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Abstract

Lead exposure in waterfowl was studied using noninvasive fecal sampling in the Guadalquivir Marshes in Spain, an area
affected by the 1998 Aznalcóllar mine disaster. Feces of greylag geese (Anser anser, n = 191) and purple gallinule (Porphyrio
porphyrio, n = 91) were collected from three different impacted sites (Entremuros, Caracoles and Cerro de los Ánsares)
during the winters of 2004 to 2008. Lead and aluminium (an indicator of sediment ingestion) and Pb isotope signatures (to
discriminate between sources of Pb exposure) were analyzed in freeze-dried, acid digested samples. The concentrations of
fecal porphyrins and biliverdin were determined as noninvasive biomarkers to study Pb exposure effects. Results showed a
decrease in Pb exposure over time in wintering greylag geese. In contrast, for purple gallinule resident in the Entremuros a
clear trend was not evident. For both species, sediment ingestion appeared to be the main source of exposure to Pb. In the
Entremuros, some samples from purple gallinule were detected with higher Pb levels than expected for simple soil
ingestion, and these had Pb isotopic profiles compatible with mining sludge or Pb shot. Whilst fecal Pb isotopic profiles
were effective in differentiating between samples from sites with different levels and sources of pollution, the combined use
of element ratios (such as Pb/Al) and other non-traditional stable isotope signatures may also prove worthwhile. Overall, the
fecal Pb levels detected were below those described in feces for waterfowl from other uncontaminated areas(,10 mg/g
d.w.). Despite this, for both species fecal Pb levels were positively correlated with porphyrin excretion, and for purple
gallinule, with the coproporphyrin III/I ratio, suggesting some subtle effects on heme synthesis in birds. Ten years after the
mine spill, Pb contamination in birds by this pollution source was still detectable and subtlethal effects may persist.
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Introduction

The Guadalquivir marshes are an extensive mosaic of wetlands

of deltaic origin, located in south-western Spain. Due to its

geographical location and environmental characteristics, these

marshes are one of the most important wintering sites for

migratory waterbirds in the Western Palearctic [1,2]. The marshes

are protected within the adjacent Doñana National and Natural

Parks and Doñana Ramsar site, and the National Park is

designated by UNESCO as a ‘‘World Heritage Site and Biosphere

Reserve’’.

In April 1998, the Guadalquivir marshes were severely affected

by the Aznalcóllar mine accident [3,4], when a tailing pond dike

collapsed at the Los Frailes mine (located ,45 km north of

Doñana National Park). This mine was one of many that exploit

the vast Iberian Pyrite Belt, one of the largest sulphide deposits in

the world [5,6]. The tailings spill made headlines around the world

and released ,5–6 million cubic meters of acidic and highly toxic

waste containing high levels of heavy metals such as Zn, Pb, As

and Cu [3,4]. The spill flowed southward into the Guadiamar

River, and continued for 45 km, reaching the edge of Doñana

National Park. Much of the waste was finally retained using

rapidly constructed temporary dams in a hydrologically confined

wetland channel called the Entremuros (which means ‘‘between

walls’’), within the Doñana Natural Park [4,7]. Initial estimates

showed that .2,700 ha of the protected Doñana area had been

contaminated by the spill, with the 900 ha Entremuros site most

severely affected [3,4]. In terms of Pb pollution specifically,

concentrations up to 2,500 mg/L were recorded in open water,

and 690 mg/g were detected in Doñana sediments after the spill

[3]. Such levels greatly exceeded background concentrations

previously recorded in the Doñana area and those in unaffected

areas [3,8]. Hence, immediately after the spill the Andalusian and

Spanish authorities began to clean and restore the affected areas,

undertaking preventive and mitigating measures [3,4]. Neverthe-

less, low-level residual heavy metal contamination remained [9–

13].

After the spill, sick and dead birds with high levels of heavy

metals in tissues were found in Doñana National Park and

surroundings [3,7,14–16]. Similarly, several studies have shown
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elevated concentrations of heavy metals in invertebrates and in

macrophytes [17–19]. The Aznalcóllar accident was potentially

very significant for waterbirds that depend on the impacted

habitats, especially for those which also actively ingest sediment

when feeding [20]. In polluted areas, this sediment ingestion route

can be a very important heavy metal exposure pathway in birds

[21–23]. A previous study addressed the effect of the Aznalcóllar

spill on wintering greylag geese (Anser anser) during the 2001/2002

wintering season, analyzing the concentrations of various metals/

metalloids (Pb, Zn, Cu, Mn and As) in feces from 5 different sites

within the Guadalquivir marshes [24]. Results showed that the

highest metal concentrations, especially for Pb, were in fecal

samples from the Entremuros [24]. In addition, the study detected

biological effects in geese due to exposure to the mining pollution,

through the fecal analysis of biomarkers (such as porphyrins) [24].

Here, we aim to study trends over time in Pb exposure in

wintering greylag geese and resident purple gallinule (Porphyrio

porphyrio) in Doñana, using feces as noninvasive samples. These two

bird species were amongst those most affected by the Aznalcóllar

spill [16]. Fecal sampling is used to evaluate recent exposure and

local contamination (e.g., [24,25]). The Pb excreted by feces

corresponds to that fraction ingested but not absorbed for the

animal, and the mean retention time of ingested food/sediment

(and thus most Pb, excluding large particles like Pb shot which

could be retained in the gizzard as grit) in herbivorous waterfowl is

around 2 h [26–29]. In addition to fecal Pb analysis, the

relationship between fecal Pb and Al is presented alongside Pb

isotopic signatures [25,30–33]. The relationship between Pb and

Al is used as an indicator of sediment ingestion [25,32,33], whilst

Pb isotope signatures help to discriminate between different

sources of Pb by identifying the geological origin of any given Pb

in a sample [25,30,31]. Finally, fecal porphyrin and biliverdin

profiles are used to detect potential toxicological effects/pertur-

bations [34]. Lead exposure is commonly associated with impaired

heme synthesis [35,36] since it can inhibit the activity of enzymes

such as d–aminolevulinic acid dehydratase (ALAD), copropor-

phyrinogen oxidase and ferrochelatase [35]. Disruption of heme

synthesis generates a surplus in the production of different heme

precursors, which are then excreted at higher levels through urine

or feces [35]. Biliverdin is a green bile pigment that comes from

heme group catabolism. Lead poisoned birds developing hemo-

lytic anemia frequently show green-stained urates, due to the

increased excretion of biliverdin and higher concentrations of

biliary biliverdin [37,38].

Materials and Methods

Collection sites and field procedures
Three sites within Doñana were selected for this study (Fig. 1).

The Entremuros was the site most affected by the spill. It lies

within the Doñana Natural Park and represents an important

refuge area for breeding birds and moulting waterfowl in the

summer. It also acts as a habitat corridor, which separates the

marshes of the National Park from the rice fields to the east. The

Caracoles area (adjacent to Entremuros) was an agricultural area

at the time of the spill, and was effectively isolated from the

contaminated area by a dyke. As part of an extensive restoration

project that followed the disaster, this area was restored as a

wetland in 2004–2005 and then incorporated into the National

Park [39]. Finally, the Cerro de los Ánsares dune, which is a

mobile dune within the National Park, was also unaffected by the

spill. However, it was heavily exploited by geese hunters up until

1983 (when hunting was banned in the park). This hunting activity

has left a legacy of Pb shot pellets at this site, and 16.2 Pb shot

pellets/ha were present in the upper 20 cm layer in 1997 [40].

Thus, this site represents another important source of Pb within

the study area, since geese commonly ingest gizzard grit (and

therefore shot) within these dunes [40–42].

Wintering geese arrive in October to Guadalquivir marshes and

stay until late February or early March. Fecal sampling took place

during four winter seasons (December – February) in successive

years from 2004 to 2008 (Table 1). Feces of greylag geese were

collected after flock identification with binoculars or a telescope

from the edge of the Entremuros, Caracoles and Cerro de los

Ánsares. No samples were collected from Entremuros after 2005/

2006 because no geese flocks were located in that area during our

field visits. Likewise, fecal samples for purple gallinule were only

collected from the Entremuros since this species was absent from

the other two study sites. Only fresh excrement was collected, and

samples were taken at a minimum distance of two meters apart in

order to reduce the likelihood of taking multiple samples from one

individual. Each excreta was picked up carefully, adhered

sediment was removed, and the sample was placed into a zip-

lock bag and subsequently frozen at 220 uC until analysis.

Sediment samples (0–5 cm) were taken in 2008 from the

Entremuros and Caracoles study sites.

All necessary permits were obtained for the field studies. Permits

required to enter Doñana National Park were granted by the

Consejerı́a de Medio Ambiente, Junta de Andalucı́a.

Sample analysis
Feces (n = 282) and sediment (n = 35) samples (0.2–0.3 g) were

freeze dried, acid digested and analyzed using graphite furnace

(Pb) and nitrous oxide-acetylene flame (Al) atomic absorption

spectroscopy (AAnalyst800, PerkinElmer), following methods

described previously [32]. Blanks, a certified soil reference material

(GBW07406), and certified bush, branches and leaves reference

material (NCS DC 73349), were also processed in each batch of

digestions (to provide quality control data). Limits of detection

(LODs) by dry weight were 0.28 mg/g for Pb and 88.80 mg/g for

Al. Mean percentage Pb recoveries(6%RSE) were

106.9%(63.4%, n = 8) for soil and 99.5%(63.5%, n = 9) for the

bush, branches and leaves CRM. For Al, the mean% recover-

Figure 1. Map of the study area located in Andalusia (southern
Spain) showing the limits of the Doñana National Park (grey
line) and the three study sites (black dotted lines). 1 = En-
tremuros; 2 = Caracoles; 3 = Cerro de los Ánsares dune.
doi:10.1371/journal.pone.0057295.g001
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y(6%RSE) for the bush, branches and leaves CRM was

100.4%(61.69%, n = 6).

In a sub-selection of the acid digested feces (n = 72), the stable

isotopes 206Pb, 207Pb, and 208Pb were also analyzed by inductively

coupled plasma mass spectrometry [33]. A certified NIST Pb

isotope standard was used (SRM 981), which has an isotopic

composition (mean695%) of 24.144260.0057% for 206Pb, of

22.083360.0027% for 207Pb, and of 52.347060.0086% for 208Pb.

All isotope ratios determined for SRM 981 during analysis were

within 1% of the certified value (before a nominal rolling

correction was applied to all data).

Finally, another sub-selection of feces (n = 71) was used for

porphyrin and biliverdin analysis. This was conducted using liquid

chromatography single quadrupole mass spectrometry (LC/MS)

[33]. The recovery for the extraction procedure used was

calculated with fecal samples (n = 6) spiked with porphyrins and

biliverdin. Mean % recoveries(6%RSD) for coproporphyrin I, III,

mesoporphyrin IX, protoporphyrin IX, and biliverdin were

10768%, 7368%, 5168%, 1862% and 2366% respectively.

Statistical analysis
Where necessary, data were log-transformed prior to statistical

analysis to meet parametric assumptions. Data were analyzed

using General Lineal Models (GLMs) considering Pb or Al

concentrations, Pb isotopes signatures, and porphyrin and

biliverdin concentrations as dependent variables; sampling site,

season and/or species as factors; and Al or Pb concentration as

covariates. Lead and Al concentrations in feces of greylag geese

collected in the Entremuros during the 2001/2002 sampling

season (n = 60; from [24]) were also compared with data from

2004/2005 and 2005/2006 in the Entremuros. Post-hoc differ-

ences were studied with Tukey tests. Additionally, when necessary,

marginal means obtained with the models were compared using

the least significant difference (LSD) test. Pearson correlations

were used to study the relationships between dependent variables.

As porphyrins and biliverdin have a common biliary origin in bird

excreta, for GLMs fecal porphyrin concentrations were expressed

relative to biliverdin (as the ratio porphyrin/biliverdin) in order to

compensate for variation in the amount of bile or feces excreted

due to dietary variations [24]. All tests were performed using SPSS

19.0, with the level of statistical significance set at p#0.05.

Results

Sediment analyses
Mean Pb and Al concentrations were higher in sediment

samples from the Entremuros than from Caracoles (Pb:

F1,33 = 9.85, p = 0.004; Al: F1,33 = 22.72, p,0.001; Table 1). In

the Entremuros, a positive relationship between Pb and Al levels

was found in sediments (r = 0.813, p = 0.008, n = 9), but this was

not the case in Caracoles (r = 20.378, p = 0.057, n = 26).

Table 1. Geometric mean (range) of Pb and Al concentrations (in mg/g dry weight) in greylag geese and purple gallinule feces,
and samples of sediment collected at different study sites in Doñana during the 2004 to 2008 winters.

Site Season N Pb (mg/g d.w.) Al (mg/g d.w.)

Feces

Greylag geese Entremuros 01/02* 60 14.99A{ (5.10–42.90) 2336 (302–9125)

04/05 30 4.45B (1.05–48.96) 2268 (nd{–29749)

05/06 30 2.98B (0.93–13.77) 1568 (nd–12922)

Caracoles 04/05 30 4.61A (1.15–19.97) 5364 (5750–18432)

05/06 30 3.14AB (0.67–15.41) 2673 (nd–13341)

06/07 20 2.16BC (0.63–7.79) 994 (nd–11236)

07/08 31 2.21C (0.57–25.25) 2688 (nd–56452)

Cerro 05/06 20 5.22 (2.04–12.52) 5073 (1496–12200)

Purple gallinule Entremuros 04/05 29 2.59B (nd–6.13) 2134 (193–7759)

05/06 32 4.07B (1.25–319.54) 5339 (1364–23548)

07/08 30 6.02A (nd–114.06) 1960 (329–5157)

Sediment

Entremuros 08 9 52.57A (40.15–76.37) 47814 (36063–54676)

Caracoles 08 26 40.86B (27.06–63.26) 38587 (30343–45470)

Data from 2001/2002 previously described [24] are included.
*Data from [24]; {nd = below detection limit.
{Means sharing a superscript letter were not significantly different among seasons for each locality for feces and between sites for sediments (p.0.05).
doi:10.1371/journal.pone.0057295.t001

Figure 2. Estimated marginal means(±SE) of fecal Pb concen-
trations for greylag geese by sampling site as obtained in a
GLM model when considering Al as a covariable. Means sharing a
capital letter did not differ significantly (LSD, p.0.05).
doi:10.1371/journal.pone.0057295.g002
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Fecal analyses
Mean Pb levels in feces of greylag geese differed among sites

(F2,184 = 4.63, p = 0.011; Fig. 2) and between winters (F3,184 = 7.74,

p,0.001). Mean Pb levels showed a positive relationship with Al

(F1,184 = 309.86, p,0.001). Higher mean Pb concentrations were

detected in fecal samples from Cerro de los Ánsares than from

Entemuros and Caracoles (Fig. 2). For feces of geese collected in

the Entremuros, a significant decrease in Pb level was detected

over the period 2001/2002 to 2004/2005 and 2005/2006

(geometric means 15, 4.5 and 3.0 mg/g, respectively;

F2,116 = 358.03, p,0.001; Table 1).

Purple gallinule feces differed in terms of Pb concentrations

between winters (F2,87 = 10.29, p,0.001; Table 1; Fig. 3), but a

clear trend was not evident (i.e., levels were similar in 2004/2005

and 2005/2006, then increased in 2007/2008). In addition, Pb in

purple gallinule feces showed a positive relationship with Al

(F1,87 = 21.39, p,0.001).

For both species, fecal Pb levels were positively and significantly

correlated with Al in all sites (greylag geese: Entremuros r = 0.883,

p,0.001, n = 60; Caracoles r = 0.736, p,0.001, n = 111; Cerro de

los Ánsares r = 0.802, p,0.001, n = 20; purple gallinule: Entre-

muros r = 0.468, p,0.001, n = 91; Fig. 4). In Entremuros, four

fecal samples from purple gallinule displayed higher Pb levels than

predicted by the observed Al concentrations (Fig. 4b). Further-

more these samples had Pb.34 mg/g (d.w.), a level proposed as

indicative of exposure to a point source of Pb pollution [32,33]

(i.e., such as Pb shot ingestion). Indeed, a better Pb-Al correlation

was found for this species in Entremuros without these four

samples (r = 0.619, p,0.001, n = 87). Finally, fecal samples with

levels .34 mg/g showed significantly higher values of Pb/Al ratios

than those with Pb levels lower than 34 mg/g (F1,89 = 89.68,

p,0.001).

Differences in fecal mean isotopic ratios for 206Pb/207Pb and
208Pb/207Pb were detected between sites (F2,68 = 31.92, p,0.001;

F2,68 = 42.46, p,0.001; respectively), and between species

(F1,68 = 44.22, p,0.001; F1,68 = 75.27, p,0.001; respectively;

Fig. 5). Fecal samples collected in Cerro de los Ánsares and

Caracoles showed similar 206Pb/207Pb ratios, which were higher

than those for Entremuros. For the 208Pb/207Pb ratio, a similar

trend was detected, with similar values in samples collected in

Caracoles and Cerro de los Ánsares, and lower values in

Entremuros. However, in this case, the difference between Cerro

de los Ánsares and Entremuros was only marginally significant

(p = 0.05, Tukey test). For both ratios, lower mean values were

detected in fecal samples from geese than in purple gallinule

(Fig. 5). Fecal samples with Pb .34 mg/g also showed 206Pb/207Pb

ratios compatible with those described for Spanish Pb shot pellets

and sediment affected by the Aznalcóllar spill (Fig. 6a), while
208Pb/207Pb ratios for these high Pb samples were nearer those

described for spill affected sediment (Fig. 6b).

Finally, the statistical analysis regarding biliverdin concentra-

tions showed significant differences between species, with higher

values in geese than in purple gallinule (F1,66 = 13.53, p,0.001;

Table 2). Differences among sampling seasons were also observed

(F2,66 = 8.04, p = 0.001), and a negative relationship was found

with Pb concentrations (F1,66 = 9.50, p = 0.003). For geese a

Figure 3. Estimated marginal means (± SE) of fecal Pb
concentrations for purple gallinule at Entremuros by sampling
season as obtained in a GLM model when considering Al as a
covariable. Means sharing a capital letter did not differ significantly
(LSD, p.0.05).
doi:10.1371/journal.pone.0057295.g003

Figure 4. Relationship between Pb and Al concentration (mg/g
dry weight) in (a) feces of greylag geese from three different
sampling sites, and (b) feces of purple gallinule collected in
Entremuros (black dotted lines represent the 95% confidence
and prediction intervals and the horizontal control line shows
the 34 mg/g Pb level indicative of exposure to point sources of
Pb; [32,33]).
doi:10.1371/journal.pone.0057295.g004
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positive relationship was detected between fecal Pb and copro-

porphyrin I/biliverdin and coproporphyrin III/biliverdin ratios

(geese: F1,42 = 6.08, p = 0.018; F1,40 = 7.38, p = 0.010). Although

no differences in porphyrin levels were detected between sites,

correlations showed that the positive relationship with fecal Pb was

clearer in samples collected in the Entremuros (coproporphyrin I:

r = 0.477, p = 0.009, n = 29; coproporphyrin III: r = 0.524,

p = 0.004, n = 29). For purple gallinule, a positive relationship

was detected between fecal Pb and coproporphyrin III/biliverdin

ratio (F1,23 = 4.50, p = 0.045, r = 0.447, p = 0.019, n = 27), the

coproporphyrin III/I ratio (F1,25 = 16.96, p,0.001, r = 0.636,

p,0.001, n = 27; Fig. 7), and mesoporhyrin IX/biliverdin ratio

(F1,25 = 15.13, p = 0.001, r = 0.614, p = 0.001, n = 27).

Discussion

Ten years after the Aznalcóllar mine spill (1998–2008), this

study shows that there had been a progressive decrease in exposure

to Pb in greylag geese in various parts of the Doñana National and

Natural Parks. In the Entremuros, the site most affected by the

spill, the mean fecal Pb concentration in geese had decreased to

3 mg/g d.w. in 2005/2006, well below the 15 mg/g d.w. previously

reported in the 2001/2002 wintering season [24]. The same trend

was also detected in geese feces from Caracoles. Furthermore, the

mean fecal Pb levels in Caracoles for geese (2.2 mg/g in 2007/

2008) were similar to those reported for the 2001/2002 winter in

areas unaffected by the spill, i.e., in the Cantarita rice fields

(2.6 mg/g, a site bordering the Entremuros within the Natural

Park), or Escupidera prairie (4.3 mg/g, a site within the National

Park) [24]. Among the three sites studied here, geese feces from the

Cerro de los Ánsares showed the highest mean Pb concentration

(5.2 mg/g), and this was also higher than previously described for

the same area (2.5 mg/g; [24]). However, overall, Pb concentra-

tions in geese feces recorded here were within the range reported

for waterfowl feces in uncontaminated areas (such as National

Wildlife Refuges) in the USA, i.e., 10 mg/g d.w. [21,25,43,44].

Also, fecal Pb levels detected here were within the range described

in feces from hunted mallards (without Pb shot in their gizzards)

from the Ebro Delta, Spain [32]. For purple gallinule in the

Entremuros, although a slight increase in fecal Pb level was

detected in the winter of 2007/2008, (which may reflect a change

in diet or feeding area), mean Pb concentrations were still well

below 10 mg/g d.w.

As expected, differing Pb isotope profiles were detected in the

feces of geese from each site sampled. In Entremuros, the
206Pb/207Pb and 208Pb/207Pb isotopic ratios were confined

between those described previously for the Aznalcóllar sludge

and for sediment affected by the spill [23]. In contrast, the isotopic

Figure 5. Relationship between Pb isotope ratios 206Pb/207Pb
and 208Pb/207Pb in feces. Additionally, the figure shows mean Pb
isotopic ratios described for the Aznalcóllar sludge, for Entremuros
sediment affected by the spill, for unaffected sediment adjacent to the
Entremuros [23], and for Spanish Pb shot [31].
doi:10.1371/journal.pone.0057295.g005

Figure 6. Relationship between fecal Pb concentrations and (a)
206Pb/207Pb isotope ratios, and (b) 208Pb/207Pb ratios for feces.
The grey vertical dotted line shows the 34 mg/g (dry weight) Pb level.
Values above this suggest exposure to point sources of Pb [32,33].
Additionally, the figure shows mean Pb isotopic ratios described for the
Aznalcóllar sludge material, for Entremuros sediment affected by the
spill, for unaffected sediment adjacent to the Entremuros [23], and for
Spanish Pb shot [31].
doi:10.1371/journal.pone.0057295.g006
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ratios for other samples were mostly confined between mean

values described for sediment affected and unaffected by the spill

[23]. Also, quite different isotopic profiles were detected in geese

and purple gallinule feces from the Entremuros, which suggests a

clear difference in Pb exposure pathways/sources between the two

species. The reason behind this difference remains unclear, but

these species are known to have quite different dietary preferences

and may ingest with food items and/or retain in the gizzard

markedly different amounts of sediment to aid the digestion of

plant material in their gizzards (i.e., grit), but also incidentally

when they feed. Geese are herbivorous, feeding mainly on Scirpus

sp. and Plantago sp. in this area [24,45], and tend to hold mean

values between 10.8 and 28.7 g of grit in their gizzards [40,46]. In

contrast, gallinules are more omnivorous, feeding primarily on

Typha sp. and seeds of Cyperaceae species (Carex divisa, Scirpus spp),

but also non-plant material, and mineral matter can represent up

to 63% of their gizzard contents [47].

For greylag geese, the mean Pb concentration in feces from the

Entremuros was within the range expected when considering the

average percentage of estimated ingested sediment (%EIS)

described for this species in this area (8%; [24]). If we assume

that the mean digestibility of plants on which geese feed at

Entremuros is 37% [24], that all Pb ingested comes from sediment

(and not plants), that it is poorly absorbed in the digestive tract

(5%; [48]), and that the maximum Pb concentration in sediments

from the Entremuros was 76 mg/g, then values up to ,9 mg/g Pb

would be expected in geese feces (calculated following the

equations in [49]; i.e., Total % indigestible (feces) = 8%+((92%/

100)*63%) = 65.96%; Expected feces Pb concentration = 76 mg/

g/(65.96%/8%) = 9.2 mg/g). Thus, based on these results, the

most common source of Pb exposure for geese seems to be the

ingestion of slightly spill-contaminated sediment. In the case of

purple gallinules, sediment ingestion can be high though, and

gizzards with up to 63% mineral matter have been described in

hunted individuals from the Guadalquivir marshes. This material

was mainly coarse sand with a particle size up to 3 mm [47].

Results obtained here suggest that sediment ingestion may again

represent a common source of Pb exposure in purple gallinule, i.e.,

the 206Pb/207Pb and 208Pb/207Pb isotopic ratios obtained showed

values closely related to those previously described for sediment

affected and unaffected by the spill. Furthermore, a strong

relationship between fecal Pb and Al was also detected for this

species.

Despite the importance of sediment ingestion as a Pb source,

some samples analyzed in the Entremuros showed Pb levels far

higher than expected via this exposure route alone. These samples

fell well above/outside the expected Pb/Al regression line

representing the Pb level expected due to sediment ingestion,

and Pb concentrations were .34 mg/g d.w. This level suggests

ingestion of point sources of Pb, such as Pb shot [32]. Indeed, the

prevalence of Pb shot pellets in the gizzards of geese that were

hunted or found dead was up to 10% and 28%, respectively, and

in purple gallinules was up to 7 and 2%, respectively in the

Guadalquivir marshes in past studies [41,42,47]. In the case of

geese, a significant decrease in Pb shot ingestion in hunted/

trapped geese wintering in Doñana was reported by 1999–2002

(after the ban on the use of Pb shot for hunting, and after partial

removal of Pb shot in the Cerro de los Ánsares dune, conducted in

1999–2000; [42]). Furthermore, Pb shot was absent in gizzards of

geese shot during 2002–2004 [24]. Despite this, Pb-poisoned

wintering geese in Doñana were reported throughout between

Table 2. Geometric mean (range) of porphyrins and biliverdin concentrations (nmol/g dry weight) in feces of greylag geese and
purple gallinule collected at different sites in Doñana.

Species Purple gallinule Greylag geese

Site Entremuros Entremuros Caracoles Cerro de los Ánsares

N 27 29 10 5

Coproporphyrin I 0.36 (nd{–2.55) 0.45 (0.01–1.47) 0.30 (nd–1.11) 0.51 (0.08–2.15)

Coproporphyrin III 0.91 (nd–3.76) 1.04 (0.05–3.44) 0.67 (0.24–1.70) 0.66 (0.19–3.17)

Mesoporphyrin IX 0.01 (nd–0.27) 0.03 (nd–0.80) 0.13 (nd–2.14) 0.01 (nd–0.55)

Protoporphyrin IX 0.25 (nd–0.68) 0.19 (0.01–1.09) 0.45 (0.23–1.20) 0.63 (0.37–1.13)

Biliverdin 14.15 (0.99–80.13) 46.97 (2.92–192.13) 25.83 (1.58–160.94) 45.79 (14.78–222.43)

{nd = below detection limit.
doi:10.1371/journal.pone.0057295.t002

Figure 7. Relationship between Pb concentration and the
coproporphyrin III/I ratio in fecal samples from greylag geese
and purple gallinule collected in Doñana (r = 0.420 p,0.001,
n = 71; independently for each species r = 0.007 p.0.05, n = 44;
r = 0.636 p,0.001, n = 27; for greylag geese and purple
gallinule, respectively).
doi:10.1371/journal.pone.0057295.g007

Lead Exposure and Metabolism Disruption

PLOS ONE | www.plosone.org 6 February 2013 | Volume 8 | Issue 2 | e57295



1999 and 2004 [42]. Interestingly, although the 206Pb/207Pb

isotopic ratio of these outlier samples lay between the ratio

described for Pb shot in Spain and the Aznalcóllar spill

contaminated sediment, this relationship was less clear for the
208Pb/207Pb ratio. Here, these outliers plotted more within the

range for Entremuros sediment affected and unaffected by the spill

(Fig. 6). In the Entremuros, iron plaques rich in As can develop on

the roots of emergent macrophytes such as Scirpus sp. and Typha sp.

[49], and these species are indeed commonly eaten by geese

(mainly Scirpus sp.) and purple gallinule (both plant general) in

Doñana [45,47]. Iron oxide plaques can promote the geochemical

accumulation of many metals/metalloids, including Pb [50]

within/around roots, bulbs and rhizome tissues. Furthermore,

Pb concentrations up to ,300 mg/g, and a strong correlation

between Pb and As levels have been documented in thoroughly

washed S. maritimus roots from polluted areas within the

Entremuros [51]. However, other studies have not detected

particularly high accumulation in tubers tissue [52] or transloca-

tion to upper plant parts [17] of Pb or As in these species after the

Aznalcóllar accident (significant Cd/Zn accumulation was how-

ever highlighted).

Given that the Pb isotopic profile in iron plaque associated with

macrophyte roots is likely to be similar to that found in the

surrounding sediment, this may be acting as a point source of Pb

for the birds studied here which is nevertheless difficult to

distinguish isotopically from the bulk sediment. As suggested by

previous studies [49], iron plaque may act as an accumulation site

and an important point source of toxic metals (such as As and Pb)

for herbivorous waterbirds for an extended period after a pollution

event (such as a mine spill). Another possibility is that ‘hotspots’

related to Pb contamination at a meso-scale still exist in spill

affected sediments within the Entremuros [51].

Through the analysis of fecal porphyrins and biliverdin, we have

also detected potential changes in heme synthesis related to Pb

exposure in geese and purple gallinule in our study area. The

positive relationships we found between Pb and coproporphyrin I/

biliverdin and coproporphyrin III/biliverdin ratios in feces from

geese, especially in those collected in the Entremuros, and with the

ratios coproporphyrin III/biliverdin, coproporphyrin III/I and

mesoporphyrin/biliverdin in feces from purple gallinule collected

at the same site, all suggest that heme synthesis is being affected by

Pb. Previous studies have reported a general increase in the levels

of bile porphyrins in poisoned mallards, with the increase in

coproporphyrin III being higher than in coproporphyrin I [38].

Further, a significant relationship between biliary and fecal

(intestinal) coproporphyrin III/I ratio has been described in geese

from Doñana shot after the Aznalcóllar spill; with this ratio also

being significantly related with Pb concentrations in the intestinal

contents [24]. Here we have also observed this positive relation-

ship between Pb levels and the coproporphyrin III/I ratio in

purple gallinules.

The inhibition of the enzyme ALAD is considered one of the

most sensitive effects related to Pb exposure [35,38]. A recent

study [53] showed that blood Pb levels, below that assumed to be

background exposure (i.e., 20 mg/dl), were still able to inhibit its

activity. Additionally, in agreement with our results, Baos et al.

[54] recently provided evidence of long-term, multigenerational

consequences on white stork (Ciconia ciconia) due to the widespread

low-level contamination left as a consequence of the Aznalcóllar

spill. Furthermore, Baos et al. [55] suggested that birds exposed to

sublethal Pb levels after the Aznalcóllar spill could be at risk

through altered physiological responses linked to behavioral and

metabolic processes necessary for survival. Similarly, 8 years after

the spill, elevated accumulation of heavy metals has been

described in reptiles from spill-affected areas [56]. Finally, we

note that although the present work focused on Pb, the exposure to

other toxic metals/metalloids (such as As or Cd) could also

enhance these observed effects [24,49].

Further work is now needed to understand the nature of the

apparent point source of Pb pollution that is being recorded in the

feces of some of these birds, and to pinpoint its exact source (be it

Pb shot, metals accumulating on iron plaque or hot spots of

polluted sediment). In this context, although the study of Pb

isotopic profiles in feces appears to be an effective tool to help to

differentiate between pollution sources the combined use of

element ratios (such as Pb/Al or Fe/As) and perhaps other non-

traditional stable isotope signatures may yet prove worthwhile

[57].
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8. López-Pamo E, Barettino D, Antón-Pacheco C, Ortiz G, Arránz JC, et al. (1999)
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porphyrins and biliverdin in bile and excreta of birds by a single liquid
chromatography-ultraviolet detection analysis. J Chromatogr B 810: 305–311.

39. Badosa A, Frisch D, Arechederra A, Serrano L, Green AJ (2010) Recovery of
zooplankton diversity in a restored Mediterranean temporary marsh in Doñana
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tailing-dam collapse in Aznalcóllar (Southwest Spain). Arch Environ Contam
Toxicol 56: 276–285.

57. Weiss DJ, Rehkämper M, Schoenberg R, McLaughlin M, Kirby J, et al. (2008)
Application of nontraditional stable-isotope systems to the study of sources and

fate of metals in the environment. Environ Sci Technol 42: 655–664.

Lead Exposure and Metabolism Disruption

PLOS ONE | www.plosone.org 8 February 2013 | Volume 8 | Issue 2 | e57295


