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Abstract
Extremely large datasets have become routine in biology. However, performing a computa-

tional analysis of a large dataset can be overwhelming, especially for novices. Here, we

present a step-by-step guide to computing workflows with the biologist end-user in mind.

Starting from a foundation of sound data management practices, we make specific recom-

mendations on how to approach and perform computational analyses of large datasets,

with a view to enabling sound, reproducible biological research.

Introduction
In today’s technology-driven era of biological discovery, many biologists generate extremely
large datasets, including high-throughput sequencing, proteomic and metabolomic spectra,
and high-content imaging screens. Subsequently, biologists must overcome many challenges of
incorporating computing into their standard procedures for data analysis, including installing
and running software that is not “point-and-click,” navigating at the command-line interface,
comparing various analysis tools that supposedly perform the same tasks, establishing effective
note-taking for their computing trials, and managing large datasets. Especially for trainees, it
can be overwhelming to know how to begin to address these challenges. Providing a roadmap
for workflow approach and management is likely to accelerate biologists’ skill-building in
computing.

There are ongoing conversations regarding best practices for computing in biology. In 2009,
arguably just prior to the “big data” deluge, Noble provided a great perspective on organizing
bioinformatics projects [1]. Recent works have promoted methods for reproducibility in
computational research [2,3], provided guidelines for writing software and tools [1,4–6] and
advocated for training for the next generation of scientists in computing [7–9]. Aiming to com-
plement and extend upon these works with the biologist end-user in mind, we outline an
approach to computational analysis of any large dataset. The roadmap emphasizes tasks that
help the user to understand the many choices that inevitably are made as part of a computing
workflow. The intent is for the user to systematically query choices in software and parameters,
compare options to understand the impact of each on the outcome and interpretation of
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results, and, ultimately, to make analysis decisions that are most appropriate and biologically
or statistically defensible for the dataset in hand. Our roadmap also includes a series of specific
internal (e.g., within a research group) and external (e.g., at peer review) checkpoints for repro-
ducibility, provides suggestions for effective note-taking in computing, and advocates a team
approach to sharing responsibility for analysis and data management.

It is important to emphasize that a good workflow starts with good data management and
organization practices. The starting place for analyses is (1) primary (“raw”) data, the unpro-
cessed data generated from a specific technology such as a sequencing machine, and (2) the
data about that data, ormetadata (Box 1), that contains information about how the data was
collected and generated. Unmodified versions of both raw data and metadata should be stored
securely, read-only (so it can’t accidentally be modified) with backups. If any manipulation has
been done to the dataset from a facility for quality filtering or other processes, that information
should also be retained as part of the metadata. Finally, initial data files should be organized so
that they are computer-readable and in nonproprietary formats. These files are the cornerstone
of any project and serve as a starting place for reproducing results, starting new analyses or
continuing further work. These recommendations have been well outlined in [2,3] and are

Box 1. Terms Used in This Paper

• approach: a variable within a tool that specifies a statistical/bioinformatics process; e.g.,
an operational taxonomic unit (OTU) picking algorithm in amplicon analysis

• control analysis: using provided, simulated or mock data to ground expectations of
software performance

• metadata: descriptors (may be qualitative or quantitative) of the biological (e.g., experi-
mental conditions) and technical (e.g., sequencing protocol used) aspects of the data

• parameter space: all possible variables, methods, and tools available to analyze a dataset

• parameterization: the process of determining the “best” option for a given dataset or
analysis problem

• raw data: the un-manipulated data exactly as it is returned by the technology that gen-
erated it

• sanity checks: small tests to ensure that script input and output files match expectations

• sensitivity analysis: the process of determining which options are most robust to out-
comes in the analysis; sometimes called sensitivity scan

• tool/software: a compilation of functional code with or without a user interface that
performs a statistical or bioinformatics task on a given input dataset

• variable: the user-defined options within a single tool. Default values are set by the
developer(s); also called flag or option

• version control: automatic management of user edits to any type of document, includ-
ing code and workflows. Typically records timestamp, author of the change, and the
exact revisions to the file.

• workflow: the complete set of steps required to analyze a dataset from start to finish
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foundational for effective and reproducible analyses. This paper builds on that foundation, and
focuses on the next steps: analysis workflow best practices.

A Roadmap for the Computing Biologist

i. Consider the Overarching Goals of the Analysis
Before beginning analyses, call to mind the goals of the project. For instance, working to
address a given hypothesis will motivate different analysis strategies than conducting data
exploration. A clear vision as to the ultimate project goals will direct the workflow, constrain
analysis choices, and keep users on task to achieve their objectives.

ii. Adopt an Iterative, Branching Pattern to Systematically Explore
Options
Biologists embarking on the study of a new dataset face many analysis choices. Particularly in
bioinformatics, at each step of the process there are multiple software available, each with its
own set of variables. Because datasets have unique designs, biases, and underlying assumptions,
a default option offered by a software is often not the most appropriate choice and must be re-
evaluated for a new dataset. Biologists therefore often decide to try several software packages
and analysis variables to determine the best match for their data type and set of questions. This
set of all possible combinations of values for the different software and their options can be
thought of as parameter space. Here we refer to parameters as the set of all possible options and
variables as the options within a given software package. This is analogous to wet bench work,
in which there are multiple steps or even protocols in each experiment and decisions must be
made as to what components most affect experiment outcomes or are important to vary to
optimize results (Table 1). Exploring this parameter space is an important step for a biologist
to understand what the tool does and how it performs, and also to interpret the results for the
specific dataset in question. However, it is challenging to keep track of the choices and results
to effectively evaluate the most appropriate workflow (see section iv: “Taking Notes for
Computational Analyses”). We suggest using an iterative, branching pattern for exploring
parameter space, employing sensitivity analysis, sanity checks, and the potential use of control
analyses.

In sensitivity analysis, the researcher determines how the outcomes of the analysis are
affected by each of the parameter choices (Fig 1). In this approach, one tool and its defaults are
selected as a starting point. The user then changes the default value for each variable in turn
and determines how each change affects the analysis outcomes. Values can range from defaults
to those that are extreme or nonsensical to bracket expectations of potential outcomes. For
every change in a variable imposed by the user, the corresponding input and outcome are doc-
umented. This process allows the biologist to determine which variables are most important
for a given dataset, and while there may not be a universal “correct” value for each variable, the

Table 1. Analogies between computing and “wet-bench” experiments.

Computing task Wet-bench analogy Example

Exploring parameter space Using multiple experimental designs to
address a hypothesis

Complementing in vitro and in vivo (and in silico!)
experiments

Comparing different computing tools or
software

Comparing protocols that perform the same
task

Comparing kits from different manufacturers for
nucleic acid extraction

Changing variables (flags or options) within a
computing tool

Making minor adjustments in a single protocol Changing buffer conditions in a PCR

doi:10.1371/journal.pbio.1002303.t001
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researcher can evaluate trade-offs and make an informed selection of appropriate values.
When the final selection is made for each variable, she can record and annotate them with her
rationale for the choices.

The biologist then moves on to the next step in the workflow or evaluates another tool at
that same stage of the workflow. Exploration continues for each step independently, while the
user refines a final workflow with the best variable values, methods, and tools at each step.
Often, the user may want to return to a previous step to ask how changing a parameter influ-
ences a subsequent step. An example schematic for microbial genome assembly is provided in
Fig 2. Notably, an independent software may be needed to evaluate analysis choices. For exam-
ple, in Fig 2, FastQC is a software that can be used to assess and compare the effectiveness of
different quality-filtering tools.

In light of the many alternatives at each step, it is important to remain focused on the ulti-
mate task at hand, which is to address the hypothesis for which the dataset was generated. We

Fig 1. Workflow for biological computing. The workflow begins with read-only, secure raw data and ends with final code and data, ultimately accessible in
a version-controlled repository (green boxes and arrows). Default and alternative parameters are explored and compared for each tool to optimize the
analysis, and best choices (red boxes/text) are informed by biological and statistical expectations of the data. Purple ellipses show reproducibility
checkpoints, with self-checkpoints numbered consecutively (here, 1 through 4). Purple dashed lines show iterative steps in the workflow that occur at
reproducibility checkpoints. The workflow-in-progress is edited at every step until the documentation and code are finalized.

doi:10.1371/journal.pbio.1002303.g001
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do not recommend exhaustively exploring all parameter space, but to carefully consider those
tools and variables that are important for the dataset and hypothesis. In the beginning of analy-
sis, new users often require more time devoted to exploring options so that a greater under-
standing of the tool can be achieved. However, we caution users to not spiral down an analysis
path of endless options. There are simply some options that do not matter for the outcome of
the analysis, and these should be identified quickly and not considered further. For biologists
just beginning in computing, making an in-person appointment with a bioinformatician, com-
puting core facility staff member, or knowledgeable colleague can provide invaluable insights
into which analysis options matter.

For new users, especially, self-imposed sanity checks are a helpful component of workflow
development. These are small tests conducted while running software or executing code to
make sure that the output matches expectations. For instance, does the number of sequences
being returned match the number input or what was expected to be retained? Is the output
returning integers or nonsensical values? Is the script to remove headers actually removing
them and how could this be checked? Incorporating frequent sanity checks into the workflow
will help the user to understand how the software and scripts are working and avoid “black-

Fig 2. A simplified schematic of an example workflow for bacterial or archaeal genome assembly. These tools represent just a subset of those
available, for illustration purposes. For example, Trimmomatic is one tool for trimming Illumina FASTQ data and removing adapters.

doi:10.1371/journal.pbio.1002303.g002
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box” thinking, in which input and output are assumed to be correct. It also will strengthen the
computing skills of the user as she develops creative ways to test whether the tools are running
properly.

Often, within complex biological datasets, researchers do not know what the outcome of
their data analysis should be, and there is not a clean, directly comparable “control.” Instead,
biologists ask if a particular analysis meets their biological and statistical expectations of their
data, and further question whether that expectation is met differently when using other compa-
rable analysis approaches (e.g., [10]). In order to ground expectations, one approach is to use a
mock or simulated dataset, in which the expected outcome is known. This is most analogous to
a positive experimental control and can be thought of as control analyses. Mock datasets have
been used in microbial marker gene analyses, in which, in parallel to sequencing a “wild”
microbial community, a mock community of known isolates in known proportions is con-
structed and sequenced to calculate an error rate [11]. Another control exercise to ensure that
the software is performing as expected is to use the software first with the developer’s provided
dataset as a tutorial, ensuring reproducibility of their results.

iii. Reproducibility Checkpoints
Reproducibility checkpoints are places in a workflow devoted to scrutinizing its integrity
(Table 2). When scrutinizing, there are three main considerations. The first is that the work-
flow (or step in the workflow) can be seamlessly used (it doesn’t crash halfway or return error
messages), and the second is that the outcomes are consistent and validated across multiple,
identical iterations. In other words, the computational experiment must be replicated and
found to be reproducible [2]. Finally, results should make biological sense; it is possible to gen-
erate reproducible computational results that are biologically meaningless.

When users are working in teams to develop a workflow, checkpoints often come automati-
cally as different users try to repeat and expand on each other’s work [6]. However, an indepen-
dent user may have no formal mechanism of accountability from teammates. Thus, we
recommend that, as a workflow is being developed, the user self-imposes reproducibility check-
points at the end of each step. The workspace should be cleared, and the step run from scratch
with the dedicated input files. If computational run times are too long to be practical, we rec-
ommend sub-setting the dataset and working with this manageable subset to develop the work-
flow. After the last step, the entire workflow may be similarly run from scratch with a clear
workspace (Fig 1, see self-checkpoint 4). At this point, the user has completed her first draft of
the workflow, and may ask for an internal review by a colleague. The colleague should try to
reproduce the results at each step and run the workflow without error, and they should test a

Table 2. Reproducibility checkpoints during the development and refinement of a computational
workflow.

Type On what? By whom?

Self • Every parameterized step in a workflow
• Final, complete workflow
• Final batch script

• User(s) who develops the analysis workflow

Internal • Final, complete workflow
• Final batch script

• At least one colleague in the research group
• Research group leader/principal investigator (PI)

External • Final, complete workflow
• Final batch script

• Crowdsourcing (e.g., GitHub/BitBucket/R community)
• Informal review (ArchiveX, PeerJ PrePrint)
• Reviewers and editor of a submitted manuscript

doi:10.1371/journal.pbio.1002303.t002
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batch script that automatically performs each step to come to the final results file. The team
leader or principle investigator (PI) should be able to execute the workflow and reproduce the
results. We recommend that the PI review the workflow before any manuscript is drafted so
that there is an opportunity to identify errors in the workflow and correct them before conclu-
sions are drawn from the results.

Afterwards, the input files, annotated workflow, and batch script may be made available for
external review. An especially rigorous set of reproducibility checkpoints will occur if the
workflow is crowdsourced to developer communities for informal review, such as through
GitHub, BitBucket, or R communities, or through pre-review mechanisms like ArXiv or PeerJ
pre-prints. Also, we strongly recommend making all of the relevant analysis files (demo data-
sets, full datasets, metadata, documentation, and code) available to the editor and reviewers
when a manuscript is submitted, which will promote replication of the computational experi-
ment [2].

Visualizing data at reproducibility checkpoints can help to evaluate the performance of the
analysis. Embedding data visualization into the analysis workflow will also promote generation
of reproducible figures that can be used for publication. Creating code and documentation for
generating figures is another important aspect of reproducible science.

iv. Taking Notes for Computational Analyses
From the first moment of an undergraduate research experience, most biologists are trained on
the importance of keeping meticulous and up-to-date laboratory notes for posterity, reproduc-
ibility of experimental conditions, and attribution of new ideas or techniques. We recommend
that biologists approach note-taking for computational projects with the same integrity and
accountability. Notes for computing can be embedded directly into most scripting language
documents as comments, often designated with a hash (#). Just as for wet-lab notebooks, grad-
uate students and post-doctoral trainees should provide all computing notes to their research
team leader when the trainee moves on to her next position. In making recommendations for
organizing bioinformatics projects, Noble in 2009 considered each computational “experi-
ment” with the same weight as a wet-lab experiment [1], and we champion this perspective
and his suggestions therein.

Analysis notes document the consecutive steps taken to explore parameter space for each
choice. Like wet-lab experimental notes, the motivation for each step of parameter exploration
should be provided, and, afterwards, the test results should be summarized. These notes should
also document the rationales for the ultimately selected options. We reiterate the advice of
Sandve [3] in taking these analysis notes, especially the need to record all versions of software
and to copy lines of executed code verbatim. We also point readers towards Gentzkow et al. [12],
who provide excellent advice for workflow documentation (as well as advice regarding other
aspects of more advanced workflow, like automation and version control). We recommend
maintaining and updating analysis notes in parallel with the draft of the final workflow. There
are several options for organizing computational notes, including Jupyter notebooks, Galaxy,
Arvados, and knitr for R. Carl Boettinger's online lab notebook (http://www.carlboettiger.info/
lab-notebook.html) offers an excellent example of a well-annotated computational notebook,
and there are numerous examples of reproducible academic publications (https://github.com/
ipython/ipython/wiki/A-gallery-of-interesting-IPython-Notebooks#reproducible-academic-
publications). Examples and indexes such as these provide the community with good reference
points. While there are many excellent repositories for these resources, such as FigShare, Dryad,
GitHub, BitBucket, and others, discoverability of these resources remains a challenge, and work
could be done to develop catalogs of exemplars.
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All workflows should be maintained using version control so that changes are automatically
recorded and authorship to any changes can be attributed easily. Version control is a way of
automatically tracking edits to a file, and some non-programming examples include using the
“track changes” option in a word processing document, or an automatic backup image of a
hard drive. In the literature, there is unwavering support for implementing version control
[3,4,12,13]. The sooner biologists become comfortable with the mechanics of version control,
the simpler workflow documentation and management will be.

v. Shared Responsibility: The Team Approach to Reproducibility and
Data Management
We posit that integrity in computational analysis of biological data is enhanced if there is a
sense of shared responsibility for ensuring reproducible workflows. Research teams that work
together to develop and debug code, perform internal reproducibility checkpoints for each
other, and generally hold one another accountable for high-quality results likely will enjoy a
low manuscript retraction rate, high level of confidence in their results, and strong sense of
collaboration.

There are several strategies for cultivating a team approach to computational analysis. First,
shared storage and workspace, such as on a cloud server or high performance computing clus-
ter, can facilitate access to all group data. Raw files from large biological datasets can be main-
tained as read-only in a shared storage that can be accessed by all group members. In this way,
users will know that the data are both safe and viewable by teammates, which should increase
analysis accountability and prevent misconduct in data manipulation. Second, version-con-
trolled repository hosting services, such as GitHub, GitLab, or BitBucket can promote team-
work by providing easy access to workflows. Research group leaders may create an
“organization” for their group and allow team members access to shared repositories where
they can sync, share, and track projects easily. GitHub, GitLab, and BitBucket also provide pri-
vate repositories that can be shared with editors and reviewers of submitted manuscripts for
external reproducibility checkpoints.

Research group leaders can instill a sense of shared responsibility within their groups by set-
ting expectations for frequent reproducibility checkpoints. For instance, PIs may ask trainees
to demo workflows-in-progress during meetings. Another strategy that has been productive in
our own experience is to host routine team “hackathons”: open-computer group meetings ded-
icated to analysis, including facilitating reproducibility checkpoints, sharing expertise and
strategies, and collectively solving analysis hurdles. The hackathon format brings both experi-
enced and novice coders together, creating a shared learning experience that can be productive
and motivating [14]. Research group hackathons are also excellent venues for collective explo-
ration of parameter space. For example, if each team member explores one option (in a single
tool), a team of five can collectively compare their results and complete parameter optimization
for that tool in minimal time as compared to the time an individual user would require. Rou-
tine group hackathons also keep the team leader informed of and accountable for the analyses
performed by their group members. Finally, routine research group hackathons can promote
internal reproducibility checkpoints resulting in incremental workflow revisions, which are
suggested to be effective in improving code and finding errors [15].

Journal reviewers and editors are also a crucial part of the shared responsibility equation.
They may request that code and raw data are available for review, and then also make earnest
attempts to test-drive the provided workflows to ensure their integrity. For deviations in stan-
dard methods or new workflows, reviewers should not be satisfied with a batch workflow script.
It is in the journals’ and the authors’ best interests to have the “guts” of the workflow examined.
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Reviewers should also be forthcoming with editors if they are unable to comment on the inner
workings of the author-provided workflow so that editors can seek out additional reviewers
that are able to provide appropriate critique. Editors may want to ask directly (for example,
using a check box on the review form) whether reviewers attempted to reproduce the results or
run the analysis code.

Not all biologists have immediate colleagues who can support their computing efforts.
Many trainees may be the only person computing in their research group, which can be an iso-
lating experience involving much trial and error. For these researchers, we suggest seeking out
an intellectual community that can offer aspects of the team approach. Options include attend-
ing open office hours at the bioinformatics core or joining meetings of a computing research
group on campus. It is also possible to query or ask questions on online help forums like BioS-
tars, SEQanswers, or StackOverflow; interact with active community members on Twitter or
on mail lists such as R-help or Bioconductor; and follow or comment on online blogs and arti-
cles. These activities allow biologists to engage with a virtual community of researchers and
network with programmer colleagues. Tips for interacting in these forums include the follow-
ing: (1) asking the proper question with as much clarity and detail as possible; (2) before asking
a question, make an honest effort to troubleshoot by conducting verbatim queries of error mes-
sages with search engines and investigating the forums for similar issues that have been previ-
ously addressed; and (3) share code and provide a reproducible subset of the data for others to
consider as they help to answer the question. It’s easier for others to understand and help if
they have an example that recreates the error.

Conclusions
Skills in computing can enhance biologists’ logic and capacity for experimental design, increase
understanding and interpretation of results, and promote interdisciplinary science by building
a shared vocabulary and experience with collaborators in computer science, bioinformatics,
statistics, physics, and engineering. We’ve suggested a systematic roadmap for computing
workflows for biologists, including considering the overarching goals of the workflow, taking
an iterative approach to analysis, implementing reproducibility checkpoints, recording effective
computing notes, and adopting a team approach to analysis.

Ultimately, it is the responsibility of team leaders to implement policies and establish expec-
tations for large data analysis within their groups. Large data analysis in biology requires an
incredible skill set that takes time and commitment for a user to develop. Group leaders can
encourage trainees to spend the productive time needed to master a workflow, and also to care-
fully perform the analysis and interpretation. The more biologists trained to master basic com-
puting, the more skilled our workforce for meeting tomorrow’s challenges in biological
discovery, which, inevitably, will involve even larger datasets than we have today.
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