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Abstract

FGF1 is a signal peptide-less nonclassically released growth factor that is involved in angiogenesis, tissue repair,
inflammation, and carcinogenesis. The effects of nonclassical FGF export in vivo are not sufficiently studied. We produced
transgenic mice expressing FGF1 in endothelial cells (EC), which allowed the detection of FGF1 export to the vasculature,
and studied the efficiency of postischemic kidney repair in these animals. Although FGF1 transgenic mice had a normal
phenotype with unperturbed kidney structure, they showed a severely inhibited kidney repair after unilateral ischemia/
reperfusion. This was manifested by a strong decrease of postischemic kidney size and weight, whereas the undamaged
contralateral kidney exhibited an enhanced compensatory size increase. In addition, the postischemic kidneys of transgenic
mice were characterized by hyperplasia of interstitial cells, paucity of epithelial tubular structures, increase of the areas
occupied by connective tissue, and neutrophil and macrophage infiltration. The continuous treatment of transgenic mice
with the cell membrane stabilizer, taurine, inhibited nonclassical FGF1 export and significantly rescued postischemic kidney
repair. It was also found that similar to EC, the transgenic expression of FGF1 in monocytes and macrophages suppresses
kidney repair. We suggest that nonclassical export may be used as a target for the treatment of pathologies involving signal
peptide-less FGFs.
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Introduction

Members of the fibroblast growth factor (FGF) family play

critical roles in developmental and pathological processes

[1,2,3,4]. Most FGFs signal through specific transmembrane

receptors (FGFR), and thus require secretion for their biological

activities [1,2,3,4]. The majority of FGFs have a cleavable

hydrophobic N-terminal peptide in their structure that allows

their release through the classical secretion pathway, which

involves the endoplasmic reticulum and Golgi apparatus. In

contrast, two most widely expressed members of the family, FGF1

and FGF2, are devoid of signal peptide and thus are released

through unconventional secretion pathways [5,6,7,8]. FGF1 and

FGF2 are expressed in epithelial and endothelial cells, and

mononuclear leukocytes in kidneys under normal and pathological

conditions [9,10,11,12]. FGF1 has potent effects in embryonic

kidney culture, regulating ureteric bud branching [13] and

nephron progenitor cell maintenance [14]. Recombinant FGF1

and FGF2 improve wound healing [15], post-ischemic heart repair

[16,17,18,19], and formation of collaterals after hindlimb ischemia

[20]. The knockdown of FGFR2 exacerbated [21] and delivery of

recombinant FGF2 attenuated [22] postischemic kidney damage.

However the latter experiments were limited to first 4 days after

ischemia apparently due to insufficient stability of recombinant

FGFs in the organism [23].

We propose to use conditional transgenic expression of FGF1 to

elucidate long-term effects of this signaling ligand on kidney injury.

To that end, we created transgenic mice with conditional FGF1

expression in endothelial cells (EC) abundantly present in kidneys.

The production of FGF1 in EC directly facing the bloodstream

facilitated the assessment of its release. Another advantage of our

in vivo model was that despite permanent FGF1 expression in EC,

transgenic animals exhibited a normal phenotype, including

unperturbed kidney structure; therefore, we were able to

specifically focus on FGF-dependent events caused by ischemia

and postischemic stress. We found that transgenic expression of

FGF1 in EC resulted in the irreversible loss of epithelial tubular

structures and massive fibrosis in the postischemic kidney.

Importantly, these effects were suppressed by taurine, which

inhibits nonclassical FGF1 export in vitro [24] and also in vivo as

we found in the present study. These data demonstrate that

transgenic expression of nonclassically released FGF is compatible

with normal development and morphology of kidneys, but it

suppresses postischemic kidney repair. In addition, they suggest
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that targeting nonclassical FGF export may be used for the

treatment of pathological conditions caused by naturally occurring

upregulation of FGF1 and FGF2 expression [25,26,27].

Materials and Methods

1. Production of Transgenic Mice
To produce transgenic mice, we used FGF1 with a R136K

mutation at the thrombin cleavage site located in the heparin

binding domain of FGF1. R136K FGF1 developed as an agent for

wound repair exhibits normal mitogenic activity [28], and we

demonstrated that similar to wild type FGF1, it is normally

released during cell stress [29]. The use of this mutant prevented

thrombin cleavage of FGF1 and thus assured the efficient

collection of vascular FGF1. R136K mutation was introduced

by PCR-based site-directed mutagenesis in the FGF1pMEXneo

expression construct [5]. The codon encoding arginine 136 (AGA)

was changed to a lysine (AAA) (FGF1R136K). FGF1R136K was

cloned into SalI and EcoRI restriction sites of pcDNA3-HA vector

originating FGF1R136K:HA-pcDNA3. We inserted

FGF1R136K:HA into the HindIII and XbaI restriction sites of

the pTRE-Tight expression vector (Clontech) to obtain the

FGF1R136K:HA-pTRE construct. Pronuclei of fertilized oocytes

of FVB mice (Taconic) were injected with FGF1R136K:HA-

pTRE-Tight DNA. RT-PCR was applied to test the integration of

the transgene in the genome of one-month-old mice produced

from injected oocytes. The following two pairs of primers were

used:

a) 59-CGT GTA CGG TGG GAG GCC-39 and 59- CAA ATG

TGG TAT GGC TGA TT- 39

b) 59-GGC TCA CAG ACA CCA AAT G-39 and 59- CAA

ATG TGG TAT GGC TGA TT- 39

FGF1-positive mice were bred with FVB partners; as a result,

six independent transgenic lines were obtained.

To check the inducibility of FGF1 expression in transgenic

mice, we analyzed cultures of tail fibroblasts. The tail snips from

FGF1-transgenic mice were sterilized with ethanol, the skin was

removed, and snips were digested using 70 units/ml solution of

collagenase (Sigma) in DMEM for 3 h at 37uC. Large cell clumps

were then allowed to sediment at 1 g for 5 min. Dissociated cells

were precipitated by centrifugation at 2000 g, resuspended in

DMEM plus 10% fetal calf serum, and plated on fibronectin-

coated glass coverslips placed in the wells of TC6 plates. One week

later, the cells were transiently transfected using Fugene (Roche)

with the CMVt-rtTA construct (gift of Dr. John Hiscott, McGill

University, Montreal, Canada). One day after rtTA transfection,

the fibroblasts were stimulated with 10 mg/ml doxycycline

(Sigma), incubated for an additional 48 h, fixed with 10%

formalin, and immunofluorescently stained with mouse anti-HA

antibodies (Covance) followed by FITC-conjugated anti-mouse

IgG antibodies (Vector Laboratories), and examined under a

confocal fluorescence microscope. Fibroblasts untransfected with

rtTA or transfected with rtTA but untreated with doxycycline did

not express FGF1:HA. Of the six FGF1 transgenic lines examined,

line F demonstrated the most reproducible rtTA-dependent and

doxycycline inducible expression of FGF1:HA. Mice of this line

were bred with Tg(Tek-rtTA,TRE-lacZ)1425Tpr/J transgenic

mice expressing rtTA under the EC-specific Tek promoter (The

Jackson Laboratory). The double transgenic mice were further

bred for three generations onto the FVB background before using

them in kidney ischemia experiment. The genotype of double

transgenic FGF1/Tek mice was confirmed by RT-PCR using the

above mentioned FGF1 primers and two following combinations

of Tg(Tek-rtTA,TRE-lacZ)1425Tpr/J-specific primers recom-

mended by The Jackson Laboratory:

a) 59-CAA ATG TTG CTT GTC TGG TG-39; 59-GTC AGT

CGA GTG CAC AGT TT-39; 59-CGC TGT GGG GCA

TTT TAC TTT AG-39; 59-CAT GTC CAG ATC GAA

ATC GTC-39.

b) 59-CAA ATG TTG CTT GTC TGG TG-39; 59-GTC AGT

CGA GTG CAC AGT TT-39; 59-ATC CTC TGC ATG

GTC AGG TC-39; 59-CGT GGC CTG ATT CAT TCC-39.

In parallel, we bred FGF1 transgenic mice with the animals

expressing rtTA under the macrophage/monocyte specific c-fms

promoter. The original rtTA/c-fms transgenic mice [30] were

bred onto the FVB background before being mated with FGF1

transgenic animals. The genotype of double transgenic FGF1/c-

fms animals was confirmed by PCR using the aforementioned

FGF1 primers and a pair of rtTA/c-fms primers:

59 – TGA TTG AAG GGT CCA GAC TCA TTC –39 and 59 –

AGT GTA GGC TGC TCT ACA CCA AGC –39

2. Determination of FGF1 Content in the Vasculature
To determine the content of FGF1 in the vasculature, the

mice were sacrificed by isoflurane inhalation and their

cardiovascular system was immediately perfused with 10 ml of

ice-cold PBS containing 10 units/ml heparin (Sigma) in order to

detach FGF1 bound to endothelial cells (EC). The diluted blood

was collected and centrifuged for 10 min at 700 g. The content

of FGF1 in the supernatant was determined using the FGF1

ELISA kit (R&D Systems). To determine the FGF1 content in

the vasculature, we considered that the blood volume in mice

averages 7% of its body weight, and assumed that all the blood

was collected by perfusion.

3. Determination of FGF1 Content in Kidneys
To detect FGF1 expression in kidneys, the mice were sacrificed

by isoflurane inhalation followed by cervical dislocation, and a

50 mg fragment of the kidney was snap frozen in liquid nitrogen,

pulverized, and lyzed in SDS-PAGE loading buffer. Samples were

resolved by 15% SDS-PAGE and immunoblotted using rabbit

anti-FGF1 antibodies.

4. Unilateral Kidney Ischemia Reperfusion Injury
This study has been performed in accordance with the National

Research Council Guide for the Care and Use of Laboratory Animals and

approved by the Institutional Animal Care and Use Committee of

Maine Medical Center (approval ID 0701). Only male animals

were used in all the experiments. Male mice between 2 and

3 months of age were anesthetized using a cocktail of xylazine

(14.5 mg/kg) and ketamine (95 mg/kg), and maintained at a core

temperature of 37uC for the duration of the surgical procedure.

The renal pedicle of the right kidney was clamped for 26 min

using a microaneurysm clamp, during which time the kidney was

retained in the abdominal cavity. Animals in which the kidney

either did not discolor within one min after clamping or return to

normal color within two min after removal of the clamp were

excluded from the experiment. Following release of the clamp, the

kidney was returned to the abdomen and the body wall was

sutured to prevent prolapse. Skin staples were used to close the

wound.

Transgenic FGF Suppresses Kidney Repair
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5. RNA Purification and qRT-PCR Analysis
Isolated kidney tissue was added to 1 ml Trizol (Invitrogen)

on ice, homogenized immediately, and snap frozen. Crude total

RNA was purified from 500 ml of lysate according to the

manufacturer’s instructions, and further purified using the

RNeasy Mini kit (Qiagen) with DNase treatment. One ml of

Ribolock (Fermentas) was added, and cDNA was generated

from 1 mg of RNA using the qScript cDNA kit (Quanta). For

qPCR, 1 ml of cDNA was used as template in a 25 ml reaction

using iQ SYBR Green SuperMix (BioRad) on a MyiQ real time

detection system (Biorad). Cycling parameters were 95uC for 15

seconds or 55uC for 45 seconds. Primer sequences for mouse

KIM1 (Havcr1) were 59-TCGTGTCACCTATCAGAAGAGC-39

and 59- ACAATACAGACCACTGTCACTC-39, and for the b-

actin housekeeping gene 59- CGTGCGTGACATTAAAGA-

GAAG-39 and 59- TGGATGCCACAGCATTCCATA-39. Each

biological sample was assayed in triplicate. Technical replicates

were averaged and 1/DCT was calculated for each biological

sample. The SEM was determined within each group of

biological replicates, and p values were calculated using the

Student’s t-test.

6. Histology and Immunohistochemistry
After perfusion of the mouse vascular system with ice-cold

heparinized PBS, the postischemic and control contralateral

kidneys were fixed for 24 h in the cold 10% neutral formalin.

The paraffin sections of kidneys were prepared and stained with

hematoxylin and eosin, Trichrome, Sirius Red or periodic acid-

Schiff stain (PAS). For DAB-immunoperoxidase detection of

transgenically expressed FGF1, we used anti-HA monoclonal

antibodies (Covance). To identify EC, macrophages, neutrophils,

and proliferating cells, we used respectively: (i) anti-CD31/

PECAM biotinylated rat antibodies (BD Pharmingen), (ii) F4/80

mouse monoclonal antibodies (Santa Cruz), (iii) rat anti-neutrophil

antibodies (AbD Serotec), and (iv) anti-Ki-67 rabbit antibodies

(Abcam).

7. Image Analysis and Statistics
Kidney tubules were counted on hematoxylin and eosin

stained sections, at magnification 610, in 10 fields per section,

by using MacBiophotonic ImageJ program. Decrease of tubule

density was presented as the ratio (%) of average tubular density

in postischemic kidneys to that in contralateral kidneys. From

four to nine mice per experimental group were studied. Means

and SEM were calculated by using GraphPad software. The

significance of differences between transgenic and wild type

(WT) animals was assessed using Student’s t-test. The same

imaging and statistical analysis programs were used to assess the

portion (%) of kidney section positive for Sirius Red staining

(magnification 640, Sirius Red and hematoxylin staining),

percentage of Ki-67-positive nuclei (magnification 620, im-

munoperoxidase staining, hematoxylin counterstaining), and

percentage of dilated tubules, i.e. those where lumen occupies

more than J of tubule section (magnification 620, hematoxylin

and eosin staining). Increase of tubule dilatation was presented

as the ratio (fold) of the percentage of dilated tubules in the

postischemic kidney to that in the contralateral kidney.

Measurement of glomeruli diameters was performed on

hematoxylin and eosin stained sections at magnification 620,

by using a micrometer stage.

Results

1. FGF1/Tek Transgenic Mice Stably Express FGF1 in EC
and Release it to the Circulation

To assess the effect of EC-derived FGF1 on postischemic kidney

repair, we produced transgenic mice with EC-specific expression

of human FGF1. C-terminal HA tag, which does not interfere with

FGF1 release [24], was used for immunohistochemical FGF1

detection. To ensure cell type specific FGF1 expression, we chose

a Tet-based system. FGF1 was cloned in the pTRE-Tight plasmid

(Clontech) and the resultant construct was injected into fertilized

mouse oocytes. We produced several independent lines of FGF1

transgenic FVB mice. By immunoblotting or immunohistochem-

istry, none were found to express detectable amounts of FGF1:HA

in kidney, muscle, or liver (data not shown). To assess the potential

of rtTA-dependent FGF1 expression in transgenic mice, we

isolated fibroblasts from their tails and transiently transfected them

with rtTA. Immunofluorescence analysis demonstrated that

doxycycline treatment induced FGF1:HA expression in cultured

mouse fibroblasts derived from transgenic mice (data not shown).

We bred pTRE-Tight/FGF1 transgenic mice with Tg(Tek-rtTA,

TRE-lacZ)1425Tpr/J transgenic mice expressing rtTA under the

EC-specific Tek promoter. Double transgenic FGF1/Tek mice

were bred onto the FVB background. Immunoperoxidase staining

demonstrated endothelium-specific expression of FGF1:HA in

kidneys without doxycycline treatment (Figure 1A). Western

immunoblot analysis confirmed the expression of FGF1 in the

kidneys of the FGF1/Tek mice dramatically exceeding endoge-

nous FGF1 level (Figure 1B). Furthermore, FGF1 was detected by

ELISA in the vasculature of FGF1/Tek mice untreated with

doxycycline but not in the control mice (Figure 1C). FGF1/Tek

mice did not display any visible pathology and had normal fertility.

The kidneys of FGF1/Tek animals were indistinguishable from

those of control animals by their macroscopic ad microscopic

morphology. The unexpected stable uninduced EC-specific

expression of FGF1 in FGF1/Tek mice simplified our experiments

by eliminating the need for doxycycline stimulation.

2. Early Postischemic Response in FGF1/Tek and Control
Animals

Two- to three-month-old male FGF1/Tek transgenic mice and

control male FVB mice were subjected to 26 min of transient

ischemia of the right kidney. Day 1 after surgery, the mice were

sacrificed and the level of the mouse ortholog of kidney injury

marker 1 (KIM1), Havcr1, was determined by qRT-PCR. One day

after ischemia, the expression of Havcr1 in FGF1/Tek animals was

higher than in control mice (Figure 2A). Despite the trend of

increased Havcr1 expression in transgenic mice relative to WT,

differences between the two genotypes did not reach p,0.05. PAS

staining of kidney sections demonstrated that 24 h after ischemia,

the postischemic kidneys of both FGF1/Tek and control animals

contained in contrast to contralateral organs epithelial tubules,

filled with PAS-positive protein casts characteristic of acute kidney

injury (Figure 2B). Postischemic kidneys were characterized by an

increase of the percentage of dilated tubules, and this increase was

not significantly different between FGF1/Tek and control animals

(Figure 2C). Ischemia did not result in a significant change of the

diameters of glomeruli in the kidneys of both FGF1/Tek and

control mice (Figure 2D).

Transgenic FGF Suppresses Kidney Repair
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3. Kidney Ischemia/Reperfusion in FGF1/Tek Mice Results
in Size Decrease of Postischemic Kidneys and Loss of
Tubular Structures

Three weeks after unilateral ischemia/reperfusion, postischemic

kidneys of FGF1/Tek animals presented a sharp morphological

contrast to control animals. Indeed, their weight was on average

25% less than in the control mice (Figure 3A,B,C). Hematoxylin-

eosin staining of paraffin sections revealed a failure of kidney

repair in postischemic FGF1/Tek animals. Indeed, three weeks

after surgery, the postischemic kidneys of FGF1/Tek mice

exhibited a paucity of epithelial tubules, combined with hyper-

plasia of interstitial cells (Figure 3D,E). Conversely, the histology of

postischemic kidneys in control WT animals was more similar to

that of contralateral organs: efficient restoration of tubular

structures, and few signs of interstitial hyperplasia. The ratio of

tubule density in postischemic FGF1/Tek mice kidneys to tubule

density in contralateral kidneys (Figure 3E) was sharply lower than

this parameter in WT mice. The postischemic kidneys of FGF1/

Tek animals contained abundant capillaries detected by anti-

PECAM staining (Figure S1). Thus, it is unlikely that the observed

changes were due to deficient angiogenesis.

4. Ischemia Results in Fibrosis of FGF1/Tek Kidneys
Abundance of interstitial cells in postischemic kidneys of FGF1/

Tek mice prompted us to assess fibrosis and cell proliferation in

these organs. Trichrome staining (Figure 4A) revealed a strong

expansion of connective tissue in the cortex and medulla of

postischemic kidneys of FGF1/Tek mice compared to control

animals. Staining with the collagen marker Sirius Red was

increased in the interstitium of postischemic FGF1/Tek kidneys

much stronger than in postischemic kidneys of control mice

(Figure 4B, D). Immunohistochemical staining for Ki-67 a marker

of cell proliferation, revealed numerous proliferating cells in the

hyperplastic interstitium of cortex and medulla of FGF1/Tek

kidneys, while Ki-67-positive cells were rare in postischemic

kidneys of control animals (4C, E).

5. FGF1 Expression in EC Enhances the Invasion of
Macrophages and Neutrophils into the Postischemic
Kidneys

Kidney fibrosis is enhanced by the invasion of macrophages and

neutrophils that serve as sources of various profibrotic growth

factors and cytokines [31,32]. To assess the effect of EC-derived

FGF1 on the invasion of inflammatory cells into the kidneys, we

used immunoperoxidase histochemistry with the antibody F4/80

(marker of macrophages) or an anti-neutrophil antibody. We

found that three weeks after surgery, postischemic FGF1/Tek

kidneys contained large groups of macrophages and neutrophils in

the interstitium, whereas in the postischemic kidneys of control

animals, only individual macrophages and neutrophils were found

(Figure 5). Contralateral kidneys of both FGF1/Tek and control

animals were also largely macrophage- and neutrophil-negative.
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Figure 1. Transgenic FGF1 expression and release in FGF1/Tek mice. A. FGF1 is expressed in kidney EC. Immunoperoxidase staining was
used to detect transgenic FGF1 (anti-HA antibodies) and EC (anti-PECAM antibodies) in the paraffin sections of kidneys obtained from FGF1/Tek mice.
Preparations were counterstained with hematoxylin. Bar –30 m. B. Lysates of kidney tissue obtained from FGF1/Tek and control FVB mice were
resolved by SDS-PAGE and immunoblotted using rabbit anti-FGF1 antibodies and mouse monoclonal anti-ß-actin antibodies (loading control). C.
Transgenically expressed FGF1 is released into the vasculature of FGF1/Tek mice. Seven male FGF1/Tek mice and 7 control WT FVB males were
sacrificed; their vasculatures were perfused with cold heparinized PBS and the content of FGF1 (ng/ml blood) was determined using an FGF1 ELISA kit
from R&D.
doi:10.1371/journal.pone.0036485.g001
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6. Taurine Inhibits FGF1 Export in vivo and Rescues
Kidney Repair in FGF1/Tek Mice

Several pharmacological agents have been used with variable

success to treat kidney ischemia and fibrosis [33], i.e. antioxidants,

NO inhibitors, erythropoietin, adenosine, and others [33]. One of

the agents with a beneficial effect on postischemic renal recovery is

the sulfur-containing non-essential amino acid, taurine [34].

In addition to its anti-oxidant properties, taurine acts as a

membrane stabilizer [34]. Because FGF1 is an acidic phospholip-

id-binding protein [35] that destabilizes membranes containing

acidic phospholipids [36], we hypothesized that taurine could

inhibit FGF1 export in transgenic animals. Indeed, our recent

study [24] showed that in vitro stress-induced FGF1 export

correlates with phosphatidylserine externalization, and both

processes are inhibited by taurine. Therefore, we assessed the

effect of taurine on postischemic kidney repair and FGF1 export in

FGF1/Tek mice. The mice were administered water containing

10 mg/ml taurine from 48 h before to 21 days after kidney

ischemia, when the taurine-treated and control FGF1/Tek

animals were sacrificed to obtain kidneys and blood samples.

Taurine treatment resulted in a repression of FGF1 export to

circulation in most mice (Table 1). We also observed that while the

weight of postischemic kidneys in the six control animals varied

between 168 and 187 mg, in the four out of six mice treated with

Figure 2. Early postischemic response in FGF1/Tek and control animals. A. Expression of the kidney injury marker 1, Havcr1, in the
postischemic kidneys of FGF1/Tek and control WT FVB mice one day after ischemia. qRT-PCR results normalized to ß-actin expression. Kidneys of five
FGF1/Tek and five WT mice were studied. Mean and SEM are presented. B. PAS staining of the paraffin sections of postischemic and contralateral
kidneys of control WT FVB and FGF1/Tek mice. One day after ischemia, hematoxylin counterstaining. Bar –40 m̃ C. Increase of the percentage of
tubules with enlarged lumen (lumen occupies more than J of tubule section) in postischemic kidneys comparatively to contralateral organs. Kidneys
of four FGF1/Tek and four WT mice were studied. Mean and SEM of fold increase are presented. D. Glomeruli diameters in postischemic and
contralateral kidneys. Kidneys of four FGF1/Tek and four WT mice were studied. Mean and SEM are presented.
doi:10.1371/journal.pone.0036485.g002
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taurine, it was between 201 and 217 mg (Table 1). Unlike control

animals, these four taurine treated mice contained no detectable

FGF1 in the vasculature (Table 1). Taurine did not inhibit FGF1

export in two animals, and these mice had low postischemic

kidney weights: 186 and 180 mg (Table 1). Thus, the rescuing

effect of taurine on postischemic kidney repair correlated with the

suppression of FGF1 export.

Besides having significantly increased weight (Figure 6A),

postischemic kidneys of mice with FGF1 release repressed by

taurine had less interstitial hyperplasia than the postischemic

kidneys of animals not treated with taurine (Figure 6B). The

postischemic/contralateral ratio of kidney tubule density in mice

with repressed FGF1 release (Figure 3C) was almost twice

higher than in FGF1/Tek animals untreated with taurine. In

addition, unlike taurine untreated animals, mice with FGF1

release repressed with taurine did not exhibit large groups of

macrophages and neutrophils in the interstitium of their

postischemic kidneys (Figure 3D).

7. Similar to FGF1/Tek Animals, FGF1/c-fms Transgenic
Mice Exhibit Attenuated Postischemic Kidney Repair

Like EC [37], macrophages and monocytes present a source of

nonclassically secreted FGF1 and FGF2 in the organism [10]. To

assess the effect of macrophage-derived FGF1 on postischemic

kidney repair, we produced mice with monocyte/macrophage

specific overexpression of FGF1. pTRE-Tight/FGF1 transgenic

mice were crossed with rtTA/c-fms transgenic animals [30] that

had been bred on an FVB background. Peritoneal macrophages

that were obtained from the bi-transgenic FGF1/c-fms mice

pretreated with doxycycline expressed FGF1:HA, while it was

undetectable in macrophages obtained form the animals that did

not receive doxycycline (Figure 7A). ELISA analysis demonstrated

Figure 3. Decrease of postischemic kidney size and loss of tubular epithelial structures in FGF1/Tek animals. A. Representative
contralateral and postischemic kidneys of FGF1/Tek and control FVB (WT) animals, 21 days after ischemia/reperfusion. B. Decrease of postischemic
kidneys weight (red) and increase of contralateral kidneys weight (blue) in FGF1/Tek mice compared to FVB mice (WT). Mean and SEM are presented.
C. Sections of contralateral (two top sections per slide) and postischemic (two bottom sections per slide) kidneys of FGF1/Tek and control mice. D.
Loss of tubular structures in a postischemic kidney of an FGF1/Tek mouse. Postischemic and contralateral kidneys of an FGF1/Tek and a control WT
mouse are presented. Hematoxylin/eosin stained paraffin sections. Bar 2120m. E. Postischemic/contralateral % ratio (mean and SEM) of kidney tubule
density in FGF1/Tek and WT mice. Numbers of epithelial tubular structures in ten610 objective field were counted in postischemic and contralateral
kidneys of four FGF1/Tek and four wild type mice.
doi:10.1371/journal.pone.0036485.g003
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that doxycycline injection resulted in the appearance of FGF1 in

the vasculature of FGF1/c-fms mice (Figure 7B). Thus, unlike

FGF1/Tek mice, the cell type-specific expression of FGF1 in

FGF1/c-fms animal depended on doxycycline stimulation. How-

ever, to equalize the mice for potential side effects of long-term

doxycycline treatment, we choose to treat experimental (FGF1/c-

fms) and control WT animals with doxycycline instead of

comparing doxycycline-treated and untreated FGF1/c-fms mice.

In unilateral kidney ischemia experiments, FGF1/c-fms and

control WT two-month-old males were fed with doxycycline-

containing water (660 mg/l), beginning 48 h before and up to day

21 after surgery. We found that like FGF1/Tek mice, FGF1/c-fms

animals displayed a significant decrease of the weight of

postischemic kidneys (Figure 7C,D) comparatively to WT animals.

In addition, when compared to control mice the postischemic

kidneys of FGF1/c-fms mice were characterized by enhanced

hyperplasia of interstitial cells and significantly stronger loss of

tubular structures (Figure 7E,F). Thus, similar to EC-derived,

monocyte/macrophage-derived FGF1 can attenuate the postis-

chemic kidney recovery.

Discussion

Mice transgenically expressing FGF1 in EC are, to our

knowledge, the first animal model used to study nonclassical

protein export, its regulation and biological effects in vivo. We

found that although FGF1/Tek mice displayed normal fertility,

development, and phenotype (including normal kidney histolo-

gy), they responded to ischemia/reperfusion by massive fibrosis.

It is interesting that while in absence of ischemia, FGF1/Tek

mice exhibited release of FGF1 to the circulation, it did not

result in kidney pathologies. It is possible that continuous tissue

stress following ischemic treatment stimulates FGF1 export from

the basal surface of EC, which causes lasting proliferative

stimulation of interstitial fibroblasts surrounding the capillaries.

Alternatively, ischemia may induce the leakiness of the

endothelial monolayer and thus diffusion of FGF1 released

from the apical surface of EC to the exposed areas of the basal

membrane. Tek (Tie2) promoter-driven expression is widely

used for targeting transgene products to EC, particularly in the

studies of the effects of FGF signaling in the cardiovascular

systems [38]. However, there have been reports that Tek is also

expressed in some subpopulations of macrophages [39].

Although our immunohistochemistry results show that EC is

the locale where FGF1 is expressed in FGF1/Tek mice, we

cannot exclude, that a portion of transgenic FGF1 could also be

derived from macrophages.

The presence of numerous proliferating cells in the interstitium

of postischemic kidneys of FGF1/Tek mice supports the hypoth-

esis that ischemia stimulates FGF1 export from EC to surrounding

structures. Recent work indicates that pericyte proliferation leads

to the characteristic interstitial expansion seen in fibrosis following

Figure 4. Fibrosis and cell proliferation in the postischemic kidneys of FGF1/Tek mice. Twenty-one days after ischemia, paraffin sections
of postischemic and contralateral kidneys of FGF1/Tek and control FVB mice. A. Trichrome staining. B. Sirius red staining for collagen. Polarization
microscopy. C. Immunoperoxidase staining for Ki-67, a marker of cell proliferation. In B and C, hematoxylin counterstaining was used. Bar in A –80 m.
Bars in B and C –40 m. D. Quantification of Sirius staining: % of kidney section area positive for Sirius Red (mean and SEM) is presented. Kidneys of four
FGF1/Tek and four WT mice were studied. E. Quantification of cell proliferation: % cells positive for Ki-67 (mean and SEM) is presented. Kidneys of four
FGF1/Tek and four WT mice were studied.
doi:10.1371/journal.pone.0036485.g004
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acute kidney injury [40], and FGF1 exported from EC may

directly stimulate proliferation and migration of underlying

pericytes. Additionally, FGF1 released to the interstitium of

postischemic kidneys attracts neutrophils and macrophages that

secrete the proinflammatory or mitogenic proteins: IL1, TGFbeta,

ET-1, EGF, CTGF [41,42], potentially promoting fibrosis. Thus,

we propose that a complex and multifactorial cascade of events

may cause the massive fibrosis and dysfunction seen in kidneys of

mice with increased expression of nonclassically released FGF in

EC.

Interestingly, Gerber et al. [43] recently reported that the

knockout of FGFRL1, a decoy FGF receptor that binds the

excess of FGFs, results in premature termination of metanephric

kidney development, apparently because mesenchymo-epithelial

transformation required for differentiation of tubular structures

is inhibited by overabundant FGFs. The ubiquitous expression

of FGF1 and FGF2 in the adult organism can reflect their role

as latent stimulators of tissue repair, which become available

when tissue stress induces their export. However, an excess of

non-classically exported FGFs also can result in fibrosis and

Figure 5. Massive infiltration of neutrophils and macrophages in the postischemic kidneys of FGF1/Tek mice. Twenty-one days after
ischemia, paraffin sections of the postischemic and contralateral kidneys of FGF1/Tek and control FVB mice were stained using the
immunoperoxidase method for a neutrophil marker or F4/80, a macrophage marker. Hematoxylin counterstaining. Bar –40 m̃.
doi:10.1371/journal.pone.0036485.g005

Table 1. Effect of taurine treatment on FGF1 release and postischemic kidney weight in FGF1/Tek mice.

Mouse # Taurine treatment Contralateral kidney weight, mg Postischemic kidney weight, mg FGF1 blood content, ng/ml

1 2 242 174 5.32

2 2 201 168 1.52

3 2 233 187 3.66

4 2 203 184 2.38

5 2 250 182 4.75

6 2 296 171 4.27

1t + 231 217 0

2t + 240 201 0

3t + 210 201 0

4t + 229 203 0

5t + 225 186 6.61

6t + 304 180 0.86

FGF1/Tek mice were fed with water containing taurine (10 mg/ml) or taurine-free water from 2 days before to day 21 after ischemia/reperfusion, when they were
sacrificed. FGF1 content in the vasculature was determined by the ELISA method.
doi:10.1371/journal.pone.0036485.t001
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other pathologic processes. Indeed, the double knockout of

FGF1 and FGF2 significantly decreases chemically induced liver

fibrosis [44], while transgenic expression of FGF2 in cardiomy-

ocytes exacerbated myocardial injury [45]. In addition, it is

noteworthy that (i) genetically determined overexpression of

FGF1 in the mesangial cells of kidneys correlates with

hereditary hypertension [25]; (ii) FGF2 is implicated in

pulmonary hypertension [26], (iii) FGF1 released by EC is a

key stimulator of adipogenesis and thus can be involved in

obesity [27].

The emerging hypothesis about the pathological potential of

non-classically released FGFs, supported by the present work

underlines the importance of pharmacological regulation of

unconventional protein secretion. We found that taurine

inhibited FGF1 export in vivo and rescued kidney repair in

FGF1/Tek mice. The ability of taurine to suppress nonclassical

protein export based on membrane stabilization may partially

explain the beneficial effect of this small molecule in kidney

fibrosis and other inflammatory diseases [34,46,47,48].

In additional experiments using FGF1/c-fms mice, we found

that FGF1 derived from macrophages can also induce the

abnormal postischemic recovery of the kidney characterized by

the loss of tubular structures and hyperplasia of interstitial cells.

This effect is apparently due to the well-documented macrophage

Figure 6. Taurine inhibits FGF1 release in FGF1/Tek mice and rescues the postischemic kidney recovery. FGF1/Tek mice were fed with
water containing taurine (10 mg/ml) or taurine-free water from 2 days before to day 21 after ischemia/reperfusion, when they were sacrificed. FGF1
content in the vasculature was determined by the ELISA method (see Table 1). Four taurine-treated mice with inhibited FGF1 export and six untreated
mice were studied. A. Weights of contralateral and postischemic kidneys. Means and SEM are presented. B. Representative hematoxylin/eosin stained
paraffin sections of the postischemic and contralateral kidneys of a taurine-treated mouse and a control mouse. Bar 2120m. C. Postischemic/
contralateral % ratio (mean and SEM) of kidney tubule density in taurine-treated and untreated mice. Numbers of epithelial tubular structures in ten
610 objective fields were counted in postischemic and contralateral kidneys of four FGF1/Tek mice with taurine-inhibited FGF1 release and six FGF1/
Tek mice untreated with taurine. D. Paraffin sections of the postischemic and contralateral kidneys of taurine-treated and untreated mice were
stained using the immunoperoxidase method for a neutrophil marker or F4/80, a macrophage marker. Hematoxylin counterstaining. Bar –40 m.
doi:10.1371/journal.pone.0036485.g006
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invasion into postischemic kidneys [49]. The ischemia efficiency

may vary from experiment to experiment and that explains the

difference in tubular structures loss in ischemic WT kidneys

between Figures 3E and 7F. However, the trend of drastic

exacerbation of postischemic damage in FGF1 transgenic animals

is maintained.

We anticipate that this first study of FGF1 export in vivo and its

effects on organ repair will increase the understanding of the

biological effects of non-classical protein secretion, elucidation of

its molecular mechanisms, and development of efficient methods

of its regulation.
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Figure 7. Decrease of organ size and loss of tubular structures in the postischemic kidneys of FGF1/c-fms transgenic mice. A.
Induction of FGF1/HA expression in the peritoneal macrophages of FGF1/c-fms transgenic mice. Forty-eight hours before being sacrificed, the
animals were intraperitoneally injected with 0.2 ml PBS containing 10 mg/ml doxycycline (right) or with doxycycline-free PBS (left). Macrophages were
obtained by flushing the peritoneal cavity with PBS, plated on coverslips in DMEM with 10% FBS, fixed 12 h after plating and stained using anti-HA
antibodies (green) and TOPRO3 (red). Confocal images are presented. Bar –20m. B. FGF1 release in the vasculature of FGF1/c-fms mice. The animals
were intraperitoneally injected with 0.2 ml PBS containing 10 mg/ml doxycycline (right) or with doxycycline-free PBS (left). Forty-eight hours later, the
animals were sacrificed. Their vasculatures were perfused with cold heparinized PBS, and the content of FGF1(ng/ml blood) was determined using an
FGF1 ELISA kit. C. Contralateral (top) and postischemic (bottom) kidneys of an FGF1/c-fms mouse, 21 days after ischemia/reperfusion, during which
period the animal was receiving water with doxycycline (660 mg/l). D. Sharp decrease of postischemic kidneys weight in FGF1/c-fms mice in
comparison with control FVB animals (WT). Means and SEM are presented. Both types of mice received doxycycline in water throughout the
experiment. E. Loss of tubular structures in the postischemic kidney of an FGF1/c-fms mouse. Representative hematoxylin and eosin stained paraffin
sections of postischemic and contralateral kidneys of FGF1/c-fms and wild WT mice. Bar –80 m.F. Postischemic/contralateral % ratio (mean and SEM)
of kidney tubule density in FGF1/c-fms and WT mice. Numbers of epithelial tubular structures in ten 610 objective fields were counted in
postischemic and contralateral kidneys of six FGF1/c-fms and nine WT mice.
doi:10.1371/journal.pone.0036485.g007
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