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A novel wavelet decomposition 
and transformation convolutional 
neural network with data 
augmentation for breast 
cancer detection using digital 
mammogram
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Research in deep learning (DL) has continued to provide significant solutions to the challenges 
of detecting breast cancer in digital images. Image preprocessing methods and architecture 
enhancement techniques have been proposed to improve the performance of DL models such 
as convolutional neural networks (CNNs). For instance, the wavelet decomposition function has 
been used for image feature extraction in CNNs due to its strong compactness. Additionally, CNN 
architectures have been optimized to improve the process of feature detection to support the 
classification process. However, these approaches still lack completeness, as no mechanism exists to 
discriminate features to be enhanced and features to be eliminated for feature enhancement. More 
so, no studies have approached the use of wavelet transform to restructure CNN architectures to 
improve the detection of discriminant features in digital mammography for increased classification 
accuracy. Therefore, this study addresses these problems through wavelet-CNN-wavelet architecture. 
The approach presented in this paper combines seam carving and wavelet decomposition algorithms 
for image preprocessing to find discriminative features. These features are passed as input to a CNN-
wavelet structure that uses the new wavelet transformation function proposed in this paper. The CNN-
wavelet architecture applied layers of wavelet transform and reduced feature maps to obtain features 
suggestive of abnormalities that support the classification process. Meanwhile, we synthesized image 
samples with architectural distortion using a generative adversarial network (GAN) model to argue 
for their training datasets’ insufficiency. Experimentation of the proposed method was carried out 
using DDSM + CBIS and MIAS datasets. The results obtained showed that the new method improved 
the classification accuracy and lowered the loss function values. The study’s findings demonstrate 
the usefulness of the wavelet transform function in restructuring CNN architectures for performance 
enhancement in detecting abnormalities leading to breast cancer in digital mammography.
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CAD	� Computer-aided detection
GAN	� Generative adversarial network
2D-CNN	� Two-dimensional CNN
COVID-19	� Coronavirus disease-2019
NN	� Neural network
FC	� Fully connected
AUC​	� Area under curve
GURO	� Korea University Guro Hospital
RetinaNet	� Retina network
GooleNet	� Google network
AlexNet	� Ale network
FFDM	� Full-field digital mammograms
InceptionV3	� Inception version 3
TPR	� True positive rate
FPI	� Positives per image
ImageNet	� Image network
FCN	� Fully convolutional network
CRF	� Conditional random fields
DDSM-BCRP	� Digital Database for Screening Mammography -Breast Cancer Resistance Protein
MLO	� Mediolateral-oblique
VGGNet	� Visual geometry group network
ResNet	� Residual network
MIAS	� Mammographic Image Analysis Society
R-CNN	� Region-based CNN
MLP	� Multilayer perceptron
GlimpseNet	� Glimpse network
CNN-DW	� Convolutional neural network-discrete wavelet
CNN-CT	� Convolutional neural network-curvelet transform
CLAHE	� Contrast, limited adaptive histogram equalization
wCNN	� Wavelet convolutional neural network
wCwNN	� Wavelet convolutional wavelet neural network
CT	� Computerized tomography
BPNN	� Back-propagation neural network
NARX	� Bonlinear autoregressive network with exogenous inputs
WNARX	� Wavelet nonlinear autoregressive network with exogenous inputs
WNN 	� Wavelet neural network
WLSSVM	� Wavelet-based least square support vector machine
ANN	� Artificial neural network
mWDN	� Wavelet decomposition network
RCF	� Residual classification flow
mLSTM	� Multi-frequency long short-term memory
LM	� Levenberg–Marquardt
WPD	� Wavelet packet decomposition
OS	� Operating system
CPU	� Central processing unit
RAM	� Random access memory
CC	� Craniocaudal
BC	� Benign calcification
BM	� Benign mass
M	� Normal
CALC	� Calcification
M	� Mass
ASYM	� Asymmetry
LL	� Approximate coefficient
LH	� Low pass horizontal (horizontal subbands)
HL	� Horizontal low pass (vertical subbands)
HH	� Horizontal high pass (diagnoal subbands)
WPDP2	� Wavelet packet decomposition 2
ROC	� Receiver operating characteristic
MCC	� Matthew correlation coefficient
TP	� True positive
FP	� False positive
TN	� True negative
FN	� False negative

Global statistics on breast cancer in 2021 showed that the disease remains the most diagnosed cancer among 
women. The study revealed that between 1990 and 2019, global breast cancer cases rose to 2,002,354 and recorded 
700,660 deaths in 20191. The burden associated with new cases and disease mortality is disturbing, as 33% and 
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81% of cases are in ages 30–49 and 30–59 years, respectively2. The increased survival rate from the disease is being 
corroborated by the need for early detection, sometimes using mammography. Considering the limitation of 
human experts in detecting subtle features suggesting early stages of the disease in several cases, computer-aided 
detection (CAD) systems such as deep learning models have been proposed3. Several studies have demonstrated 
good performance in the use of deep learning to increase detection rates and lower false-positive rates4–10. To 
further advance the use of deep learning, performance enhancement techniques such as image preprocessing, 
sample augmentation, and architecturally optimized deep learning models (such as CNNs), have been developed. 
While the image preprocessing technique is expected to enhance input samples, architectural improvement is 
targeted at increasing the detectability of features to aid the classification process. Wavelet decomposition is an 
image preprocessing method supporting feature enhancement through data transformation in images and holds 
high potential for improving CNN performances11,12. On the other hand, the use of convolutional operations 
to detect features from enhanced images often compliments nonlinear functions to support the exploitation of 
image samples13. A skillful combination of these feature enhancement and feature detection techniques supports 
classifying and detecting abnormalities in medical images.

Mammography plays a pivotal role in screening and diagnosing breast cancer in the early stages. Digitized 
versions of mammography images have been widely used as samples in deep learning models for experimenta-
tion. However, the shortage of radiologists with expertise in reading mammography images combined with 
perception error associated with interpreting images remains a challenge14. Additionally, the need to increase 
accuracy and lower high positive and negative rates has motivated the use of wavelet decomposition and some 
other image preprocessing methods15. For instance, segmentation and wavelet transform methods were com-
bined in16 to enhance important features supporting feature detection. To discriminate between the features of 
heterogeneous and scattered densities in image samples17, applied the wavelet decomposition method with a 
coefficient of 1. A multiresolution wavelet decomposition method was proposed in18 to extract spectral features 
in image samples. Meanwhile, improving the feature detection process through an architectural adjustment to a 
CNN has also been researched. Using histopathology image inputs in18, the CNN structure was improved using 
a wavelet function to detect the spectral features in the samples to achieve accurate classification. To monitor the 
large-scale fluorochemical engineering process with high accuracy, a wavelet-CNN architecture was proposed 
in19. A 2D-CNN was restructured to accommodate the wavelet function to increase the multiresolution level and 
classification accuracy of hyperspectral image samples20. The inverse wavelet transform function in restructuring 
CNNs for image reconstruction was applied in21, yielding a god performance.

Similarly, an extended CNN architecture, coupled with wavelet prediction loss, texture loss, and full-image 
loss, was applied in22 to increase the resolution of the multiscale face. Features related to COVID-19 were 
extracted from lung images using a proposed wavelet-CNN architecture23. Wavelet transforms also have been 
integrated into CNN architectures to improve the multiresolution analysis capability of hybrid structures24. 
Improving the classification accuracy of MNIST image samples has been proposed using a wavelet-convolution-
wavelet-NN. The convolutional and fully connected layers are driven by a wavelet transform25. Wavelet transform 
has also been used in CNN to achieve spectral analysis for texture classification26.

After a detailed review of wavelet decomposition and wavelet transform in feature enhancement and feature 
detection tasks related to deep learning models, we found some critical limitations with the existing methods 
while addressing the classification of digital mammography images. Although the wavelet decomposition opera-
tion can enhance features in image samples, it currently lacks provision to discern what features need enhancing 
and what features require elimination to optimize the feature enhancement process. Also, pixel coverage of some 
subtle abnormalities in real-life medical images may be substantially small, making it difficult for both human and 
vaguely implemented models to detect such anomalies. To address this gap, this study proposes a hybrid of seam 
carving and wavelet decomposition algorithms. The novel hybrid model is able to balance the optimization chal-
lenge between feature enhancement and elimination so that suggestive features are enhanced while non-relevant 
features are eliminated. Secondly, we reinforce our method to address further the challenge of extracting subtle 
features suggesting abnormalities through the convolutional operation. As a result, we propose a novel wavelet 
transform function suitable for addressing the problem of feature detection in a medical image. Meanwhile, we 
applied a generative adversarial network (GAN) model27 to generate image samples with architectural distor-
tion abnormalities to augment the insufficient training data, leading to reducing a high false-positive rate that 
does not generalize28. In addition, samples were preprocessed to eliminate low contrast in the training datasets, 
which often impairs the performance of CNNs29. The technical contributions of this paper are highlighted below:

	 i.	 Design of a new CNN structure that uses a novel wavelet transform function
	 ii.	 Design of a hybrid algorithm of seam carving and wavelet decomposition to support feature enhancement 

in the image preprocessing phase.
	 iii.	 Incorporation of a new GAN model for image synthesis and augmentation in the proposed CNN model.
	 iv.	 Comparative analysis of the new method was validated using DDSM + CBIS and MIAS datasets.

The rest of the paper is organized as follows: “Related works” presents reviews on related studies. “Methodol-
ogy” provides an overview and design of the concepts proposed in this paper. “Experimentation” presents the 
system configuration, parameter settings, and datasets used for experimentation. In “Results and discussion”,  
the results of the application of the proposed method are presented and discussed. Finally, in “Conclusion”, the 
conclusion of the paper is discussed.
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Related works
This section presents a review of some related works that used data augmented techniques for training deep 
learning models in detecting abnormalities from digital mammography and other related areas. Abnormalities 
in mammograms are often categorized into four categories: malignant mass, calcification, architectural distor-
tion, and asymmetric of the breast. All studies reviewed were selected using this consideration of abnormalities, 
wavelet functions, and data augmentation using GANs.

Using existing and trained architectures helps fast-track the process of adapting networks for applicability 
to other problems. This was demonstrated by30, who used AlexNet and some segmentation techniques to clas-
sify and segment ROIs. The authors modified AlexNet for binary classification by introducing a support vector 
machine (SVM) classifier at the last fully connected layer. The approach also used a segmentation technique, 
namely, threshold- and region-based, to automate the process of ROI extraction. The method for the classification 
was based on applying SVM on mammography images from the digital database for screening mammography 
(DDSM) and the Curated Breast Imaging Subset of DDSM (CBIS-DDSM). The research successfully classified 
benign and malignant mass tumors in breast mammography images by obtaining an accuracy of 87.2% with an 
AUC equal to 0.94 (94%). Similarly, Levy and Jain31 investigated the performance of the following architectures: 
AlexNet, GoogLeNet, and a shallow CNN architecture. The three models were used for classifying images, 
whether malignant or benign, based on the detection of malignant masses. To circumvent the challenge of overfit-
ting, they used transfer learning techniques, batch normalization, careful preprocessing, and data augmentation. 
For both AlexNet and GoogLeNet, the researchers used the same base architecture as the original works but 
replaced the last fully connected (FC) layer to output classes. The shallow CNN proposed takes a 224 × 224 × 3 
image as input, and it consists of 3 convolutional blocks composed of 3 × 3, 3 fully connected layers, and a soft-
max layer. Furthermore, they employed ReLU activation functions, Xavier weight initialization, and the Adam 
update rule with a base learning rate of 10−3 and batched size 64. The best model presents a result of 0.934 for 
recall at 0.924 for precision.

In related work, Jung et al.32 proposed the use of RetinaNet to detect mass in mammograms. They made the 
RetinaNet model use weights pretrained on GURO, training and testing on INbreast. They observed that using 
weights pretrained on datasets achieves similar performance as directly using datasets in the training phase. 
Experimental setups using the public dataset INbreast and the in-house dataset GURO showed that their model 
obtained a good performance of an average number of false positives of 0.34 and 0.03 when the confidence score 
was 0.95 in INbreast and GURO, respectively. Similarly, Agarwal et al.33 employed transfer learning to propose 
a patch-based CNN method for automated mass detection in full-field digital mammograms (FFDM). In addi-
tion, they investigated the performances of VGG16, ResNet50, and InceptionV3 architectures on the same 
dataset while applying the transfer learning technique to uncover the benefit of domain adaptation between the 
CBIS-DDSM (digitized) and INbreast (digital) datasets using the InceptionV3 CNN. Their experimentation 
showed that InceptionV3 performs best for classifying the mass and non-mass breast regions for CBIS-DDSM. 
The results show that transfer learning from CBIS-DDSM obtains a substantially higher performance with the 
best true positive rate (TPR) of 0.98 at 1.67 false positives per image (FPI) compared with transfer learning from 
ImageNet with a TPR of 0.91 at 2.1 FPI. In34, the authors demonstrated the existence of superiority when a deep 
learning-based classifier was used to distinguish malignant and benign breast masses without segmenting the 
lesions and extracting the predefined image features. In35, an adversarial deep structural network was adopted 
for use on mammographic images in detecting mass segmentation. The research employed a fully convolutional 
network (FCN) to model the potential function, followed by conditional random fields (CRF) to perform struc-
tural learning. This end-to-end model was used for mammographic mass segmentation. While combining FCN 
with position a priori for the classification task, GAN training was used to control overfitting due to the small 
size of mammogram datasets. Four models with different convolutional kernels were further fused to improve the 
segmentation task. The results showed that the end-to-end model combined with adversarial training achieves 
state-of-the-art performance on two public datasets: INbreast and DDSM-BCRP.

The work in36 combined Craniocaudal (CC) and Mediolateral-oblique (MLO) mammography views to dif-
ferentiate between malignant and benign tumors. They implemented a deep-learning classification method that 
is based on two view-level decisions, implemented by two neural networks, followed by a single-neuron layer 
that combines the view-level decisions into a global decision that mimics the biopsy results. The model exploited 
the detection of features of clustered breast microcalcifications to classify tumors into benign and malignant 
categories. In related work, Sert et al.37 adapted a CNN model to the task of breast tumor classification as benign 
or malignant based on the detection of microcalcification features. Basically, the approach investigated the benefit 
of employing various preprocessing methods, such as contrast scaling, dilation, cropping, and decision fusion, 
using an ensemble of networks and the CNN model. Experimental results showed that preprocessing greatly 
improved classification performance. The learning models proposed achieved a recall of 94.0% and precision 
of 95.0% above human-level performance. Additionally, Xi et al.38 was able to use classifiers that are trained on 
labeled image patches and then adapted it to work on full mammogram images for localizing the abnormalities. 
The models investigated are VGGNet and ResNet, demonstrating the most appreciable accuracy at 92.53% in clas-
sifications. Meanwhile, Murali and Dinesh39 employed a deep convolutional neural network (CNN) and random 
forest classifier to classify ROIs with malignant masses and microcalcifications. The AUC of the CNN was 0.87, 
which was higher than the radiologists’ mean AUC (0.84), although the difference was not significant. On the 
other hand, the studies discussed in40,41 circumvent the use of deep learning by adopting wavelet decomposition.

A recent study5 proposed combining CNN architecture with image augmentation to detect architectural 
distortion. Many transformation operations were applied to the image samples with right and left breasts pre-
sented in MLO and CC views for augmentation purposes. The resulting model was applied to ROIs from MIAS, 
whole images from INbreast, whole images from MIAS, and ROIs from DDSM + CBIS databases. Performance 
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evaluation of the proposed model showed that they achieved an accuracy of 93.75%. The use of Region-based 
(R-CNN) was introduced in42 to detect architectural distortion using a supervised pretrained region-based net-
work (R-CNN). Experimentation was based on the DDSM dataset, and the results showed that they obtained over 
80% sensitivity and specificity and yielded 0.46 false positives per image at an 83% true-positive rate. Similarly, 
the work in43 demonstrated a novel neural network that combined two learning branches with region-level clas-
sification and region ranking in weakly and semisupervised settings. Their results for weakly supervised learning 
showed an improvement of 4% in AUC, 10–17% in partial AUC, and 8–15% in specificity at 0.85 sensitivity. 
On the other hand35,  GlimpseNet autonomously extracts multiple regions of interest, classifies them, and then 
pools them to obtain a diagnosis for the full image. They obtained the result that gained 4.1% improvement. 
Additionally, Qiu et al.44 proposed a framework using a deep convolutional neural network. The model is an 
8-layer deep learning network that involves 3 pairs of convolution-max-pooling layers for automatic feature 
extraction and a multiple layer perceptron (MLP) classifier for feature categorization to process ROIs. The MLP 
classifier comprises one hidden layer and one logistic regression layer. The results of their experimentation 
achieved AUCs of 0.696 ± 0.044, 0.802 ± 0.037, 0.836 ± 0.036, and 0.822 ± 0.035 for fold 1 to 4 testing datasets, 
respectively, with an overall AUC of 0.790 ± 0.019 for the entire dataset. In another related work, Bakkour and 
Afdel45 proposed a novel discriminative objective for a supervised feature deep learning approach focused on 
classifying tumors in mammograms as malignant or benign, using the Softmax layer as a classifier. The proposed 
network was enhanced with a scaling process based on Gaussian pyramids to obtain normalized size regions of 
interest. The DDSM and BCDR datasets were used in addition to the data augmentation technique. The results 
of their experiments showed that they obtained an accuracy of 97.28%.

In46, the authors presented a novel classification technique for a large data set of mammograms using deep 
learning: convolutional neural network-discrete wavelet (CNN-DW) and convolutional neural network-curvelet 
transform (CNN-CT). An augmented data set is generated by using mammogram patches and filtering the data, 
by contrast, limited adaptive histogram equalization (CLAHE). At the same time, the softmax layer and support 
vector machine layer were used as classifiers. The results showed that CNN-DW and CNN-CT achieved accu-
racy rates of 81.83% and 83.74%, respectively. The authors in47 used a wavelet convolution neural network to 
detect spiculated findings in low-contrast noisy mammograms, such as architectural distortions and spiculated 
masses. The dataset used for experimentation consisted of CBIS-DDSM, and it reached an accuracy of over 85% 
for architectural distortions and 88% for spiculated masses. The databases used are the IRMA version of the 
digital database for screening mammograms (DDSM) and the Mammographic Image Analysis Society (MIAS). 
The results pertain to an accuracy of 92.94% obtained in the case of the DDSM database for fixed-size ROIs and 
for the MIAS database, an accuracy of 95.34%. Other studies that have used similar approaches, although with 
application in different domains, are as follows: the use of wavelet convolutional neural network (wCNN) and 
wavelet convolutional wavelet neural network (wCwNN) for image classification on MNIST dataset48, and the 
use of wavelet function for feature extraction to support CNN-based feature detection in the classification of 
lung cancer using computerized tomography (CT) scans12.

In addition to using wavelet-based CNN in medical image classification, several domains have also received 
attention in applying the technique. For example, Peifeng et al.49 proposed integrating a wavelet function on time 
series data and into a backpropagation neural network (BPNN) and nonlinear autoregressive network with exog-
enous inputs (NARX) to achieve WNN and WNARX hybrid models, which were applied as benchmark models. 
Experimentation with the hybrid model showed that the wavelet transform could enhance long-term concentra-
tion predictions. In another novel approach, Nourani et al.50 applied the wavelet function to a variant of the SVM 
to obtain a Wavelet-based Least Square Support Vector Machine (WLSSVM) model. The study then used the 
WLSSVM to predict Suspended Sediment Load (SSL) in a river. Meanwhile, an artificial neural network (ANN) 
was adapted for feature extraction to support the WLSSVM model. In another study, Gürsoy et al.51 attempted 
to predict the actual discharge using meteorological data based on a wavelet neural network method. Wang 
et al.52 analyzed, classified, and forecasted time series data for frequency-awareness using a multilevel Wavelet 
Decomposition Network (mWDN) supported by Residual Classification Flow (RCF) and multi-frequency Long 
Short-Term Memory (mLSTM) deep learning models. In a similar domain, Wuwei et al.53 investigated the use 
of both wavelet neural network and data fusion models. Meanwhile, an RBF algorithm and SPSS Clementine 
technique were also combined to support the wavelet transform sequences for the prediction process. Shah et al.54 
forecast output growth using wavelet transforms and Levenberg–Marquardt (LM) ANN models.

We now present a summary of all related works and compare their methods with that which is proposed in 
this study. Existing methods and techniques in literature used to address the problem motivating this study still 
present some gaps justifying the need for improvement. As reported by30, the use of ROIs does not address the 
need for feature enhancement in the ROIs samples. Moreover, the ReLU activation function in31 still generalizes 
on a well-known activation function. Also, using two deep learning models in36 for feature detection is compu-
tationally costly compared with the one-model feature-detection-enhancement inclusive mechanism proposed 
in the model presented in this paper. Similarly, the use of only mainstream preprocessing techniques has no 
guarantee that relevant features can be isolated and enhanced. As such, the approach in37 lags behind what is 
proposed in this study. The popularity of the R-CNN method as used in42 for region-level abnormality detection 
still suffers from the omission of sensitive features owing to their automated region selection algorithm. A similar 
approach in43 leaves out the use of an optimized method for selecting regions in the second branch of their dual-
branch model. We found our proposed method competitive with what is reported in46,48 so that performance 
obtained based on the variation of both methods put this study ahead of46,48.
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Methodology
This section presents the proposed concept, which describes the application of seam carving and wavelet decom-
position techniques to feature enhancement and extraction of CNN architectures. First, we discuss the design 
encompassing the model, which subsumes other methods used in the study. Next, the details of the GAN archi-
tectures used for image synthesis are presented. Additionally, a detailed presentation using the mathematical 
formulation was used to discuss the image preprocessing and preparation techniques used. Finally, we present 
the design of the proposed CNN and wCNN architectures.

Overview of methodology.  The following are the procedures that outline the overview of our approach:

a.	 Images are extracted from records representation in the DDSM + CBS database to PNG representation for 
storage on the file system

b.	 A GAN model trained in27 is applied for the image synthetization process to augment the class imbalance in 
the extracted image samples. The synthetization is necessitated by the need to allow the deep learning model 
to generalize well on all classes of image samples.

c.	 A combination of the images drawn from the real and synthesized distributions are then applied to an image 
enhancement technique, namely, contrast-limited adaptive histogram equalization (CLAHE).

d.	 The preprocessed image samples from step (c) are applied to the seam carving algorithm to remove low-
energy pixels.

e.	 The wavelet decomposition packet function is then used to extract a high resolution and rich feature rep-
resentation of each image sample output obtained from the seam carving procedure. All samples processed 
using this procedure are passed into the feature extraction and classification step.

f.	 To investigate and compare the performance of the traditional CNN and the proposed wCNN, we supplied 
the processed images to them for a complete training phase.

g.	 The trained CNN and wCNN architectures are then tested on the test dataset for evaluation using selected 
metrics.

h.	 The results are then compared for discussion on findings from the study.

In Fig. 1, an illustration of the overview of the approach outlined above is presented. The block diagram 
highlights the flow of the methods applied to achieve the study’s aim. The remaining subsections are dedicated 
to describing each method and how it applies to the overall interest of the study.

GAN architecture for image synthesis.  An adversarial architecture consisting of a generator and dis-
criminator was applied for synthesizing image samples in this study. This became necessary to eliminate the 
perceived class imbalance observed in the dataset used for the experimentation. Moreover, we adapt this data 
augmentation technique to strengthen further the performance of the deep learning model proposed in the 
study. We considered the high impact of image synthesis over image transformation, which are both types of 
data augmentation techniques, to enhance the performance and balance the class distribution of samples in our 
dataset. A detailed representation of the GAN model applied for the image synthesis task is described in Tables 1 
and 2. A further illustration of the two architectures represented by the discriminator network, D and generator 
network, G are captured in Fig. 2a,b, respectively.

The discriminator network D consists of feature extractor F (img) and a layer for classification using a sigmoid 
function with weight vector ψl. It also consists of five (5) fractionally strided convolution layers and the fourth 

Figure 1.   Block diagram describing the overview of the approach used in this study, which consists of image 
preprocessing, GAN-based augmentation, seam carving, wavelet decomposition, and wavelet convolution (CNN 
and wCNN) architectures.
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layer of dense/flattened and fully connected layers that uses a sigmoid activation function. To overcome the 
problem of poor parameter initialization, batch normalization is performed on each of the layers except for the 
last layer. Each layer uses a kernel size of 5 × 5 and filter sizes of 64, 128, 256, 512, and 1024 with leaky rectified 
linear unit functions applied for the activation computation. On the other hand, the generator G consists of a 
fully connected layer projecting input of a 100-dimensional uniform distribution to six (6) fractionally strided 
convolutions having batch normalization applied, with filter sizes of 1024, 512, 256, 128, and 64, kernel size of 
5 × 5, and rectified linear unit activation functions for each unit. The trained GAN model was then applied to 
synthesize images with different abnormalities associated with breast cancer in digital mammography. We then 
combined the synthesized images and the real samples for the image preprocessing method.

Image preprocessing.  Common image preprocessing involves color normalization, noise reduction, edge 
detection and histogram equalization. In this study, we prepared image samples for the CNN architecture by 
applying some image preprocessing techniques on samples for the purpose of histogram equalization and noise 
removal. That is, the noise was removed from breast image contrast enhancement and image breast segmenta-
tion to remove background area, labels, artefacts, and pectoral muscle. This paper applies contrast-limited adap-
tive histogram equalization (CLAHE) to improve the contrast in images. This procedure provides high-quality 
image samples and enhances the features in the samples for effective feature extraction.

In image preprocessing, image compression, separation and decrease are essential operations. One of the 
benefits of the compression operation is to allow for the removal of pixel(s) that have no significant information 
in the image and provide a multiresolution and high-resolution presentation of the image. This study combined 
two compression algorithms, namely, the seam carving and wavelet decomposition algorithms, to improve our 
image samples. Seam carving was applied to improve content awareness, thereby eliminating pixel(s) locations 
that, when removed, the image quality was not reduced, nor was the view distorted. The outcome of this is a 
resized image with no application of the cropping operation. The outcome of this is an image whose realism is 
preserved by parsing it top–bottom and left–right to identify optimal and suboptimal seams.

The approach for seam carving used in this study is first to compute the energy function or gradient matrix 
of our image samples using Eq. (1):
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Table 1.   Generator architecture: we adopted the input noise vector of dimensionality 100 drawn from a zero-
mean Gaussian distribution. Minibatch size: 32, optimizer: adaptive moment estimation (Adam) (η = 0.00001, 
β1 = 0.5, β2 = 0.999). All weights were initialized using the normal distribution initializer.

Input Projection Layer1 Layer2 Layer3 Layer4 Layer5 Layer6

Type Fully Connected Fractionally Strided 
Convolution

Fractionally Strided 
Convolution

Fractionally Strided 
Convolution

Fractionally Strided 
Convolution

Fractionally Strided 
Convolution

Fractionally Strided 
Convolution

Input [1 × 100] [4 × 4 × 1024] [8 × 8 × 512] [16 × 16 × 256] [32 × 32 × 128] [64 × 64 × 64] [128 × 128 × 32]

Output [4 × 4 × 1024] [8 × 8 × 512] [16 × 16 × 256] [32 × 32 × 128] [64 × 64 × 64] [128 × 128 × 32] [64 × 64 × 2]

Activation ReLU ReLU ReLU ReLU ReLU ReLU TanH

Batch Norm Yes Yes Yes Yes Yes Yes Yes

Stride – 2 2 2 2 1 -

Padding – Same Same Same Same Same Same

Kernel Size – 5 5 5 5 5 5

Kernels – 1024 512 256 128 64 32

Table 2.   Discriminator architecture: minibatch size: 32; optimizer: Adam (η = 0.0001, β1 = 0.5, β2 = 0.999).

Layer1 Layer2 Layer3 Layer4 Layer5 Output

Type Convolution Convolution Convolution Convolution Convolution Full Con

Input [32 × 32 × 2] [64 × 64 × 64] [32 × 32 × 128] [16 × 16 × 256] [8 × 8 × 512] [4 × 4 × 1024]

Output [64 × 64 × 64] [32 × 32 × 128] [16 × 16 × 256] [8 × 8 × 512] [4 × 4 × 1024] 1

Activation LeakyReLU LeakyReLU LeakyReLU LeakyReLU LeakyReLU Sigmoid

Batch norm Yes Yes Yes Yes Yes –

Stride 2 2 2 1 1 –

Padding Same Same Same Same Same –

Kernel size 5 5 5 5 5 –

Kernels 64 128 256 512 1024 –
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In Eq. (2), we use the energy function to obtain the total gradient matrix for an image, say Img. This provides 
us with information on the pixels to be preserved in both the horizontal and vertical directions of the image 
while the remaining pixels are removed. Once the seams of the sample images have been carved out, we passed 
the resulting images to the wavelet decomposition technique.

The second image compression and improvement technique applied is the wavelet decomposition packet. 
Using this technique, we can obtain high resolution and extract local spectral information of the output of the 
image from the seam carving operation. A few wavelet functions include haar, db1, db4, db16, coifi, sym4, sym8, 
bior1.3, and bior3.1, and we applied the haar function for this study to obtain the best output. Generally, the 
wavelet generating function can be expressed as in Eq. (3):

where a is the scaling factor and b represents the shift factor, so that a and b, which control the extension and 
translation operations, are defined as shown in Eq. (4). Additionally, Img(t) denotes the representation of our 
image, and ϕ(t) represents the mother wavelet function, which is further described below. Now, given an image of 
size Img(N,M), we show the 2D wavelet decomposition representation of the image as follows so that the wavelet 
function and the scaling function are represented using Eqs. (5) and (6):

(2)energy function of Img = g(x,y) =
m−1
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Figure 2.   An illustration of the applied GAN model consisting of the (a) discriminator and (b) generator 
networks.
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The decomposition of our image Img will yield four (4) coefficients, namely, LL, LH, HL, and HH, which are 
further categorized into the approximate coefficient (LL), also known as low pass, and the detailed coefficients 
(LH, HL, and HH), also known as high pass. LH, HL, and HH represent the horizontal (H) view of the details 
of the image, vertical (V) view of the details of the image, and diagonal (D) view of the details of the image, 
respectively. These four coefficients are mathematically computed using the following:

Equation (7) gives the low pass scale function, and the representation of the corresponding scaling function 
is given in Eq. (8) as:

where s0 represents the scale value and m, n is the dimension of the image.

Similarly, Eqs. (9), (11), and (13) give the high pass scale functions for the H, V, and D wavelets, and the 
representation of the corresponding wavelet function is given in Eqs. (10), (12), and (14) as:

Figure 3 illustrates using a hierarchical representation of how Img is decomposed using the wavelet functions 
described previously. To obtain a good resolution of images for our CNN architecture, we allowed the wavelet 
decomposition function to decompose the original image to the highest N level of n.

The two-dimensional (2D) wavelet multilevel decomposition function was applied to our images, which were 
enhanced using the CLAHE technique. A decomposition level n was used, where n > 1 was obtained by comput-
ing the decomposition wavelet transform maximum level. The resulting low pass coefficient from the n-level 
decomposition was supplied to the wCNN architecture. This allows for obtaining the approximate features of 
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Figure 3.   Illustration of subbands of coefficients formed after n-level application of wavelet decomposition 
function.



10

Vol:.(1234567890)

Scientific Reports |         (2022) 12:5913  | https://doi.org/10.1038/s41598-022-09905-3

www.nature.com/scientificreports/

the image samples at their best resolution and then used for the feature extraction and classification procedure 
in the CNN model.

The wCNN architecture.  The design of the CNN architecture assumes a twofold approach involving the 
traditional CNN architecture, which uses rectified linear units (RELU) as the activation function in the units of 
the convolutional layers, and the wavelet CNN (wCNN), which uses a wavelet function to replace RELU. The 
CNN architecture of the proposed CNN in this study is shown in Fig. 4. The input is sized in the dimension of 
299 × 299 for the grey-style image. A zero-padding operation is first applied on the input before being passed into 
the CNN layers. There are six (6) blocks of convolutional operations, with each block comprising three layers of 
convolution operation followed by a pooling layer. In each convolutional layer, the L2 regularizer is applied with 
a factor of 0.0002. Additionally, we applied a 3 × 3 filter for each unit in the convolutional layers. The filter count 
assumes a filtercount = 2n , where 5 ≥ n ≤ 9 . The activation layer applied for the probability map in the output is 
the softmax function. This allows for categorization, which is patterned after the multiclass nature of the classifi-
cation task. We investigated the performance of the CNN model using SGD and Adam optimizers. Meanwhile, 
a dropout layer with a drop rate of 0.5 is applied after the flattened layer.

On the other hand, we show the architecture of the wavelet CNN (wCNN) in Fig. 5 to describe its configura-
tion. It assumes a similar architectural configuration compared with the vanilla CNN described earlier. However, 
the input supplied to it are features extracted from the Wavelet packet decomposition (WPD) function described 
in the image preprocessing section. The architecture also uses a wavelet function proposed to replace the RELU 
function used in the CNN architecture. We maintain that the convolutional blocks and their corresponding filter 
size and count are the same.

Basically, the mathematics of convolutional network for a two-dimensional input image performs the con-
volved with filter f as seen in Eq. (15), a summation in Eq. (16), and then application of activation function, an 
example of which is shown in Eq. (17).

(15)z1 = x ∗ f

(16)x =
n

∑

i=0

m
∑

j=0

(zi,j .wi,j)+ b

Figure 4.   The architecture of the proposed CNN model for characterization of abnormalities in breast images.

Figure 5.   The proposed wCNN model architecture for characterization abnormalities in breast images using 
features from the WPD operation and wavelet function in the convolutional layers.
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This study replaces (17) with a wavelet equation in (18) to achieve the activation function for both the con-
volutional and fully connected layers.

where beta assumes a value of 0.5 and x the input image. The following demonstrates the applicability of the 
proposed wavelet function in a neuron or unit of a convolutional layer. Given an input image, X, which is the 
output from the wavelet decomposition function in the image preprocessing stage, we obtain the approximate 
coefficient of X and supply it as input to the CNN architecture. Then, we zero-pad the input as shown in Eq. (19), 
assuming our input is of size m = 3, n = 3:

After the zero-padding operation, the resulting input X is then passed into the units of the first convolutional 
layer so that the convolution operation is applied as described earlier. Then, the summation operation for that 
unit is computed considering the weights and bias values. The outcome of these operations is then passed into 
the proposed wavelet function to perform the activation operation. This is summarized in Eq. (20):

Equation (20) describes the forward pass in the CNN network. For backpropagation, we show that the 
derivative of (20) is obtained, then the derivative of (15) and (16), respectively. This is summarized in Eq. (21):

The outcome of this derivative yields the error resulting from the forward pass on the input compared with 
the actual value. The experimentation of the CNN architectures described in this section will be demonstrated 
in the following by applying the activation functions described in Eqs. (17) and (20) for the CNN and wCNN, 
respectively.

Experimentation
In this section, details on the image datasets used for the experimentation are given, and the performance of 
the image preprocessing operations are evaluated and discussed. Additionally, the parameters and hyperparam-
eters used for training the CNN and wCNN architectures are presented. Meanwhile, the system configuration 
of the computational environment is detailed to reinforce other parameters that shall be supplied to support 
the reproducibility of the experiment. Finally, a list of some evaluation metrics is discussed and applied for the 
performance evaluation of the two networks.

Configuration of the experimental environment.  Training and testing were experimented with using 
the TensorFlow library and dependent libraries using Python 3.7.3. The computational environment consists of 
an Intel (R) Core i5-7500 CPU 3.40 GHz, 3.41 GHz; RAM of 16 GB; 64-bit Windows 10 OS.

Benchmark datasets for experimentation.  The Mammographic Image Analysis Society (MIAS)55 and 
Curated Breast Imaging Subset (CBIS) of the Digital Database for Screening Mammography (DDSM + CBIS)38 
datasets were used for experimental purposes in this study. The two datasets contain samples with normal and 
abnormal observations. For instance, abnormal samples were classified as either benign or malignant. Those 
with benign abnormalities were either defective by calcification or the presence of mass abnormalities. Similarly, 
those with malignant cases had either calcification or the presence of a mass, as abnormalities were reported. In 
Table 3, a summary of the statistics of the datasets is listed, and further description is given. Figure 6 presents a 
graphical illustration of the distribution of image samples from the DDSM + CBIS and MIAS datasets.

To illustrate the distribution of samples in the MIAS and DDSM + CBIS datasets, we plot the distribution of 
the samples across classes and further divide samples into malignant and nonmalignant. In Fig. 6, a comparison 
of the distribution of classes of samples into malignant and nonmalignant is shown. Additionally, separate graphs 
for the distribution of classes in the malignant and nonmalignant cases are displayed. Finally, we show a graph 
for the distribution of all classes. These graphs allow for understanding the spread of samples across the five (5) 
classes. Samples with normal labels are seen to dominate the distribution, while in the classification between 
malignant and nonmalignant, the latter dominates the former. We observed a fair distribution of samples across 
the calcification and mass abnormalities among the malignant lesions. However, those with mass labels were 
slightly more abundant than those with calcification. Figure 7 shows some samples randomly drawn from the 
combined databases. The labels are interpreted thus: normal (N), (BC) benign calcification, benign mass (BM), 
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calcification (CALC), and mass (M). In the experimentation, samples from the DDSM + CBIS database were used 
for training and evaluation, while those from the MIAS were used for testing. This allows for a fair evaluation 
of the proposed CNN and wCNN architectures since the MIAS samples are different from the DDSM + CBIS.

GAN image augmentation: sample generated.  The image samples shown in the last section from the 
two databases consist of abnormalities and normal cases. Those in the abnormalities category with malignancy 
were further categorized into mass and calcification abnormalities. These two classes of abnormalities often 
dominate most publicly available databases and are reported to be commonly diagnosed. We, however, note that 

Table 3.   List of mammography databases applied for experimentation. MLO mediolateral oblique view, CC 
craniocaudal, N normal, BC benign calcification, BM benign mass, CALC calcification, and M- mass.

Database image information Class Distribution Source description

Dataset Image views No. samples N BC BM CALC M Description

MIAS MLO 3075 2718 45 159 36 117 From reduced 200-micron pixel of sizes 1024 × 1024. We obtained 3075 ROI-based 
extractions of 299 × 299 sizes stored as NumPy files

DDSM + CBIS MLO and CC 55,904 48,735 1884 1709 1731 1844 14% are positive and the remaining 86% negative. We used ROIs-based image size 
299 × 299 and stored as tfrecords files

Figure 6.   A graphical illustration of the distribution of image samples from the DDSM + CBIS and MIAS 
datasets. The distribution was graphed using the malignant and nonmalignant cases and further grouped 
according to the labelling as follows: BC benign calcification, BM benign mass, CALC calcification, M  mass.
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other abnormalities, such as asymmetry and architectural distortion, have been shown to be delicate, subtle and 
fatal when overlooked3. As a result, an already trained GAN model was applied to generate image samples in 
these two categories. The details of the GAN model are presented in “Methodology”.

In Fig. 8, we show some samples of images generated using the GAN model described in “Methodology”. 
Images belonging to architectural distortion (AD), asymmetry (ASYM) and calcification (CALC) were synthe-
sized to augment missing samples from classes AD and ASYM and to augment the quantity of those in CALC. 
With this synthetization process, sufficient data have been sourced for the experimentation procedure to allow 
our model to generalize well and overcome overfitting. These samples were added to those used for training and 
evaluation while keeping the MIAS images for testing the fully trained CNN and wCNN models.

Implementation of image preprocessing.  Image preprocessing techniques were applied to all samples 
drawn from DDSM + CBIS, MIAS and those generated using the GAN model. First, to understand the need 
for improvement in the images, we plotted their corresponding histogram to investigate how pixel values are 
distributed. This understanding led to the use of image enhancement techniques to equalize the distribution of 
pixel values in the histogram. In Fig. 9, the first row of the figure shows the histogram for image samples with 
M, CALC, BC, and BM abnormalities. In row two, their corresponding equalized histograms were plotted to 
compare the improvement achieved easily.

In Fig. 10, the images of the histograms shown in Fig. 9 are listed and their corresponding enhancement. As 
mentioned in “Methodology”, the CLAHE technique was used for the improvement of the samples. The first 
row of Fig. 9 shows the raw image, which was not preprocessed, while the second row shows the corresponding 
image enhanced using the CLAHE method. Clearly, we see that the preprocessing method successfully improved 
the images with some blurriness eliminated, yielding quality images.

The preprocessed image samples were further supplied as input to the seam carving technique to remove the 
least significant pixels. The outcome of the seam carved method was then supplied to the wavelet decomposition 
function for extraction of relevant features required for the convolutional operation. Figure 11 shows the impact 
of applying these techniques as an arbitrary sample is used for this comparison. The original image is shown, 

Figure 7.   Samples of images with abnormalities as collected from the DDSM + CBIS and MIAS datasets with 
labels denoted as BC benign calcification, BM benign mass, CALC calcification, M mass.

Figure 8.   Samples of images generated using a GAN model for augmenting samples available from 
DDSM + CBIS and MIAS datasets. The samples generated images with architectural distortion (AD), asymmetry 
(ASYM) and calcification (CALC).
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while the corresponding version applied to CLAHE is seen to be improved. Furthermore, the seam carving opera-
tion showed that some pixels were eliminated from the outcome of the CLAHE operation. Finally, the image 

Figure 9.   Computation and graphing of the histogram with the corresponding equalized histogram for the 
image samples used for the experimentation preprocessed using CLAHE. (a) M and CALC abnormalities and 
(b) shows BC and BM abnormalities.
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resulting from applying the wavelet function (WPDP2) on the outcome of seam carving is also shown. We note 
that the approximate coefficient (LL) image from the wavelet function is chosen for use here, as shown in Fig. 12.

As mentioned in “Methodology”, the LL version of each image containing features supportive of the feature 
detection task was used for the CNN and wCNN models during the experimentation phase.

CNN configuration and training parameters.  The CNN and wCNN architectures were tested for 
twenty (20) epochs, and validation was also performed during the training. The Adam optimization algorithm 
was used for training the two models, and we experimented using learning rates of 1e−05 and 1e−06. Since all 
samples used for the experiment are grayscale, the image was sized 299 × 299 so that the dimensions of all inputs 
were 299, 299, and 1. A batch size of 64 was used during training for passing image samples into the convolu-
tional layers.

Figure 10.   Samples of images to demonstrate the improvement resulting from preprocessing all image inputs 
using the enhancement technique CLAHE.

Figure 11.   A progressive display of the preprocessing methods applied to a sample image from the data 
sources. The original image, its corresponding CLAHE-operated version, its corresponding seam-carving-
operated version, and its wavelet-operated version.

Figure 12.   Comparison of the approximate coefficient (LL) and the detailed subbands (LH horizontal, HL 
vertical, HH diagonal), also known as high pass.
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Evaluation metrics.  There are several evaluation metrics for comparing the performance of learning mod-
els and classifiers. Some of these metrics are the confusion matrix, accuracy, receiver operating characteristic 
(ROC) curve, area under the ROC curve (AUC), precision, recall, precision, specificity, Matthew correlation 
coefficient (MCC) for the binary classifier, and F1 score. In this paper, we evaluated the following: accuracy, the 
area under the ROC curve (AUC), specificity, sensitivity, precision, F1 score, false-positive rate (FPR), and recall. 
In this study, some of these metrics were selected to evaluate the performance of the two major deep learning 
architectures. The following are the metrics applied for result evaluation and the justification for their selection:

Accuracy.  Accuracy is a widely used metric in most classification and deep learning models. It allows us to 
evaluate whether we have trained our model well enough to generalize to new samples. This model evaluation 
using accuracy is performed across all classes in our datasets. We, however, note that where class imbalance 
exists, accuracy may not present the true performance of our model; hence, other metrics are considered in this 
study. We measure accuracy using Eq. (22).

Specificity.  The specificity metric is used to compute the total number of actual negative cases (normal and 
benign) in our datasets, which our proposed model discovered to be truly negative. In Eq. (23), we show how to 
compute specificity.

Sensitivity.  This metric allows for computing the number of actual positive cases in our datasets that were pre-
dicted as true positives. The equation for computing the sensitivity metric is given in Eq. (24)

Precision.  To eliminate the presence of false positives and ensure that our model correctly classifies negative 
cases as negative and positive cases as positive, we use the precision metric to evaluate our models. The precision 
metric supports the ability to determine how correctly our model predicts positive cases. The equation is given 
in (25)

F1 score.  The F1-score is computed using a combination of recall and precision. This then allows for using the 
metric as the weighted average of the two underlying metrics. The best performance of our model as it relates to 
the F1-score metric will be indicated by a value that tends towards 1.0, while a value closer to 0.0 demonstrates 
poor performance. The equation is given in (26).

Recall.  To measure the proposed models’ ability to pick out positive samples from the data source used for the 
experiment, we evaluate them using recall metrics. A higher value obtained for recall implies how accurately our 
model can identify abnormalities in the datasets. The equation for computing the metric is given in (27).

In the following section, the metrics discussed here are applied to all experiments carried out for a fair 
comparative analysis.

Results and discussion
The last section details the configuration leading to experimentation of the concept described in this paper. 
This section presents a listing of the results obtained in the experiments conducted. Comparative analysis of 
the results obtained for all experiments was carried out, and findings from the performance of each experiment 
and case and its performance with respect to the experimental setup are discussed. The section then concludes 
by highlighting the relevance of the proposed approach in the models’ applicability to breast cancer detection.

Four (4) major experiments were conducted as follows: experimenting with the proposed CNN with normal 
samples, experimenting with the proposed CNN with CLAHE-WPD-operated samples, experimenting with the 
proposed wavelet-CNN with CLAHE-WPD-operated samples, and wavelet-CNN with CLAHE-WPD-GAN 

(22)Accuracy =
TP + TN

(TP + TN + FP + FN)

(23)Specificity =
TN

(TN + FP)

(24)Specificity =
TP

(TP + FN)

(25)Precision =
TP

(TP + FP)

(26)F1−Measure =
(2× Precision× Recall)

(Precision+ Recall)

(27)Recall =
TP
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samples. We also investigated the impact of applying the GAN model for image augmentation purposes. The 
results obtained follows in the subsections.

The basic CNN architecture experiment shows that the training accuracy obtained ranges from approximately 
0.86832, while the validation accuracy steadied at approximately 0.87222. The loss value for the training phase 
dropped from 53.86 at the first epoch to 1.77 at the tenth epoch. For the validation phase, we observed that the 
loss value dropped from 40.52 to 1.66. These patterns in the change of values for both accuracy and loss values 
demonstrate a good performance by the CNN architecture in detecting and classifying features. In Fig. 13, a 
graph illustrating the plot of the values obtained in both the training and validation phases is shown.

Similarly, we trained the wavelet-CNN architecture under the same configuration with ten (10) training 
epochs, which uses the samples preprocessed using the CLAHE method. We observed performance improve-
ment for training accuracy, loss values, and even validation. For instance, we see that accuracy rose to 0.8716 
compared with what is obtainable with the basic CNN. This indicates performance enhancement resulting from 
the proposed wavelet transformation function applied to the CNN structure. The same is seen for the validation 
accuracy, which yielded 0.87514, an improvement compared with the basic CNN structure. Relatively similar 
loss values are seen in basic CNN and that of wavelet-CNN. The implication is that the wavelet transformation 
function competes with those popularly used in the literature. The graphing of the values for both the accuracy 
and loss are shown in Fig. 14.

Now, we investigate the performance combining the decomposing wavelet function and the wavelet trans-
formation function to compare the output with that previously discussed. Interestingly, while the classification 
accuracy is sustained, we observed a slight improvement in the learning rate and returned loss function values. 
For instance, in the case of wavelet-CNN and normal samples with CLAHE operations, the loss values for the 
first and last epochs are 61.60 and 60.85, respectively. On the other hand, in the case of the same wavelet-CNN 
and seam carving with wavelet decomposition image samples, CLAHE operations, the loss values for the first 
and last epoch are 60.85 and 4.15, respectively. This implies that the wavelet transform function sustains clas-
sification accuracy, while the quality of image samples supplied as input contributes to the loss values obtained. 
In Fig. 15, the graph showing the plots for the accuracy and loss values obtained for ten (10) epochs are shown.

Having confirmed that input samples determine the loss values during training and evaluation, we augment 
our datasets using samples synthesized using the GAN model described in the previous section. This leads to 

Figure 13.   A graphical illustration of accuracy and loss value distribution for ten (10) epochs on the CNN 
model using normal samples.

Figure 14.   A graphical illustration of accuracy and loss value distribution for ten (10) epochs on the wavelet-
CNN model using CLAHE samples.
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the outcome of the fourth experiment shown in Fig. 16. In this experiment, we investigate what performance 
improvement is obtainable when the synthesized samples are subjected to wavelet-CNN and when combined 
with samples derived from seam carving with wavelet decomposition.

To demonstrate a comparison of the methods, we summarize the performance of the methods over the ten 
(10) epochs for all experiments performed and provide the outcome of the values obtained for both accuracy 
and loss. In Table 4, these values are listed and compared against each technique. The results obtained, as listed in 
the table, result from applying the DDSM + CBIS dataset on the training phase of all our experiments for the two 
models. The accuracy curves for most of the experimentations in the training phase rose from lower accuracy to 
higher values and stabilized around a reasonable level. This indicates that while the lose values drop signaling the 
fact that the model continues to improve its learning curve, the classification accuracy improved to attain stability.

The summary of performances of CNN, Wavelet-CNN + CLAHE, Wavelet-CNN + CLAHE + WPD, and Wave-
let-CNN + CLAHE + WPD + GAN models as listed in the table reveals the marginal difference existing among 
them. This is particularly obvious in the classification accuracy for the four models experimented with. In the 
cases of wavelet-CNN + CLAHE and wavelet-CNN + CLAHE + WPD, there appeared to be a marginal difference 
in their classification accuracy. This is supported by the fact that the wavelet transformation is applied to both 
cases. However, where the wavelet transform function is not applied, we see a drop in classification accuracy. 
Interestingly, the loss values obtained for both Wavelet-CNN + CLAHE and Wavelet-CNN + CLAHE + WPD 
progressively dropped as their accuracy values improved. The two methods, Wavelet-CNN + CLAHE and Wave-
let-CNN + CLAHE + WPD, use the proposed wavelet function, hence the competitive result obtained in both 
experiments. This confirmed that using the wavelet function improved the CNN model compared with what is 
obtained using the RELU activation function.

After completely training the two models CNN and wavelet-CNN, we applied the MIAS dataset for the test-
ing phase. This became necessary to demonstrate fairness for the testing procedure of the proposed models. We 
considered that since the MIAS samples are from a different dataset from that of DDSM + CBIS used for training, 
it will help to validate the ability of the CNN and wavelet-CNN models to generalize well. Using the metrics dis-
cussed in “Experimentation”, the results in Table 5 are presented to compare the techniques proposed in this study.

Comparison of accuracy, specificity, precision, F1-score and recall metrics as obtained in the models revealed 
interesting performances. The trained models of wavelet-CNN + CLAHE and wavelet-CNN + CLAHE + WPD, 

Figure 15.   A graphical illustration of accuracy and loss value distribution for ten (10) epochs on the wavelet-
CNN model using CLAHE + WPD samples.

Figure 16.   A graphical illustration of accuracy and loss value distribution for ten (10) epochs on the wavelet-
CNN + CLAHE + WPD model using real and GAN synthesized samples.
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when used for prediction on both MIAS and fragments of DDSM + CBIS datasets, showed similar performance. 
Their accuracy precision, F1-score and recall values stood at approximately 0.99 while specificity was 1.0. com-
pared with the performance of the trained basic CNN model, which obtained accuracy precision, F1-score and 
recalls values stood at approximately 0.87 while specificity is 1.0, there is an improvement in performance due 
to the method proposed in this study. These prediction performances with the trained models demonstrate that 
using the wavelet transform function to extract features in the sample images in digital mammography is relevant.

Meanwhile, we computed the training and prediction time for all four models experimented on in this 
study. In Fig. 17, the graphed results show that the training time for the basic CNN was lower than those of the 
proposed hybrid methods, so its prediction time was unattractively high. The other three models are wavelet-
CNN + CLAHE, wavelet-CNN + CLAHE + WPD, and wavelet-CNN + CLAHE + WPD with GAN samples. Using 
the wavelet transform function, we observed similar computational times. For instance, the training times for 
wavelet-CNN + CLAHE and wavelet-CNN + CLAHE + WPD were 3232.8787 and 32,470.2898, respectively. The 
computational times for predicting wavelet-CNN + CLAHE and wavelet-CNN + CLAHE + WPD were 119.9273 
and 137.8667, respectively. Although there appeared to be some closeness in their demand for computational 
power, we noticed that models with wavelet decomposition and seam carving algorithms consumed more time 
during the prediction phase.

Further to comparative analysis of the performance of our models in the case of different experimentations 
carried out, we compared our proposed technique with those reported in the literature. This allows for justifying 
the relevance of the proposed approach compared with those that have shown state-of-the-art performance in 
recent studies. The results of these comparisons are outlined in Table 6.

The performance of the proposed method is compared with similar CNN models used for classification 
problems with digital mammography. Studies from 2016 to 2021 are listed in the table. Performance measures 
were computed using one or more of accuracy, recall, AUC, precision, sensitivity, specificity, and F1-score. In 
terms of accuracy, while the works of5,56,57, and37 yielded 0.90, 0.915, 0.736, and 0.925, respectively, the outcome of 
this study gave 0.9990. Interestingly, we compared the performance of our wavelet-CNN with a similar wavelet-
CNN in46, and the result showed that our approach outperformed their own with a 16.16% increase. This again 
confirms the viability and relevance of the proposed wavelet transform function and the hybrid of seam carving 
with wavelet decomposition algorithms in this study. We see that classification accuracy is greatly enhanced 
compared with state-of-the-art models that have also applied wavelet transform functions. Additionally, in terms 
of loss values generated during the training, our method yielded a competitive performance with popular and 
state-of-the-art transform nonlinear functions. This study demonstrates the relevance of applying the wavelet 
function to extract discriminant features from digital mammography.

Table 4.   A summary of the comparison of performances of accuracy and loss values on CNN, wavelet-
CNN on samples from CLAHE, WPD and GAN-based data augmentation techniques on the DDSM + CBIS 
benchmarked datasets used for training on last ten (10) epochs.

Epoch

CNN Wavelet-CNN + CLAHE
Wavelet-
CNN + CLAHE + WPD

Wavelet-
CNN + CLAHE + WPD + GAN

Accuracy Loss function Accuracy Loss function Accuracy Loss function Accuracy Loss function

1 0.8683 53.8682 0.8547 53.9556 0.8586 60.8583 0.8038 61.5979

2 0.8699 30.2180 0.8692 30.5985 0.8695 46.0458 0.8208 47.0644

3 0.8699 14.9185 0.8716 15.3767 0.8718 33.0377 0.8237 34.0883

4 0.8699 7.5588 0.8720 7.9842 0.8720 22.5305 0.8240 23.4251

5 0.8699 4.8278 0.8720 5.2136 0.8720 15.1756 0.8240 15.8924

6 0.8699 3.5453 0.8720 3.9151 0.8720 10.8479 0.8240 11.3898

7 0.8699 2.7984 0.8720 3.1491 0.8720 8.2372 0.8240 8.6747

8 0.8699 2.3312 0.8720 2.6543 0.8720 6.5132 0.8240 6.8728

9 0.8699 2.0073 0.8720 2.3020 0.8720 5.2032 0.8240 5.4966

10 0.8699 1.7730 0.8720 2.0363 0.8720 4.1580 0.8240 4.4030

Table 5.   A summary of the comparison of the performances of CNN and wavelet-CNN on samples from 
CLAHE-, WPD- and GAN-based data augmentation techniques on the MIAS benchmarked datasets used for 
testing.

Model Accuracy Specificity Precision F1-score Recall

CNN 0.8751 1.0 0.8751 0.8751 0.8751

Wavelet-CNN + CLAHE 0.9990 1.0 0.9990 0.9990 0.9990

Wavelet-CNN + CLAHE + WPD 0.9990 1.0 0.9990 0.9990 0.9990

Wavelet-CNN + GAN + WPD 0.9990 1.0 0.9990 0.9990 0.9990
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Conclusion
In this paper, we presented a novel wavelet transform function to improve the structure of CNN architecture. 
This is intended to support detecting subtle and determinant features leading to the detection of abnormalities 
in digital mammography. Furthermore, image preprocessing was implemented using three methods to achieve 
an improved input sample. The methods applied are CLAHE for enhancement and seam carving and wave-
let packet decomposition algorithms for feature enhancement. Meanwhile, to augment for insufficient image 
samples with architectural distortion, we applied a GAN model for synthetization of samples of that category. 
The combined methods were applied to DDSM + CBIS and MIAS datasets for experimentation. The results and 
discussion of the findings showed that the proposed method in this study improved performance compared with 
the basic CNN structure. In the future, we propose investigating the performance increment that will result from 
applying the wavelet transform function in the fully connected layers of the CNN architecture. In addition, the 
proposed method demonstrates that it can enhance the characterization of abnormalities in histopathological 
images in addressing the classification problem leading to the detection of breast cancer. The beta value used 
in the proposed wavelet function presents a performance tuning mechanism for increased accuracy. Therefore, 
we suggest as future research direction the investigative analysis of the impact of different values for the beta 
variable on the current model.

(b) 
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Figure 17.   A comparison of computational time for (a) training and (b) prediction of basic CNN, wavelet-
CNN on samples from CLAHE, WPD and GAN-based data augmentation techniques.

Table 6.   Comparison of the performance of the proposed CNN and wavelet-CNN methods with similar 
approaches and the same datasets.

Author reference Method Performance
5 CNN and data augmentation Accuracy: 0.90
56 DeepCAD: multilayer deep-learning architecture Accuracy:0.915, AUC:0.91, sensitivity: 0.915, specificity: 0.842

30 DCNN: AlexNet
Fine-tuned to classify two classes instead of 1000 classes Accuracy: 0.736, AUC:0.94

57 VGGNet and ResNet Accuracy: 0.925

37 Ensemble of convolutional neural networks for classification of breast microcalci-
fication Recall: 0.94, precision of 0.95

46 CNN-DW and CNN-CT with an augmented data set Accuracy: 0.8374

This study Wavelet-CNN-wavelet with augmented dataset using GAN Accuracy:0.99, recall: 0.99, precision: 0.99, specificity: 1.0, F1-score: 0.99
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