-
crease in sperm count, alterations in sperm tail morphology were 
observed in the male Wistar rats which were exposed to 3G mobile 
phone for 45 days.60

Approximately 15% of the general male population—30%–40% 
of men with primary infertility, and up to 80% of men with sec-
ondary infertility—are diagnosed as having clinical varicocele.61 
Recent meta-analyses have shown that varicocele repair signifi-
cantly improves seminal parameters62,63 and is considered as one 
of the most common causes of surgically treatable male infer-
tility.64 OS is one of the major contributors to male infertility in 
men with varicocele, and many investigations have demonstrated 
elevated levels of SDF in men with varicocele.65 One of the main 
mechanism is considered to be a protamination and chromatin 
compaction disorder during the spermiogenesis process, which 
elevates the sensitivity of affected cells to OS causing defective 
spermatogenesis and SDF.66 Most studies reported that the ROS 
production level of semen in men with varicocele was increased 
compared to the controls.67 Furthermore, the endogenous anti-
oxidant level in seminal plasma was decreased in patients with 
varicocele.68

5  | IMPAC T OF OS ON SPERMATOZOA

A disturbance of the homeostatic balance between ROS and anti-
oxidants occurs when highly reactive ROS exceed the antioxidant 
defense systems, and it can lead to the development of OS. This can 
have detrimental effects on sperm, such as LPO, SDF, and apoptosis. 
We describe each effect below.

5.1 | Lipid peroxidation

Sperm cells have abundant lipids in their plasma membrane mostly 
in the form of polyunsaturated fatty acids (PUFAs), especially doco-
sahexaenoic acid, where six double bonds between their methylene 
groups are not conjugated. Increased ROS production induces PUFA 
peroxidation within the sperm cell membrane,69 which induces cell 
dysfunction due to loss of membrane fluidity and integrity required 
for successful sperm-oocyte fusion after the capacitation and acro-
some reaction biochemical cascades.70 Byproducts of LPO bind to 
and disrupt mitochondrial proteins of the electron transport chain 
apart from disrupting the sperm cell membrane, which leads to elec-
tron leakage and consequently decreases mitochondrial membrane 
potential, decreases ATP production, and decreases sperm motil-
ity.71 LPO has three phases: the first phase is “initiation,” which is 
the extraction of hydrogen atoms from the carbon-carbon double 
bonds of an unsaturated fatty acid to propel free radicals. The sec-
ond phase is “propagation,” which is the formation of lipid radicals 
followed by their rapid reaction with oxygen to form peroxyl radi-
cals.72 When metals such as copper and iron are present, the peroxyl 
radicals can again abstract a hydrogen atom from an unsaturated 
fatty acid to produce a lipid radical and lipid hydrogen peroxide.73 
The last phase is “termination,” where these formed radicals react 
with successive lipids and generate cytotoxic aldehydes and other 
end products.

The main products of LPO are 4-hydroxynonenal (4-HNE), 
malondialdehyde (MDA), and acrolein. One method used to 
quantify LPO is MDA measurement according to the spectro-
photometric thiobarbituric acid reaction (TBAR) test. MDA is an 
essential biomarker for analyzing and monitoring PUFA peroxida-
tion levels.69,74

5.2 | Sperm DNA fragmentation

Excessive ROS production and decreased antioxidant levels in 
semen can also lead to SDF. OS can damage sperm DNA directly 
or indirectly through sperm caspase and endonuclease activation. 
SDF is caused by DNA vulnerability due to a chromatin compaction 
error during the spermiogenesis process, which causes a substitu-
tion failure of chromatin structure from histone to protamine. This 
damage is due to ROS exposure after spermiation, during comigra-
tion of spermatozoa from the seminiferous tubules through the 
rete testis to the cauda epididymis. This results in the formation of 
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8-OH-guanine and 8-OH-2'-deoxyguanosine (8-OHdG),75 which is 
an oxidized guanine adduct. Increased 8-OHdG concentration cor-
relates significantly with DNA fragmentation and strand breaks.

DNA has a double-helix structure, and DNA fragmentation can 
occur in both the single-stranded (ss-) and double-stranded (ds-) 
forms. DNA repair can only occur during specific stages of sper-
miogenesis, and the repair mechanisms are no longer activated 
during nuclear condensation in the epididymis. The next oppor-
tunity for ss-DNA break repair is by the human oocyte, which is 
a critical step in embryo development, although the ability to re-
pair SDF decreases with advanced maternal age.76 The ds-DNA 
break results in genomic instability and apoptosis in the absence 
of repair.77 The presence of unrepaired SDF above the critical 
threshold reportedly has a detrimental effect on embryo devel-
opment and pregnancy outcome—also called the “late paternal ef-
fect”.78 In a cleavage-stage embryo, major activation of embryonic 
genome expression begins on the second day of human embryo 
development (the 4-cell stage), and embryogenesis switches from 
maternal factor dependence to the embryo's own genome depen-
dence.79 Therefore, a spermatozoon with SDF negatively affects 
blastulation, implantation, and pregnancy outcomes after fertil-
ization. Furthermore, Kuroda et al reported that OS also had an 
adverse effect on cleavage embryo development, called “early pa-
ternal effect”.80 Several investigations have reported the relation-
ship between ART and SDF outcomes. A previous meta-analysis 
demonstrated that SDF was inversely correlated with pregnancy 
outcome [relative risk (RR): 0.81; 95% confidence interval (CI): 
0.70-0.95; P = .008] and positively correlated with miscarriage 
(RR: 2.28; 95% CI: 1.55-3.35; P < .0001).81 Proper measurement 
and management can reduce the burden on couples since SDF can 
cause recurrent pregnancy loss.

5.3 | Apoptosis

Apoptosis via multiple cell death signaling and regulatory path-
ways is known as physiologically programmed cell death due to 
DNA fragmentation. ROS-induced ds-DNA breaks can result in 
apoptosis. ROS also disrupts the mitochondrial membranes so that 
they release signaling molecule cytochrome C, which can activate 
the apoptotic caspases and annexin-V binding to phosphatidyl-
serine. High cytochrome c levels in seminal plasma may suggest 
significant damage to mitochondria caused by high levels of ROS 
in infertile patients.

6  | E VALUATION OF OS IN HUMAN 
SEMEN

As previously reported in the literature,19 OS has been linked to 
unexplained and idiopathic male infertility, and measurement of 
OS is essential for its subsequent management and treatment. 
Currently, more than 30 different assays have been described to 

measure seminal OS. They can be classified as direct or indirect 
assays (Table 2). Direct assays quantify the levels of ROS directly. 
Indirect assays quantify the adverse effects of OS, such as SDF or 
LPO levels.82

6.1 | Direct measurement assays for OS

The chemiluminescence method is one of the direct assays used 
to quantify seminal ROS levels. Takeshima et al11 and Yumura 
et al15 calculated chemiluminescence using a luminometer, spe-
cifically Luminometer 1251™ (LKB Wallac, Turku, Finland) and the 
Monolight 3010™ Luminometer (BD Biosciences Pharmingen, Ltd.) 
respectively, after adding 40 μL of 100 mmol/L luminol (5-amino-
2,3dihydro 1,4-phtalazinedione) to 500 μL of unprocessed 
semen. The levels of ROS production were calculated automati-
cally by subtracting the area under the baseline from the total 
integrated chemiluminescence for 30 minutes after adding lumi-
nol to unprocessed semen, and expressed as relative light units 
(RLU)/200 s/106 of spermatozoa (Figure 2).11,15 There are a variety 
of luminometers available, which include single and double tube 
luminometers, and multiple tube luminometers, each with its own 

TA B L E  2   Direct and indirect semen assays of ROS

Direct assays Indirect assays

Chemiluminescence Myeloperoxidase (Endz) test

Nitroblue tetrazolium test 8-OHdG

Oxidation-reduction potential Thiobarbituric acid reaction 
(TBAR) test

Flow cytometry Total antioxidant capacity (TAC) 
assay

F I G U R E  2   Measurement of ROS by chemiluminescence 
method. ROS production levels were calculated as the integrated 
chemiluminescence for 30 min after the addition of luminol 
(5-amino-2,3-dihydro-1,4-phtalazinedione) to unwashed semen 
after baseline subtraction
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strengths and weaknesses, which can be used according to the 
number of samples processed.83

As described above, the NBT assay is also a cost-effective, 
user-friendly, and sensitive direct assay. Unlike chemilumines-
cent assays, the NBT assay can assess seminal ROS levels and 
microscopically or spectrophotometrically determine the source 
(immature sperm or leukocytes) of ROS. Diformazan crystal con-
centration has a positive correlation with intracellular ROS level, 
and the location of the crystals reveals the cellular source of ROS 
in semen.40,41

6.2 | Indirect measurement assays for OS

MDA is one of the byproducts of LPO, and it can be commonly 
measured as an indicator of the LPO level. Sperm MDA concentra-
tion is measured with a TBAR assay through spectrophotometry or 
fluorometry.84 Sperm MDA levels have a positive correlation with 
ROS production levels in the semen of infertile men84; however, 
this assay is a nonspecific test providing only post hoc measure-
ment of LPO.

8-OHdG is a product of oxidative DNA damage that is cleaved 
by the specific enzyme after 8-hydroxylation of the guanine base; 
it is also used as a sensitive biomarker for ROS-induced oxidative 
DNA damage in human sperm.85 8-OHdG can be measured by ELISA 
in seminal plasma and can be quantified by immunohistochemical 
staining in testicular tissue.86

To quantify the total amount of antioxidants, TAC assay based 
on the ability of antioxidants in the seminal plasma samples to 
inhibit 2,2'-azino-di- [3-ethylbenzhiazoline sulfonate] (ABTS) oxi-
dation to ABTS+ was often used. This is because measuring each 
specific antioxidant provided limited information on assessed 
TAC.87,88

Seminal TAC can be measured as the sum of antioxidant ac-
tivities available in seminal plasma using enhanced chemilumines-
cence or colorimetric techniques.88 Previous studies reported that 
a low level of seminal TAC was associated with male infertility.89 
Mahfouz et al reported that infertile patients had lower semi-
nal plasma TAC levels compared to the proven fertile and donor 
group.90 However, the ROS-TAC score which calculates the bal-
ance between oxidation and reduction potential82 is superior for 
measuring ROS and TAC alone and is more suitable for predicting 
MOSI.91 The ROS-TAC score is a parameter formulated using the 
ratio of standardized ROS production level in washed sperm sus-
pensions and standardized TAC in seminal plasma using a principal 
component analysis. A cutoff value of 30 was determined as the 
lower end of a normal range of ROS-TAC score, and patients with 
lower scores are assumed to be at risk for infertility.92 However, 
TAC assays cannot be performed routinely, as they require expen-
sive equipment and advanced technical skills while only measuring 
nonenzymatic antioxidants.13 MiOXSYS® has the potential to sub-
stitute TAC assay, as it can measure simultaneously oxidation-re-
duction potential (ORP) more easily and in a shorter time.

6.3 | Novel measurement assays for oxidation-
reduction potential

In contrast to the methods described above, ORP measurement is a di-
rect assay for quantifying OS with the Male Infertility Oxidative System 
(MiOXSYS®) analyzer (Aytu BioScience Inc, California, USA), which 
is a novel, user-friendly, and less expensive technology for evaluating 
the balance between the oxidative and reductive capacities of human 
semen.93,94 Therefore, studies on ORP measurements have been in-
creasingly reported93,94 in recent years, and static ORP (sORP) values 
have been calculated and expressed as mV/106 spermatozoa/mL. A 
higher sORP level indicates an imbalance of increased ROS produc-
tion compared to all antioxidants available in semen, thus indicating 
the presence of OS. Agarwal et al set the cutoff level at 1.34 mv/106 
spermatozoa/mL for identifying normal/abnormal semen quality.95 This 
MiOXSYS® system is therefore a very useful diagnostic tool for screen-
ing oxidative male infertility.

7  | MANAGEMENT AND PRE VENTION FOR 
MOSI

There are many types of precautionary measures, such as those re-
lated to lifestyle and environmental modifications and treatment op-
tions (eg, sperm selection techniques) that can be used to minimize 
the adverse effects of OS on the reproductive function.

7.1 | Sperm selection techniques

Sperm selection techniques that manage OS by removing sperm 
with oxidative DNA damage include density gradient centrifugation 
(DGC),96 electrophoretic separation,97 intracytoplasmic morphologi-
cally selected sperm injection,98 hyaluronic acid binding assay,99 and 
annexin-V magnetic-activated cell separation.100 Of these, DGC is 
a commonly used technique that can separate mature spermatozoa 
from immature spermatozoa, leukocytes, bacteria, and cell debris, 
which are origins of toxic ROS as a sperm preparation method for 
ART. Takeshima et al reported that DGC remove ROS, supporting 
that this method can select motile spermatozoa without enhancing 
OS.96

7.2 | Lifestyle and environmental modification

The lifestyle and environmental factors that increase ROS production 
are shown in Table 1. Patients may quit smoking,101 avoid alcohol abuse 
and lose weight through balanced diet and moderate exercise,102 and 
decrease their exposure to phthalates52 in order to minimize extrin-
sic ROS production. It is also well-established that increased scrotal 
temperature55,56 and exposure to harmful substances103 leads to an 
increase in OS and can have detrimental effects on fertile capacity. 
Among them, activities raising the temperature of the scrotum should 
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be considered. Avoiding wearing tight-fitting underwear, bathing in hot 
water for a long period, using saunas, using a laptop on closed legs, 
and cycling can minimize OS.53-56 Furthermore, adequate aeration 
and use of protective equipment in the workplace to reduce exposure 
to noxious chemicals and vapors that induce OS are also an effective 
measure to minimize OS. Mobile phone electromagnetic waves were 
reported to increase ROS production and decrease antioxidant activi-
ties59; therefore, storing it somewhere other than in a trouser pocket 
may minimize OS.104

7.3 | Shorter interval of ejaculatory abstinence

Because SDF occurs after spermiation during transfer of sper-
matozoa from the seminiferous tubules through rete testis to the 
cauda epididymis due to the ROS exposure, they can be affected 
by a harmful seminal microenvironment of OS while stored in the 
epididymis and after ejaculation. Therefore, increasing ejaculation 
frequency and decreasing the storage interval of spermatozoa in 
the epididymis may reduce sperm exposure to toxic ROS, thereby 
increasing sperm motility and decreasing SDF. Several studies have 
shown that a shorter interval between ejaculatory abstinence con-
tributed to a lower seminal ROS and sperm DFI.105,106 A shorter in-
terval between ejaculatory abstinence may improve sperm quality 
and DNA integrity by reducing sperm exposure to excessive ROS in 
the epididymis.

7.4 | Oral antioxidant therapy

Oral antioxidant therapies such as lactoferrin and transfer-
rin were found to inhibit the formation of ROS and scavenging 

antioxidants such as vitamins C and E eliminate ROS and improve 
sperm parameters and pregnancy outcomes in patients with OS 
and SDF. According to a systematic review by Gharagozloo and 
Aitken, 20 studies highlighting the effects of antioxidant supple-
mentation on measures of OS in semen were reviewed, and signif-
icant reduction in OS or SDF and improvement in sperm motility, 
particularly in asthenospermic men after antioxidant treatment, 
was observed in 19 out of 20 studies.107 Moreover, there have 
been systematic reviews on antioxidant therapy.108 According to 
the Cochrane database, 61 randomized controlled trials compar-
ing the effect of antioxidants and a placebo in a population of 
6,264 infertile men were reviewed. The results demonstrated 
that antioxidants could increase clinical pregnancy and live birth 
rates. Typical oral antioxidant therapies are vitamin C alone (400-
1000 mg/day),109 vitamin E alone (300-600 mg/day),110,111or a 
combination of vitamin C and E.112,113 Vitamin C and E act syn-
ergistically, and several studies have reported the advantageous 
effect of complex antioxidants on reducing SDF and increasing 
clinical pregnancy rates.112,113 Zinc is an essential element for 
spermatogenesis and sperm DNA synthesis. It also prevents LPO 
and acts as a component of SOD.114,115 Selenium is also an es-
sential component of the GPX selenoproteins.116 Several studies 
reported that antioxidants combined with zinc and selenium may 
lower SDF and increase clinical pregnancy rates.117 L-Carnitine 
and coenzyme Q10 are powerful antioxidants that prevent LPO 
and SDF. Meta-analysis and other studies showed that both com-
pounds improved conventional sperm parameters.118-122 Several 
studies on supplementation with a combination of antioxidants 
have also been reported.123-125 These antioxidant therapies and 
outcomes were shown in Table 3. While there have been many 
studies on the favorable outcomes of these treatments, there 
have been also several studies with negative outcomes and 

TA B L E  3   Various antioxidant therapies and outcomes

Antioxidants Outcomes Reference

Vitamin C low vitamin C intake: DFI increased
high vitamin C intake: DFI decreased

108

Vitamin E LPO decreased
sperm motility increased

109

zona binding rate increased 110

Vitamin C + Vitamin E DFI decreased 111

DFI decreased 112

L-Carnitine sperm density, motility increased
DFI decreased

119

Coenzyme Q10 sperm density, motility, TAC increased
ROS level, DFI decreased

120

Vitamin C + Vitamin E + Coenzyme Q10 sperm density, motility increased 122

Vitamin C + Vitamin E + Zinc +Selenium +  
L-Carnitine + Coenzyme Q10 + N-acetyl L-cysteine  
and other components

sperm density, motility increased
DFI, ORP decreased

123

Vitamin C + Vitamin E + Zinc +Coenzyme 
Q10 + L-Carnitine + Astaxanthin

total motile sperm count increased
sperm density, motility no change

124
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possible toxic effect when overused.126,127 Therefore, the ef-
ficacy is still controversial. True efficacy of these treatments 
should be validated by large-scale nonrandomized two-arm stud-
ies between OS-positive and -negative groups.

7.5 | Varicocele repair

As described earlier, much evidence suggests that OS and increas-
ing SDF are the major contributors to infertility in men with a 
varicocele.66 In addition, much evidence also suggests that varico-
celectomy in men with clinically palpable varicocele and infertility 
significantly improves male fertile.64,128 There are several surgical 
options for repairing varicocele, but microsurgical varicocelectomy 
by the subinguinal approach is considered the gold-standard tech-
nique for varicocele repair because it has the lowest incidence of 
postoperative recurrence and complications when compared to 
other procedures.129 Many studies have shown that varicocelectomy 
lowers seminal OS and ameliorates SDF. In addition, varicocelec-
tomy has been reported to significantly increase antioxidant levels 
indirectly.130

7.6 | Testicular sperm extraction

As mentioned above, spermatozoa in semen are affected by ROS 
during the ejaculation process. The testis is protected by substantial 
antioxidant systems, but spermatozoa are released from the Sertoli 
cells during the spermiation process and migrate from the seminifer-
ous tubules through the rete testis to the epididymis; they become 
susceptible to OS.131 The SDF level in testicular sperm has been re-
ported to be one third lower than in ejaculated sperm.132 Testicular 
sperm extraction (TESE) is a procedure by which sperm is surgically 
retrieved from the testis of patients with azoospermia, cryptozoo-
spermia, or ejaculatory disorders. ICSI using testicular sperm has 
a higher implantation and clinical pregnancy rates than ICSI using 
ejaculated sperm.133,134 However, testicular sperm has a significantly 
higher aneuploidy rate than ejaculated sperm.132 Therefore, this 
method should be performed with limited indication of recurrent 
ART failure and severe oligozoospermia cases.

8  | CONCLUSIONS AND FUTURE 
DIREC TIONS

Male patients with idiopathic/unexplained infertility should be 
screened for MOSI as mentioned above using an efficient, inexpen-
sive, and high sensitivity/high-specificity ORP assay as a screening 
test.19,94 Those who are MOSI-positive should then undergo a more 
extensive examination to identify the treatable factors.

In recent years, advances in proteomics technology have led to 
the discovery of many protein biomarkers of disease to elucidate 
the pathological condition and establish treatment methods.135,136 

Protein identification in spermatozoa and seminal plasma in semen 
samples exposed to OS will help understanding the biological path-
ways associated with male infertility and may lead to the discovery 
of new biomarkers of idiopathic male infertility. HSPA2, a member 
of HSP70 family, as a heat shock protein, is reportedly a key pro-
tein underexpressed in ROS-positive sperm. HSPA2 is a protein 
located in the sperm tail and is involved in spermatogenesis.137 
Underexpression of DJ-1 (which removes ROS such as hydrogen 
peroxide and inhibits apoptosis) has been determined through 
seminal plasma proteome analysis in ROS-positive semen.135 
These proteins could be possible biomarkers for OS in semen. 
Environmental factors, such as endocrine disruptors such as BPA 
(bisphenol A), DBP (dibutyl phthalate), and DEHP (bis (2-ethyl-
hexyl phthalate)) in plastics, can generate OS and cause epigenetic 
DNA methylation.138 Moreover, oxidative damage can cause epi-
genetic changes through a variety of mechanisms, including DNA 
methylation, histone modifications, and chromatin remodeling. It 
has been reported that DNA methylation deficiency caused by de-
ficiency of methyltransferase KMT2D is impaired by ROS and is 
implicated in spermatogenesis, Sertoli cell only syndrome, and the 
incidence of testicular cancer.139 Exploring biomarkers and epi-
genetic changes may lead to additional treatment and screening 
options in the future.
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