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Abstract

Background: Current normalization methods for RNA-sequencing data allow either for intersample comparison to
identify differentially expressed (DE) genes or for intrasample comparison for the discovery and validation of gene
signatures. Most studies on optimization of normalization methods typically use simulated data to validate
methodologies. We describe a new method, GeTMM, which allows for both inter- and intrasample analyses
with the same normalized data set. We used actual (i.e. not simulated) RNA-seq data from 263 colon cancers
(no biological replicates) and used the same read count data to compare GeTMM with the most commonly
used normalization methods (i.e. TMM (used by edgeR), RLE (used by DESeq2) and TPM) with respect to
distributions, effect of RNA quality, subtype-classification, recurrence score, recall of DE genes and correlation
to RT-gPCR data.

Results: We observed a clear benefit for GeTMM and TPM with regard to intrasample comparison while
GeTMM performed similar to TMM and RLE normalized data in intersample comparisons. Regarding DE
genes, recall was found comparable among the normalization methods, while GeTMM showed the lowest
number of false-positive DE genes. Remarkably, we observed limited detrimental effects in samples with low RNA quality.

Conclusions: We show that GeTMM outperforms established methods with regard to intrasample comparison while
performing equivalent with regard to intersample normalization using the same normalized data. These combined
properties enhance the general usefulness of RNA-seq but also the comparability to the many array-based gene
expression data in the public domain.
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Background

In recent years, the analysis of the transcriptome has
switched from using microarrays to the potentially more
powerful and informative massive parallel sequencing of
c¢cDNA (RNA-seq) [1]. In RNA-seq, sequence reads are
aligned to a reference genome, and the number of reads
mapping to a feature — such as a gene — is a measure
which is proportional to both the length and abundance
of said feature. Before performing downstream analyses,
normalization has to be performed to correct for differ-
ences between sequencing runs (e.g. library size and
relative abundances).

Current normalization methods allow for either inter-
or intrasample comparison. The two most commonly
used normalization methods when interested in DE
genes between samples (intersample comparison) are
edgeR [2] and DESeq [3, 4]. The normalization algo-
rithms of these 2 methods (Trimmed Mean of M-values,
TMM, for edgeR and Relative Log Expression, RLE, for
DESeq) show consistent good performance compared to
other normalization algorithms (Total count, Upper-
Quartile, Median, Quantile, and those employed by Lim-
maQN, limmaVoom, CuffDiff and Bayseq) [5-8].
Notably, TMM and RLE do not correct the observed
read counts for the gene length, which is theoretically ir-
relevant for intersample comparisons. However, this ap-
proach does not allow for intrasample comparison,
because a longer gene will get more read counts com-
pared to a shorter gene when expressed at equal levels.
Thus, samples can seem highly correlated without cor-
rection when in fact the correlation is much lower after
length correction (see Additional file 1), and in extremis
can be correlated based on gene length instead of the
expression levels. This problem extends to correlation
based methods where for example a panel of genes of a
sample is correlated to another sample, as is often done
in hierarchical clustering (correlation is used as similar-
ity metric). Furthermore, classifiers based on correlation
of an established signature gene panel to a new sample
such as the consensus molecular subtypes (CMS) in
colorectal cancer will yield erroneous results without
correcting gene expression levels for gene length.

The most commonly used normalization method that
includes gene length correction is TPM (Transcripts Per
kilobase Million) [9], as other methods like RPKM ([1]/
FPKM [10] (Reads/Fragments Per Kilobase per Million
reads, respectively, proved to be inadequate and biased
5,6, 11, 12].

Ideally, a normalization method should generate a
data set on which both between-sample and
within-sample analyses can be performed. We there-
fore introduce GeTMM (Gene length corrected
TMM), a novel normalization method combining
gene-length  correction with the normalization

Page 2 of 13

procedure TMM, as implemented in edgeR, to allow
both inter- and intrasample comparison with the
same normalized data set. We used true (i.e. not sim-
ulated) RNA-seq data of a large cohort of primary tu-
mors of 263 colon cancer patients, and normalized
these data using our new method GeTMM, alongside
TMM, RLE and TPM [6]. We investigated several
properties of the normalized data sets with regard to dis-
tribution, effect of RNA quality, subtype-classification (i.e.
the CMS classification) [13], a clinical recurrence score
[14], recall of DE genes and correlation to RT-qPCR data
generated from the same samples. The main objective of
this study was to determine if GETMM performs equiva-
lent to the other normalization methods with regard to
intersample analyses, and if and to what extent gene
length correction influences intrasample analyses.

Methods

Description of cohort

Fresh-frozen tumor tissue of 263 colon cancer patients
of the MATCH study, a multicenter observational co-
hort study, who underwent surgery in one of seven hos-
pitals in the Rotterdam region, the Netherlands, were
used. Inclusion criteria and additional clinical character-
istics have been described [15].

RNA isolation, cDNA synthesis, gPCR and RNA-seq
Detailed description of the RNA-isolation has been de-
scribed previously [16, 17]; briefly, RNA was isolated
from 30 pum sections using RNA-Bee® according to the
manufacturer’s instructions (Tel-Test Inc., USA). Quality
and quantity of RNA before and after genomic DNA
(gDNA) removal and clean-up with the NucleoSpin
RNA II tissue kit (Macherey-Nagel GmbH & Co. KG,
Germany) were assessed with the Nanodrop ND-1000
(Thermo Scientific, Wilmington, USA) and the MultiNA
Microchip Electrophoresis system (Shimadzu, Kyoto,
Japan). RNA Integrity Numbers (RIN) were assessed
using the MultiNA Microchip Electrophoresis system
after gDNA removal and clean-up (Additional file 2
evaluates the relation between Agilent’s BioAnalyzer RIN
value and the quality as measured by MultiNA). cDNA
was generated from 1 pg total RNA with the RevertAid
H Minus First Strand ¢cDNA synthesis kit according to
the manufacturer’s instructions (Fermentas, St Leon-Rot,
Germany). RT-qPCR was performed with the Mx3000P
QPCR machine (Agilent Technologies, the Netherlands)
using ABgene Absolute Universal or Absolute SYBR
Green with ROX PCR reaction mixtures (Thermo Scien-
tific, USA) according to the manufacturer’s instructions.
The intron-spanning assays to quantify levels of 33 tran-
scripts by the delta-delta Cq method were assessed as
described before [16, 17] and are summarized in
Additional file 3.
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For RNA-seq, 500 ng of total RNA after gDNA re-
moval, clean-up and removing ribosomal RNA using
Ribo Zero (Illumina, USA), was used as input for the
[lumina TruSeq stranded RNA-seq protocol (paire-
d-end). No biological replicates were used. Libraries
were pooled and sequenced on Illumina HiSeq2500
(2x101bp, 177 samples) or NextSeq (2x76bp, 86 sam-
ples) instruments. Pool sizes and the amount of samples
per run were determined based on the percentage of
tumor cells estimated from histological examination
[15]. We used the STAR [18] algorithm (version 2.4.2a)
to align the RNA-seq data on the GRCh38 reference
genome (settings are in Additional file 4). To obtain read
counts for each gene, the ‘quantMode GeneCounts’ was
used, in which only those reads that have a sufficient
alignment score and those that are uniquely mapped are
included. The 76 bp read length from the NextSeq ma-
chine was more than sufficient for accurate mapping to
the reference genome, and we found no bias in data ori-
ginating from the different machines.

Gene annotation was derived from GENCODE Release
23 (https://www.gencodegenes.org/). To obtain exon
specific counts for CDKI and MKI67, all unique
HAVANA exons for each gene were extracted and used
in FeatureCounts [19] with the following settings “—t
exon”, -O and —f. These settings, and the absence of —p
(for paired-end counting), ensures that reads that over-
lap multiple exons are counted for each of these exons.
This ensured all evidence for the presence of an exon
was counted.

Normalization of RNA-seq data

The raw read counts of all samples were merged in a
single read count matrix. This matrix was used as input
for each of the different normalization methods. The
most commonly used RNA-seq normalization methods
are TMM, implemented in edgeR [2] and RLE, in
DESeq2 [3, 4]. Both these methods do not employ any
gene length normalization since their aim is to identify
DE genes between samples and thus assume that the
gene length is constant across samples. The TPM
method adds to the previously used RPKM - for
single-end sequencing protocols - or its paired-end
counterpart FPKM. TPM uses a simple normalization
scheme, where the raw read counts of each gene are di-
vided by its length in kb (Reads per Kilobase, RPK), and
the total sum of RPK is considered the library size of
that sample. Next, the library size is divided by a million,
and that is used as scaling factor to scale each genes’
RPK value. Thus, TPM does correct for gene length, but
is lacking a sophisticated between-sample correction; it
does not account for a possible small number of highly
expressed genes, thus comprising a large portion of the
total library size of that sample. DESeq2 and edgeR
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address this problem by estimating correction factors
that are used to rescale the counts (see [2, 3] for more
details). In short, edgeR employs the Trimmed Means of
M values (TMM) [2] in which highly expressed genes
and those that have a large variation of expression are
excluded, whereupon a weighted average of the subset of
genes is used to calculate a normalization factor. DESeq2
uses RLE that also assumes most genes are not DE; here,
for each gene the ratio of its read count in a sample over
the geometric mean of that gene in all samples is calcu-
lated. The median of the ratios of all genes in a sample
is used as correction factor. Where TMM (edgeR) esti-
mates a correction factor that is applied to the library
size, the correction factor of RLE (DESeq?2) is applied to
the read counts of the individual genes.

Such normalized data are better comparable between
samples, but still suffer from the inability to compare
gene expression levels within a sample. To obtain a nor-
malized data set that 1is equally suitable for
between-samples and within-sample analyses, the fol-
lowing GeTMM method is proposed: first, the RPK is
calculated for each gene in a sample: raw read counts/
length gene (kb). In edgeR, which uses
TMM-normalization, normally the library size (total
read count; RC) is corrected by the estimated
normalization factor and scaled to per million reads, but
in GeTMM the total RC is substituted with the total
RPK (Fig. 1).

In practice, to obtain GeTMM normalized data,
pre-calculate the RPK values from the raw read counts
and gene length (in kb), and use these values as input
for the edgeR package. See Additional file 4 for a step by
step procedure in R. The gene length is calculated using
the annotation by gencode: the length of all exons with a
unique exon_id annotated to the same gene_id is
summed. DESeq2 only allows integers as input, thus the
fractions generated by the gene length correction are
rejected for input by DESeq2.

edgeR and DESeq2 are available as R-packages
(https://bioconductor.org/), and subsequent analyses
were performed using R (v3.2.2). To obtain normalized
data, the raw read count matrix (tab-delimited text file)
was used as input. R commands to obtain normalized
data are listed in Additional file 4. Each method outputs
normalized read counts, that were log2-transformed
(setting genes to NA when having 0 read counts).

The CMS classification was performed using the
“CMSclassifier” package (https://github.com/Sage-Bio-
networks/CMSclassifier), using the single-sample pre-
diction parameter. The Oncotype DX° [14] recurrence
score was performed as described for the RT-qPCR
data, and using the RNA-seq normalized values as in-
put for the algorithm. In short, expression data of 7
genes are used; BGN, FAP INHBA (stromal panel),
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MKI67, MYC, MYBL2 (cell cycle panel) and
GADD45B. An unscaled recurrence score (Rsu) is cal-
culated as (0.1263 x average stromal panel) — (0.3158
x average cell cycle panel)+(0.3406 x GADD45B).
The Recurrence Score (RS) is calculated as 44.16 x
(Rsu + 0.30). The signal-to-noise ratio (SNR) was cal-
culated as the (meanl — mean2)/Sp, where Sp is the
square root of the pooled variance Vp. This is calcu-
lated as Vp=[(nl-1) V1 +(n2-1)V2]/(nl + n2-2),
where V1 and V2 are the variance for each of the
groups, and nl and n2 the sample group sizes.

Statistics

Statistical tests were performed using R (v3.2.2), using
non-parametric tests (Mann-Whitney U test, Spear-
man rank correlation) where appropriate. For identify-
ing DE genes, the default tests that are included
within the edgeR and DESeq2 packages were used (a
Wald test for DESeq2 and for edgeR an exact test for
the negative binomial distribution). For edgeR, a com-
mon dispersion value of 0.4 was used, as suggested
by the documentation. Additionally for edgeR and
DESeq2, but also for RT-qPCR, TPM and GeTMM
the Student’s t-test was used. For the calculation of
Root Mean Square Error (RMSE), standardized data
were used (Z-normalization, subtracting the mean ex-
pression value of a gene from the observed expression

value in a sample, and dividing this by the standard
deviation of the gene’s expression values). Statistical
tests are indicated in the main text, p-values were
two-sided and p-values and FDRs (Benjamini-Hoch-
berg, when required) were considered significant
when below 0.05.

Results

We used primary tumor tissue of a cohort of 263 colon
cancer patients to generate RNA-seq data. There were
no biological or technical replicates. We aligned these
data to the human reference genome (GRCh38) and
generated read counts per gene. This read count matrix
was used for several normalization procedures: TMM
(implemented by edgeR) [2], RLE (implemented by
DESeq version 2) [3] and TPM, in addition to a newly
proposed method of gene length correction in combin-
ation with the normalization used by edgeR - GeTMM.
To validate the results, the same RNA used for generat-
ing the sequence libraries was also used for RT-qPCR
analysis of 33 genes (see Additional file 3 for details).
Our study was not designed to identify the method with
the highest compatibility to RT-qPCR data, but to
compare the performance of GeTMM to the other
normalization methods in inter- and intrasample
analyses.
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Fig. 4 Boxplots of read counts per exon. a shows the expression levels in read counts per 100 bp for each exon in CDKT (NB no additional
normalization was performed). The whiskers extend to 1.5 IQR (interquartile range) above the third, or below the first quartile, with the median
indicated by a horizontal line in the box. The notch indicates the 95% confidence interval of the median. b shows the same data for the MKI67 gene

Distribution of RNA-seq data

The library sizes (i.e. the number of mapped reads) of
the samples ranged from 5.8 to 37.8 million (mean 16.0
million and median 14.2 million). Density plots were
generated to get an overview of the read count distribu-
tions (Fig. 2). Panel 2a shows the raw read counts (not
normalized, in log2 scale), which clearly shows a bi-
modal distribution after the initial peak at 0, with peaks
at 1.1~ 1.4 log2-read counts and a broader peak at 7~ 10
log2-read counts. Similar bimodal distributions were
seen after RLE and TMM normalization, respectively by
DESeq2 and edgeR (Fig. 2b, c), which both do not cor-
rect for gene length. Splitting the TMM normalized data
by genes <5 kb and those > =5 kb (Fig. 2d) shows that
the bimodality is largely attributable to the gene length;
as expected, longer genes generally have higher read
counts. Methods employing correction for gene length -
TPM and GeTMM - both show a more Gaussian distri-
bution (Fig. 2e, f).

Comparison to RT-qPCR generated data: Intersample
analysis

To evaluate how the different normalization methods
affect downstream analysis, we measured the expression
levels of 33 genes (of which 3 reference genes - HMBS,
HPRT1 and TBP) using RT-qPCR in the same RNA iso-
late as was used for sequencing. The RT-qPCR data were

normalized using the reference genes and were consid-
ered as the gold standard to compare against. To assess
the effect of the different normalization methods on
intersample analysis, we correlated the normalized
RNA-seq data of the 30 genes to the RT-qPCR levels
over all samples (Fig. 3a, Additional file 5 and
Additional file 6 for a detailed example). Overall, correl-
ation coefficients for GeTMM were very comparable to
the correlation coefficients for RLE and TMM normal-
ized data, and higher than the correlation coefficients
for TPM (Fig. 3a). For most genes, RLE had the highest
correlation coefficients in absolute numbers, although
the average and median difference with GeTMM showed
very little difference in individual coefficients (0.014 and
0.008, respectively). Furthermore, no significant
difference was observed between RLE, TMM and
GeTMM normalized data (Mann-Whitney test, see
Additional file 7) while TPM resulted in significantly
lower coefficients compared to the other methods
(» =0.02, p =0.04 and p =0.03 for RLE, TMM and
GeTMM, respectively). A Spearman’s rank correlation
analysis on these data — to ascertain the influence of
possible non-normally distributed expression data —
showed the same results (Additional file 8). In
addition, the RMSE of the methods compared to
RT-qPCR data was calculated; to be able to do this
we first standardized the data using Z-normalization,
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so that the data for each gene had a mean and SD of
approximately 0 and 1, respectively. Without
Z-normalization, meaningful interpretation of the RMSE
would be obscured by the difference in expression ranges
that the RNA-seq normalization methods have. RMSE
values (Fig. 3b) of GeTMM, TMM and RLE were again very
comparable, while TPM showed a general higher error.

The aim of this part of the study was not to appraise
the correlation coefficients obtained using the RT-qPCR
data but to use the RT-qPCR data as benchmark so the
RNA-seq normalization procedures could be compared
with each other. Nonetheless, we further investigated the
five genes that showed an R < 0.6; MKI67, CDK1, ACTB,
ESRI and ESR2. The poor correlation of the latter 2
genes may be caused by the very low expression of these
genes according to the RNA-seq data (median read
count was just 22 for both ESRI and ESR2), indicating
an insufficient sequencing depth for these genes. ACTB
was the highest expressed gene of the 30 genes and had
the lowest variance in 4 of 5 methods (0.25, 0.13, 0.16
and 0.16 for RT-qPCR, RLE, TMM and GeTMM, re-
spectively), which may be the reason for the low correl-
ation. For CDKI and MKI67, we re-analyzed all 263
samples to obtain the reads per exon. We observed a
lower expression of exon 1 of CDKI, which may explain
the poor correlation between the RT-qPCR and
RNA-seq data as the RT-qPCR product spans exon 1
and 2 (Fig. 4a). A similar analysis for MKI67 did not
show the same effect; here the RT-qPCR assay spans
exon 10 to 11, which both showed similar expression
levels as the overall gene expression level (Fig. 4b). So
unless transcript XM_006717864, which was the only
truncated transcript of AMKI67 not covered by this
RT-qPCR assay, is dominantly present in our sample
cohort, we found no obvious explanation for this poor
correlation.

Comparison to RT-qPCR generated data: Intrasample
analysis

Previously [20], RNA-seq normalization methods were
compared to RT-qPCR data in the MicroArray Quality
Control (MAQC) and Sequence Quality Control SEQC
effort [21], using an alternative setup; 996 genes were
measured in a single sample by RT-qPCR and these were
correlated (Spearman’s rank) to gene-expression levels as
measured by RNA-seq of the same sample. To mimic
the SEQC results, we repeated the analysis with the
RT-qPCR data of the 30 genes, and calculated a Spear-
man’s rank correlation coefficient between RT-qPCR and
the different RNA-seq normalization methods for each
of the samples, yielding 263 correlation coefficients per
method (Fig. 5). GeTMM and TPM (the methods that
include a gene length correction) both showed over-
all significant higher correlation to RT-qPCR data
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than RLE- and TMM-normalized data (Mann-Whit-
ney p <0.0001). GeTMM showed a higher correl-
ation coefficient in 262 of the 263 cases.

The performance of GeTMM is not affected by poor RNA
quality

Next, we repeated the intersample correlation analysis
with RT-qPCR data for the 76 samples that had an RNA
integrity (RIN) value <7 after the cleanup procedure
(median RIN 5.3), and compared these to an equally
sized group of 76 samples with the highest RIN values
(RIN > 9, median RIN 9.5). The median library size of
the low RIN group was slightly lower at 5.58 million ver-
sus 6.52 million for the high RIN group (Mann-Whitney
p =0.02, see Additional file 9A). However, a principal
component analysis using all expressed genes showed no
separation of the low/high RIN groups, regardless of
normalization method (Additional file 9B-E). Next, we
correlated the RT-qPCR data to the RNA-seq data for
each normalization method for the low and high RIN
group separately, and compared the correlation coeffi-
cients between the groups. Figure 6a-d shows a
Bland-Altman difference plot for the four methods with
the mean bias and p-value (Student’s t-test under HO

( N
09 -
08 -
%)
o
0.7 -
0.6 -
0.5 -
1 1 1 1
RLE TMM GeTMM TPM
Fig. 5 Violin plots of rank correlation by method. Spearman
rank correlation coefficients of 263 samples by correlating each method
with RT-gPCR generated data
.
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that the difference is 0). Similar to the intersample
comparison between RNA-seq and RT-qPCR in all sam-
ples, the result for GeTMM was similar to TMM and
RLE normalized data, meaning the correlation
coefficients were similar for the low and high RIN group.
Normalization using TPM did result in significantly
lower correlation coefficients in the high RIN group
compared to the low RIN group (bias=-0.09477, p <
0.0001), again indicating an advantage for GeTMM com-
pared to TPM.

GeTMM best resembles results of differential expression
analysis using RT-qPCR

The correlation of the different normalization
methods to RT-qPCR data already showed that
GeTMM performed equivalent to TMM and RLE, but
outperformed TPM. To further study the effect of the
different normalization methods on an intersample
analysis in a biological relevant context, the genes in
left sided and right sided colon tumors were

examined for differential expression, since tumors in
the left and right hemicolon are known to be bio-
logically different. In short, right-sided tumors are fre-
quently hypermethylated, hypermutated, microsatellite
instable and BRAF-mutated while left-sided tumors
are frequently microsatellite stable and frequently
carry an APC and KRAS-mutation [22]. This charac-
teristic roughly divided our cohort in half (48%
left-sided and 52% right-sided). We evaluated all 30
genes in the RT-qPCR data set by a standard t-test
and after multiple testing correction (Benjamini--
Hochberg) 8 genes showed an FDR<0.05: MYBL2,
MYC, EPCAM, SYK, APOBEC3B, SPP1, CDKI and
IGFI. Next, to check if the RNA-seq normalization
methods showed differences in the amount of re-
moval/compression of relevant biological variation, we
calculated the Signal-to-Noise ratio (SNR) for these 8
genes. Again, GeTMM performed similar to TMM
and RLE normalized data, showing very comparable
SNRs, but outperformed TPM (see Additional file 10).
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8
FDR<0.05

FDR>0.05

Genes (n)

qPCR

DESEQ2

Fig. 7 Number of DE genes between left and right sided tumors per normalization method. RT-qPCR generated data were used as benchmark,
showing 8 genes with FDR < 0.05 (dark-grey) and 22 genes FDR > 0.05 (black). For the RNA-seq normalization methods, black indicate true
negatives (FDR > 0.05, matches with RT-qPCR), white indicate false positives (FDR < 0.05, not matching RT-gPCR), grey indicate true positives (FDR
< 0.05, matches RT-gPCR) and light-grey indicate false negatives (FDR > 0.05, not matching RT-gPCR)

edgeR GeTMM TPM

Up to now, we used DESeq2 and edgeR normalized
data (RLE and TMM, respectively), however, these
methods are intended for both normalization and
identification of DE genes. Each uses a statistical test
that was designed for use in the respective package (a
Wald test and exact test for DESeq2 and edgeR, re-
spectively). Thus, in order to evaluate the perform-
ance of GeTMM in identifying DE genes in
comparison with DESeq2 and edgeR, the statistical
tests implemented by edgeR and DESeq2 were run on
the respective data sets, while for TPM and GeTMM
data, Student’s t-tests were used on the 30 genes.
Figure 7 shows the results of comparing FDR ad-
justed p-values by normalization method. Out of the
22 genes that were not DE according to the
RT-qPCR data, GeTMM had the lowest number of
‘false positives’ (5/22) compared to edgeR (14/22),
DESeq2 (7/22) and TPM (16/22). The recall was
similar for all methods (4 out of 8 for edgeR, and 3
out of 8 for the other methods). When analyzing
TMM (edgeR) and RLE (DESeq2) normalized data
with a t-test, recall of edgeR dropped to 3 genes
while DESeq2 recalled 4 genes. Both edgeR and
DESeq2 called 5 genes as ‘false-positives’ (the same 5
genes GeTMM calls significant).

Gene length correction benefits TMM in the Oncotype
DX® recurrence score

An often-used tool to estimate risk of recurrence in
colon cancer is the Recurrence Score (RS) algorithm of
Oncotype DX® [14], which uses a 7 cancer-gene panel.
The RS was calculated for all samples, based on the

RT-qPCR data as well as the RNA-seq normalized data-
sets (Fig. 8). The distribution of the RT-qPCR generated
scores are very similar to the scores generated using
RNA-seq, except for the TMM derived RS. The overall
lower scores will impact the RS evaluation, as the ori-
ginal RS is scaled such that negative scores will be set to
zero. Using TMM, 41% of patients (n = 109) would re-
ceive this score. Clearly GeTMM, which uses gene
length correction on top of edgeR normalization, im-
proves the range and distribution of the RS scores.

100~

RS

T™MM  GeTMM

QPCR  RLE TPM

Fig. 8 Violin plots of the recurrence score. The Oncotype DX ©

Recurrence Score (RS) of 263 samples by method
- J
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Gene length correction impacts CMS prediction

Finally, the CMS classification was determined for each
sample using data normalized by the different methods
[13]. In this classification five possible groups are pre-
dicted: CMS1-4 and mixed/indeterminate. The type of
classification is based on correlation of gene-signatures
specific for each subtype to an individual sample, making
this an intrasample-type analysis. Perfect agreement in
the predicted CMS groups was seen between RLE and
TMM normalized data (both without gene length cor-
rection), and between TPM and GeTMM (both with
gene length correction). However, gene length correction
had a considerable impact on the prediction of the CMS
groups: 40 samples (15.2%) were predicted in a different
group when comparing TMM and GeTMM (Table 1).

Discussion

The current study showed that GeTMM performed
equivalent in intersample analyses to two commonly
used and best performing in several RNA-seq
normalization aspects — RLE (used by DESeq2) and
TMM (used by edgeR, both do not use gene length cor-
rection) [6-8], while outperforming these methods in
intrasample comparisons. Therefore, GeTMM generates
a normalized data set directly suited for multiple end-
points. The effects of the different methods on the dis-
tribution of the gene expression data, samples with
different RNA quality, subtype-classification, recurrence
score, recall of DE genes, RMSE analysis and correlation
to RT-qPCR data were assessed in a large cohort of real
(i.e. not simulated) data, obtained from 263 primary
colon tumors. Importantly, the current study focused on
the application of RNA-Seq data for differential expres-
sion analysis between and within samples, thus not cov-
ering other applications such as the detection of fusion
events, variant analysis and gene isoforms [23]. With re-
gard to the latter, the normalization methods used in
this study including GeTMM were not developed to dis-
tinguish possible isoforms, which requires estimating ex-
pression on a transcript level using more complex
models and different statistics [10, 24, 25]. Thus, the

Table 1 Predicted CMS group by normalization method
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investigated normalization methods may not be fully ap-
propriate for such transcript level analyses.

The effect of gene length correction on downstream
analysis is more important than it seems at first,
when realizing that several frequently used standard
analyses are vulnerable to gene length induced bias.
Besides the theoretical example stated in the intro-
duction, another example is e.g. in breast cancer,
wherein the AIMS [26] method was developed to ob-
tain a truly independent single sample classifier to ro-
bustly call molecular subtypes. Herein, subtype-specific
genes are evaluated within each sample; e.g. when GRB7
(a 532 bp transcript) is higher expressed than BCL2 (a
239 bp transcript), it adds to the evidence for a HER2 sub-
type [26]. Without correcting for gene length, this predic-
tion method will not work as intended on RNA-seq data
as GRB7 read counts will be about 2-fold higher compared
to the BCL2 read counts, when both genes are expressed
at equal levels. Evaluating these intrasample-type analyses
in the current study, GeTMM and TPM produced signifi-
cantly better results compared to data normalized by
TMM (edgeR) and RLE (DESeq2) when correlating a set
of genes measured by different methods within the same
sample. A similar sort of analysis had been performed pre-
viously [20] using the data available from the MicroArray
Quality Control (MAQC) effort, wherein more genes were
measured by RT-qPCR, but only using two samples. In
our study we used 263 samples, thus capturing the bio-
logical variation of gene expression levels much better. Re-
garding clinical applicability, this study showed that gene
length correction influences the prediction of the subtypes
(CMS) of colorectal cancer [13]. Given the methodology
of the CMS classifier, where the gene expression data of a
single sample are correlated to a centroid of a set of genes
that are specific to each of the 4 CMS groups, it makes
more sense to use a normalization that includes a gene
length correction, to avoid under- or overestimating the
true expression levels of genes within a sample. Of note,
we do not claim to predict the true CMS classification,
but assuming that the GeTMM classification reflects a
more reliable prediction, 23 samples would change from a
CMS group to mixed/indeterminate using a method

GeTMM

TMM CMS1 CMS2 CMS3 CMS4 Mixed/indeterminate Total
CMS1 46 0 0 0 7 53
CMS2 0 127 0 0 5 132
CMS3 0 0 23 0 0 23
CMS4 0 1 0 5 4 10
Mixed/indeterminate 3 14 6 0 22 45
Total 49 142 29 5 38 263
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Table 2 Summary of results
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Normalization Gene length Distribution per Influence of RIN on Intersample Intrasample
Method correction sample correlation correlation correlation
RLE (DESeq2) no bimodal no bias ++ +

TMM (edgeR) no bimodal no bias ++ +

TPM yes normal bias - ++
GeTMM yes normal no bias ++ ++

A "' indicates a relative poor performance for the given criterion, and increasing performance is indicated by ‘+" and ‘++'

without gene length correction, and 1 sample would
change from CMS2 to CMS4. In calculating the recur-
rence score (Oncotype DX°®) edgeR showed an overall
much lower distribution and assigned almost half of the
patients below a zero score. This was remedied by includ-
ing a gene length correction (thus yielding GeTMM),
resulting in scores very comparable and in the same range
as the RT-qPCR generated scores. This illustrates the im-
portance of using a normalization method like GeTMM,
that results in a data set that is suited for both intersample
as well as intrasample analyses.

Several metrics were wused to evaluate the
normalization methods, summarized in Table 2. In

general, TPM is not sufficient to correct for
between-sample differences. This echoes previously
reported  results using RPKM and FPKM

normalization [5, 6, 11, 12], and it is reasonable to
conclude that normalization by library size alone
must be abandoned as viable method to detect DE
genes between samples. RLE and TMM normalized
data differed only slightly with respect to distribution,
correlation and RMSE to RT-qPCR and sensitivity to
RNA quality, and not at all with regard to the CMS
classification. However, the statistical test that edgeR
employs seemed overly optimistic in identifying DE
genes while DESeq2’s statistical test is more conserva-
tive, a difference that was also observed by others [8].
Given the strong similarities between the data after
normalization with RLE and TMM, the differences in
the reported DE genes are more likely a result of dif-
ferences in the statistical tests employed by both
methods than by the normalization itself. This was
confirmed by using a t-test for all normalization
methods, showing very comparable results; thus,
GeTMM performed similar to edgeR and DESeq in
the intersample analysis of identifying DE genes.

The analyses using subsets of samples with a low or
high RIN value showed remarkably little difference in
correlation to RT-qPCR generated data. It appears
that samples with a low RIN value may yield sequen-
cing data suitable for expression analyses. Still, this
conclusion is drawn from a single correlation analysis
and may be very specific to the entire protocol that
was used (RNA isolation, library prep etc.) and may

therefore not be applicable to all studies and proto-
cols. Still, a-priori disregarding samples with a low
RIN value for sequencing could prove wasteful,
though it is prudent to perform a robust QC on the
generated sequencing data to spot failed samples.

Lastly, this study uses RT-qPCR as standard so the
RNA-seq normalization methods could be compared
with each other. RT-qPCR is known for its precise
and reproducible measurements and may have a big-
ger dynamic range compared to the usual coverage of
sequence data. The downside is that RT-qPCR measures
just a small part of the gene, may miss or be affected by
splice-variants, and can be affected by SNPs in the primer
regions. In that respect, the RNA-seq generated data may
be nearer the mark of the actual expression level of a gene.
In the future, RNA-seq may replace RT-qPCR as the gold
standard for expression data, provided a well-founded
normalization method is used.

Conclusions

This study shows that GeTMM produces a versatile
normalized RNA-seq data set, appropriate for both
inter- and intrasample comparisons. This quality of
GeTMM should further enhance the capacity of
RNA-seq as a solid method to explore and compare
gene expression profiles, and thus may become in-
creasingly interesting in the current era of data shar-
ing efforts.
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