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SUMMARY

Dicer knockout mouse models demonstrated a key role for microRNAs in pancre-
atic b-cell function. Studies to identify specific microRNA(s) associated with hu-
man (pro-)endocrine gene expression are needed. We profiled microRNAs and
key pancreatic genes in 353 human tissue samples. Machine learning workflows
identified microRNAs associated with (pro-)insulin transcripts in a discovery set
of islets (n = 30) and insulin-negative tissues (n = 62). This microRNA signature
was validated in remaining 261 tissues that include nine islet samples from indi-
viduals with type 2 diabetes. Top eight microRNAs (miR-183-5p, -375-3p, 216b-
5p, 183-3p, -7-5p, -217-5p, -7-2-3p, and -429-3p) were confirmed to be associated
with and predictive of (pro-)insulin transcript levels. Use of doxycycline-inducible
microRNA-overexpressing human pancreatic duct cell lines confirmed the regula-
tory roles of thesemicroRNAs in (pro-)endocrine gene expression. Knockdown of
these microRNAs in human islet cells reduced (pro-)insulin transcript abundance.
Our data provide specific microRNAs to further study microRNA-mRNA interac-
tions in regulating insulin transcription.

INTRODUCTION

Insulin production in pancreatic b-cells is an essential process required for the maintenance of normal

glucose metabolism. Any decline in b-cell function is a common denominator to type 1 diabetes (T1D),

as well as type 2 diabetes (T2D). Transcription of specialized genes, including (pro-)insulin, is dependent

on several factors including chromatin organization, transcription factor assembly, as well as the expression

of regulatory microRNAs (miRNAs/miRs). MicroRNAs are short, non-coding RNA molecules known to fine-

tune gene expression via targeting multiple messenger RNAs (mRNAs). Biologically active (mature) micro-

RNAs are generated through processing by dicer, an enzyme critical for the biogenesis of both canonical

and non-canonical microRNAs (Wong et al., 2018). In mice, pancreatic Dicer1 deletion demonstrated the

essential role of microRNAs in the generation of pancreatic b-cells (Lynn et al., 2007) during embryonic

development. Islet b-cell-specific (RIP-Cre) deletion of Dicer1 in mice did not affect islet cell development

but significantly reduced insulin transcription/production (Melkman-Zehavi et al., 2011) and promoted the

development of diabetes (Kalis et al., 2011) in adult mice. Although these loss-of-function studies demon-

strate, in general, the essential role of microRNAs in mouse islet biology, it is important to identify micro-

RNAs associated with human (pro-)endocrine gene expression and more specifically those associated with

(pro-) insulin gene transcription.

One of the very first studies in microRNA islet biology was the demonstration of a key role for miR-375 in

mouse insulin secretion (Poy et al., 2004), followed by validation of its role in zebrafish (Kloosterman et al.,

2007) and mouse (Poy et al., 2009) pancreatic islet development. These studies laid the foundation for
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identification of miR-375 as a microRNA associated with and necessary for islet beta-cell function in zebra-

fish andmice. In human studies, miR-375 expression was shown in the developing and adult pancreatic islet

cells (Klein et al., 2013; Joglekar et al., 2009a, 2009c; Correa-Medina et al., 2009) but also in islet non-b cells

(Joglekar et al., 2009a) as well as in multiple non-pancreatic human tissues (Latreille et al., 2015). These

studies confirmed that miR-375, although enriched in human islets, is not an ‘‘islet-specific’’ microRNA. It

became apparent that a set or combination of microRNAs, rather than a single microRNA, supports/pro-

motes endocrine pancreatic cell function. The scarcity of human islets for research and the availability of

elegant molecular tools in non-human model systems have resulted in a large body of islet microRNA

research in zebrafish and mice. Studies comparing microRNA profiles of cells/tissues that naturally tran-

scribe the (pro-)insulin gene (e.g. thymus, gallbladder, brain (Choi et al., 2019; Devaskar et al., 1994; Heller

et al., 2010; Mehran et al., 2012; Sahu et al., 2009; Dutton et al., 2007; Joglekar et al., 2021) are also lacking.

Here, we sought to identify microRNAs that fine-tune the expression of the human (pro-)insulin gene using

an unbiased, machine learning discovery approach, followed by wet-lab validation. Our data present a

signature of microRNAs that is not only associated with (pro-)insulin transcript abundance and predictive

of (pro-)insulin gene expression but also regulates the expression of pancreatic transcription factors and

islet (pro-)hormones.

RESULTS

Study samples

To generate a signature of microRNAs associated with (pro-)insulin gene transcription, we isolated RNA

from a total of 353 human samples across nine tissue types (Figure 1A). We then assessed (pro-)insulin as

well as the housekeeping 18S rRNA gene transcripts in these samples and classified these 353 tissue sam-

ples as insulin-positive or insulin-negative tissues (Table S1). A subset (discovery set; n = 92 of 353) of these

samples were then subjected to microRNA discovery analyses using the OpenArray high-throughput Taq-

Man-based real-time quantitative PCR (qPCR) platform (Farr et al., 2015; Wong et al., 2015). The discovery

set consisted of two groups of tissues that are at the ends of the insulin transcript expression spectrum: one

with very high insulin expression (pure islets) and anotherwith undetectable insulin transcripts. The selection

of samples in each group was random. Along with the 754 different microRNAs, we also assayed candidate

mRNAs for islet hormones (INS,GCG, SST), transcription factors (PDX1,MAFA,NEUROG3; ‘‘referred herein

as’’NGN3,HES1), and the housekeepinggene (18S rRNA; Figure S1A) in this discovery set of 92 samples that

include 30 human islets and 62 insulin-negative samples (Table S1). The remaining samples were then used

in validation (n = 50) and prediction (n = 202) sets of human tissues (Table S1). A separate set of nine human

organ donor islets from individuals with T2D were also used to assess microRNA expression.

Identifying microRNAs associated with human pancreatic islet (pro-)insulin expression

Weperformed unsupervised bidirectional hierarchical clustering on global normalizedmicroRNA as well as

candidate mRNA expression data from our discovery sample set (n = 92). All human islet samples (insulin-

positive tissues) cluster together indicating similarity in their microRNA (Figure 1B) as well as candidate

mRNA expression profiles (Figure S1A), relative to those from insulin-negative tissues. Interestingly, a total

of 241 different microRNAs were found at significantly higher levels (R2-fold, p < 0.05) in human islets, and

91 other microRNAs were significantly higher in insulin-negative tissues (R2-fold, p < 0.05; Figure 1C and

Table S2). All of these 332 differentially expressed microRNAs were expressed between 2- to over a hun-

dred thousand-fold higher abundance (Cycle threshold [Ct] value difference of 1–17; Figure 1C and Table

S2) and at significantly low p value (p < 0.05 to p < 3.4 3 10�49), relative to the insulin-negative tissues and

remain significant after adjustment for multiple testing. Several of thesemicroRNAs show a high correlation

with the candidate mRNAs assessed, as presented by connecting lines in the center of the Circos plot (cor-

relation coefficient (r) R0.6; Figure 1D).

Since conventional comparisons of microRNA expression data sets (Figures 1B–1D) identified a large num-

ber of significantly differentially expressed microRNAs, we decided to employ machine learning workflows

to decipher microRNAs that are highly associated with (pro-)insulin (mRNA) levels. Penalization algorithms

with bootstrap machine learning workflow (Figure 1E) were used to perform microRNA selection. Good

quality human islets (insulin Ct value %16.8; n = 30) were marked as the insulin-positive (1) group and all

insulin-negative tissues (insulin Ct value = 39; n = 62) were categorized under the insulin-negative (0) group.

Validation of the model was carried out using bootstrapping to confirm the signature of microRNAs that

were highly associated with (pro-)insulin gene expression. Bootstrap validation workflow of penalized logis-

tic regression included resampling data for 1000 times (Figure 1E). During these analyses, �37% of the
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Figure 1. Identification of (pro-)insulin transcript-associated microRNAs in the discovery sample set

(A) Schematic presentation of insulin-positive (green outline) and insulin-negative (red outline) human cell/tissues used.

Human cell/tissues (such as the gallbladder and brain, yellow outline) which have low to undetectable insulin expression

were also used in this study.

(B) An unsupervised Euclidean (average) bidirectional hierarchical plot on the 754 discovery microRNAs in human islets

(n = 30; all insulin positive) and insulin-negative tissues (n = 62). Tissues included in the discovery set are color coded, and

the key to color and their corresponding tissue is provided in the bottom right corner of this figure. Heatmap represents

the normalized qPCR Ct values (color bar) with low Ct values/high miRNA levels (dark red) and higher Ct values/low to no

expression of microRNA (yellow to white).

(C) Volcano plot for the 754 discovery microRNAs presented as Ct value differences (on X axis) and statistical significance

(�log10 p value; two-tailed Welch’s t-test) on Y axis for insulin-negative vs islet (insulin positive) samples. The dashed
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samples were randomly eliminated at each iteration, while samples from the remaining set were duplicated

to maintain the same number of samples at each step (Efron and Tibshirani, 1997; Chernick and Labudde,

2011). After 1000 iterations of resampling, a frequency plot representing the number of times a specific mi-

croRNA was found to be highly associated with (pro-)insulin expression was derived (Figure 1F). Such a re-

sampling validation (bootstrapping) procedure eliminates sampling bias. Penalized logistic regression

models offer variable (microRNA) selection based on categorical assessment (presence or absence) of

(pro-)insulin transcript, while penalized linear regression models facilitate the prediction of (pro-)insulin

transcript levels (Goeman, 2010). These analyses (Figure S1B) identified the top eight microRNAs from lo-

gistic regression analyses to be common with linear regression outputs (Figure S1C). Although all of the

microRNAs derived through our analysis based on the machine learning workflows (Figures 1F and S1B)

are important for human (pro-)insulin transcription, we focused our analysis on the most important top

eight microRNAs (Figure 1F).

Dimensionality reduction analyses (t-distributed stochastic neighbor embedding; Figure 1G) using the top

eight microRNAs from the logistic regression analyses could segregate the insulin-positive islet samples

from the insulin-negative tissues. However, three other random sets of eight different microRNAs could

not efficiently segregate islet samples from other insulin-negative tissues (Figure 1H and Table S3). In sum-

mary, these studies identified a set of microRNAs that are associated with (pro-)insulin gene expression in

human islets.

Levels of insulin-associated microRNAs correlate with (pro-)insulin in human tissues that

naturally transcribe the insulin gene

Apart from pancreatic islets and thymus, the gallbladder (Choi et al., 2019; Sahu et al., 2009; Dutton et al.,

2007) and brain (Devaskar et al., 1994; Mehran et al., 2012; Heller et al., 2010) are known to (naturally) tran-

scribe the insulin gene. We observed insulin, glucagon/somatostatin immunopositivity in majority of the

human gallbladder and brain samples that we have assessed (Figure 2A). These samples contained detect-

able levels of (pro-)hormone gene transcripts (INS,GCG, and SST; Figure 2B). We also measured the abun-

dance of pancreatic transcription factors (MAFA,NGN3,HES1, and PDX1) in these islet (n = 53), gallbladder

(n = 75), brain (n = 14), and insulin-negative tissue samples (n = 55; endothelial cells, muscle, liver, skin, and

spleen; Figure 2B). All data are presented as normalized Ct value measured by TaqMan-based real-

time qPCR. As expected, the level of (pro-)insulin gene transcripts in the pancreatic islets (mean Ct

value G SD; 15.74 G 0.74) was significantly higher than that in the gallbladder (mean Ct value G SD;

36.72 G 2.24, p < 0.0001 vs islet) or in the brain (mean Ct value G SD; 38.50 G 0.96, p < 0.0001). We

measured the absolute copy number of (pro-)insulin gene transcripts using digital droplet PCR (Maynard

et al., 2019) (Figure 2C), which confirmed our qPCR findings (Figure 2B) that the number of INS mRNA

copies was around a hundred thousand-fold higher in human islets than in human gallbladders and up

Figure 1. Continued

horizontal line represents p value = 0.05, whereas dotted vertical lines represent a 2-fold difference (1 Ct value).

Significantly altered microRNAs are in red.

(D) A Circos plot for mRNA and microRNA expression in human islets is divided into six sections (a1, a2, b, c, d, and e). a1:

larger part of the outermost circle representingmiRNA expression; a2: colored rectangles representingmRNA transcripts

(as labeled); b: scatterplots illustrating the Ct value (ranging 6.5 to 39; greater values are closer to the center) for the

respective microRNA or mRNA. The glyphs are color coded with greater Ct values (low expression) in red, while smaller Ct

values (high expression) are in green (median of the data = 22.5; thin white line). c: line plots presenting the z-scores of the

transcript expression data (ranging from�3.4 to 3.5; smaller values are closer to the center of circle, the calculation of the

z-scores is as described in the methods section), and d: histogram plots showing the log10 transformed relative

abundance (to insulin-negative tissues, as described in the methods section in detail), ranging from �7.3 to 10.7. Lesser

values are closer to the center of circle. The thin gray lines are placed at every 5% of the data. Section ‘‘e’’ is the innermost

plot which displays correlation between miRNAs and the seven mRNAs (Pearson’s r > 0.6). The correlations are plotted in

the form of colored link (as per the labeled colors of the mRNA).

(E) Bootstrapping involves random deletion (red dots) of multiple samples and replacing them with duplicates from the

remainder set (green dots). Each iteration provides a new set, thus eliminating sampling bias.

(F) Frequency/importance (%) of microRNAs (X axis) detected following penalized logistic regression and 1000 machine

learning/resampling validation (bootstraps). Highlighted top eight microRNAs represent those common to logistic and

linear regression analyses

(G) A t-SNE plot of discovery set using the top eight microRNAs (H) or random eight miRNAs with similar distribution.

Each point represents a sample from the discovery set, while the color of the point indicates tissue type.

See also Figure S1 and Tables S1, S2, and S3.
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Figure 2. Validation and prediction of insulin transcript-associated microRNAs

(A) Immunostaining of insulin (green), glucagon (red), and/or somatostatin (pink) in freshly isolated/cultured human islet,

gallbladder epithelium, and brain neurospheres. Nuclei (DNA) are shown in blue. Scale bar is 20 mm.

(B) Real-time TaqMan qPCR expression profile for pancreatic islet (pro-) hormones and transcription factors in human

islets (n = 53), gallbladders (n = 75), brains (n = 14), and the insulin-negative tissues (endothelial cells, muscle, liver, skin,

and spleen; n = 55). Results are presented as cycle threshold (Ct) values normalized to 18S rRNA. As a lower Ct value

represents the higher abundance of gene transcripts, the Y axis is reversed. Each dot within the polygons represents a

different sample. The horizontal solid red line represents the median, the horizontal black dotted line within each polygon

represents quartiles, and the polygons represent the density of individual data points and extend to min/max values.

(C) Absolute copies for (pro-)insulin gene transcripts in human islet (n = 11), gallbladder (n = 63), brain (n = 14), endothelial

(n = 2), muscle (n = 4) and spleen (n = 8) samples, as measured by digital droplet (dd)PCR. Each dot in the floating bars

represents a different sample. Horizontal solid lines represent the mean and boundaries extend to min/max values.

(D) MicroRNA abundance of the top eight microRNAs (from the logistic regression analysis, Figure 1F) in human islets (I;

n = 30), gallbladders (G; n = 50); brains (B; n = 4), and spleens (S, n = 34) is presented in an aligned dot plot with mean and

SEM. Significant differences were computed using one-way analysis of variance (ANOVA) with Dunn’s multiple

comparisons test. *: p < 0.05, **: p < 0.01, ***: p < 0.001, ****: p < 0.0001; compared to islets.

(E) Receiver operator characteristic (ROC) curve analysis for individual and combined top eight microRNAs obtained

through the penalized logistic regression and bootstrap analysis. A separate validation set (n = 50) of human islets (n = 23)

and insulin-negative samples (n = 27; consisting of human endothelial cells n = 14, gallbladder n = 11, and muscle n = 2)

was used. Area under the curve (AUC), sensitivity, and specificity are shown.

(F) Correlation plot between the Ct value for laboratory-measured (pro-)insulin mRNA (X axis) and the computationally

predicted (pro-)insulin Ct value (Y axis) from the islets within the validation set (n = 23), impure islet fraction (n = 85), and

pancreas (n = 62) from the prediction set (Spearman r = 0.6, p < 0.0001). Each dot represents a different sample, and the

color of the point indicates the tissue type in the correlation plot.

See also Figure S1 and Tables S4 and S5.
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Figure 3. Pancreatic gene expression analysis in microRNA-overexpressing PANC1 lines

(A) A schematic presentation for generating microRNA overexpressing cell lines using lentiviral-mediated, doxycycline-

inducible overexpression system.

(B) MicroRNA abundance in human islets (green, n = 4) and microRNA-overexpressing PANC1 cell lines (orange, n = 6

separate experiments) was calculated relative to the respective microRNA levels in non-targeting/scramble control (NTC)

PANC1 cell line. A total of 16 microRNAs (presented on X axis) were individually overexpressed in PANC1 cells using

doxycycline-inducible lentiviral vectors. The microRNA data are presented as scatter dot plots with mean G SEM. Each

green dot in the plot represents a different islet sample, and each orange dot presents a different preparation/

experiment.
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to a million-fold higher than that in the brain. As anticipated, (pro-)insulin gene transcripts were not detect-

able in insulin-negative tissues (Figures 2B and 2C).

We then quantified the abundance of the top eight microRNAs identified earlier (green-shaded area in Fig-

ure 1F) across human islets, gallbladders, brains, and spleen samples. A significantly lower level of expres-

sion was seen for all of the top eight microRNAs (p < 0.001; Figure 2D) in gallbladders, brains, and spleens

(compared to islets). The levels of all eight microRNAs positively correlated with (pro-)insulin transcript (Ta-

ble S4) across the three tissue types that naturally produce/transcribe insulin and the insulin-negative

(spleen) tissues. These data indicate a potential interdependence of the most important microRNAs and

(pro-) insulin gene expression.

Insulin-associated microRNAs are predictive of insulin gene expression

Although insulin-associated microRNAs were able to identify insulin-producing cells in the discovery sam-

ple set (Figure 1G), we interrogated their predictive potential in different sets of samples. We generated

receiver operating characteristic curves for 50 samples (from the validation set; n = 23 islets vs n = 27 insu-

lin-negative tissues; Table S1) to test the specificity and sensitivity of these microRNAs in classifying the

presence or absence of (pro-) insulin expression. Interestingly, each of these microRNAs demonstrated

high specificity (85–100%) and sensitivity (87–100%) in discriminating insulin-positive vs insulin-negative tis-

sues, with an area under the curve of more than 92% (Figure 2E). A combined model, testing all of the top

eight miRNAs, returned the highest predictive power (Figure 2E). Our results validate the role of these mi-

croRNAs in accurately stratifying insulin-producing tissues in an independent validation set of primary hu-

man tissue samples. We then used the prediction set (n = 202) of human tissues that naturally express (pro-)

insulin gene transcripts at varying levels to further elucidate the predictive power of these microRNAs. We

derived the coefficients from the penalized linear regression analysis (Figure S1B) to obtain the odds ratios

that constituted a mathematical formula to predict the level (qPCR Ct value) of (pro-)insulin gene expres-

sion. Two wet-lab biologists independently carried out the measurements of microRNAs and (pro-) insulin

mRNA on the prediction set of human tissue samples consisting of the pancreas, impure islet fractions, gall-

bladder, and brain (n = 202; Table S1). A de-identified list containing the microRNA qPCR Ct values was

provided for the computational prediction of (pro-)insulin Ct values. We observed that the levels of these

microRNAs could reliably predict the real-time qPCR (laboratory-measured) (pro-)insulin Ct value

(Spearman r = 0.8, p < 0.0001, n = 202) in the prediction set of samples (Figure S1D). When the pancreatic

tissue was independently analyzed, a significant correlation (Spearman r = 0.6, p < 0.0001, n = 170) between

the computationally predicted and laboratory-measured (pro-)insulin Ct values was observed (Figure 2F).

In summary, the levels of bootstrappedmicroRNAs (including top eight microRNAs; Figure S1C) separated

categories (Figure 2E) as well as computationally predicted (pro-)insulin Ct values (Figures 2F and S1D).

Together, our data demonstrated that the top eight (pro-)insulin-associated microRNAs identified using

machine learning workflows were not only associated with (pro-)insulin expression but also predictive of

(pro-)insulin transcript abundance in separate sets of primary human tissues.

Forced expression of insulin-associated microRNAs alters pancreatic gene expression

Since associations do not prove causality, we investigated if regulated expression of insulin-associated mi-

croRNAs in human pancreatic progenitor cells can promote (pro-) endocrine gene expression. In order to

Figure 3. Continued

(C) Categorical bubble plot displaying effect of overexpression of microRNA (listed on Y axis) as either significant increase

(red) or significant decrease (blue) in the expression of a specific transcription factor or (pro-)hormone (presented on X

axis) in PANC1 cells. The absence of a circle across any of the pancreatic gene (e.g. INS and SST) indicates a non-

significant effect of correspondingmicroRNA overexpression. The size of the circles represents the p value (p < 0.05, n = 6

separate experiments) based on a two-tailed Welch’s t-test. Values are presented in relative abundance compared to

NTC.

(D) UMAP: Uniform Manifold Approximation and Projection plots generated using Seurat (version 3.2.2) from pancreatic

single-cell RNA sequencing (Panc8) data set (SeuratData version 0.2.1). Single-cell data set from four of the five

technologies (seemethods for details) in Panc8 is presented here. The single cells were clustered into different pancreatic

cell types, and expression levels for HNF1b, PDX1, HB9, NKX2.2, and IGF2 across these 13 clusters are highlighted in

individual UMAP plots. Only nine of the most relevant clusters are labeled. Data are presented in log-transformed

normalized values and are overlaid in shades of blue. Dark blue color shows higher expression in the specific cell clusters,

while gray represents absence/low expression of the demonstrated pancreatic gene in these cells.

See also Figure S2 and Table S6.
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Figure 4. A microRNA regulatory map of human pancreatic cell fates

(A) A map of microRNA regulation was generated based on our data (see Figure 3) of microRNA overexpression in human

pancreatic duct cells and the regulation of a select set of lineage-enriched (a-, b-, or d-) genes known to be important in

pancreas development. Key pancreatic genes and transcription factors for a particular developmental stage are shown.
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address this question, we forced the expression of individual microRNAs in human pancreatic progenitor

cells (Figure S2A) using a puromycin-selective doxycycline-inducible lentiviral vector system (Figure 3A).

Experiments with individual microRNA vectors were carried out as attempts to co-transduce cells with

all of the top eight microRNAs resulted in high mortality. Since we were interested in assessing the poten-

tial of these microRNAs in differentiation of progenitor or precursor cells (rather than enhancing insulin

expression in b-cell lines such as EndoC-bH1), we selected human islet-derived progenitor cells (hIPCs)

and commercially available human pancreatic duct (PANC1) cells (Figure S2A) for these studies. A total

of 16 different microRNA overexpression and one non-targeting/scramble control vectors were used to

generate microRNA-overexpressing lines (Figure S2A). These comprised 14 different microRNAs from

our penalized logistic regression bootstrap analysis, including the top eight (Figure 1F). Two other micro-

RNAs (miR-30e-5p and -30d-5p) were also selected for these overexpression studies as they have been pre-

viously reported by us (Joglekar et al., 2009c) and others (Tang et al., 2009) in modulating (pro-)insulin gene

expression.We first confirmed that each of the 16 PANC1 lines generated for this study demonstrated over-

expression of the relevant microRNAs at levels closer to those detected in human islets (Figure 3B). Then,

using TaqMan real-time qPCR we assessed the ability of each of these 16 microRNAs to instill a measurable

and/or significant change in the expression levels of a select set of 51 human pancreatic mRNA/gene tran-

scripts (Table S6) known to be important in pancreas development/function (Jennings et al., 2015; Chakra-

barti and Mirmira, 2003). Only 23 of these 51 mRNAs (shown in Figure 3C) were significantly altered

following overexpression of individual microRNAs. Surprisingly, two microRNA-overexpressing lines

(miR-217-5p and miR-429-3p) did not significantly change the expression of any of these 51 mRNAs as-

sessed. On the other hand, three or more microRNA-overexpressing lines induced a significant increase

in IGF2, HES3, NKX2.2, and HNF1b levels compared to non-targeting/scramble control (Figure 3C). At

the same time, the expression of PDX1, CDX2, TLR3, and HB9 was significantly reduced in several other

microRNA-overexpressing lines (Figure 3C). Interestingly, certain microRNAs including miR-7-2-3p and

miR-7-5p were responsible for significant reduction of pancreatic genes, whereas overexpression of miR-

375-3p, miR-183-5p, miR-183-3p, miR-184-3p, miR-141-3p, and miR-200c-3p only led to a significant in-

crease in pancreatic gene expression. None of the microRNA-overexpressing lines induced any significant

change in (pro-)insulin and SST gene expression. We also mixed PANC1 lines overexpressing each of the

top eight (pro-)insulin-associated microRNAs in equal proportion to understand if this would lead to (pro-)

insulin expression. A modest (2.2-fold) but insignificant (p = 0.4) increase in (pro-)insulin gene transcripts

was observed along with significant andmore robust increase in the levels of other (pro-)hormone and tran-

scription factors including GCG, NGN3, MAFA, PAX2, PAX6, NKX2.2, and UCN3 (Figure S2B).

To identify the pancreatic cell type that each of these miRNAs promoted, we analyzed the publicly available

pancreatic single-cell sequencing (scSeq) data sets (Butler et al., 2018; Stuart et al., 2019). As expected,

these human pancreatic scSeq analyses indicated that NKX2.2 was predominantly localized to all endo-

crine pancreatic (a-, b-, d-, g-, ε-) cell lineages (Figure 3D). On the other hand, IGF2, one of the most com-

mon and significantly upregulated genes (Figure 3C), is localized to human pancreatic b cells (Figure 3D).

These data suggested that overexpression of microRNAs such as miR-433-3p significantly increased abun-

dance of HNF1b and NKX2.2, which are localized to endocrine pancreatic cells (Figures 3C and 3D). We

then created a microRNA regulatory map for different cell types observed during human pancreas devel-

opment (Figure 4A). We identified a set of genes that have been previously reported in pancreas develop-

ment (reviewed in (Jennings et al., 2015; Chakrabarti and Mirmira, 2003)) to define endocrine pancreatic

sub-types. We then applied our observations of single microRNA overexpression studies in regulating

these pancreatic genes (Figure 3C) to construct an mRNA-microRNA interaction map (Figure 4A). Here, mi-

croRNAs are ranked based on the level of significant change (p value) that each of the microRNAs induced

Figure 4. Continued

The microRNA labels are colored in green or red based on our data confirming a statistically significant (p % 0.05)

change in gene expression (shown by arrows that each microRNA points to). MicroRNAs that significantly increase

gene transcript levels are in green color and those that significantly decrease gene expression are in red. All

microRNAs that significantly regulate the expression of a specific gene are listed based on the p value (calculated

using a two-tailed Welch’s t-test), with the miRNAs at the end of the set being closest to the statistical cutoff value of

p = 0.05. Since no single microRNA was seen to significantly regulate INS or SST gene transcript levels, these genes

are not listed in the b- and d-cell lineage.

(B) Correlation between representative microRNAs (miR-141, miR-30d, miR-375, and miR-216b) and pancreatic endocrine

transcripts. Correlation analysis was performed using the human islet bulk RNA-seq data set (GSE134068; n = 18). The

Pearson correlation r coefficients are presented in black text in each square. Only significant correlations (Pearson p %

0.05) are presented with a colored fill (depicted in the scale bar) displaying their correlation coefficient.
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Figure 5. A microRNA overexpression and inhibition model of human pancreatic duct cell differentiation

(A) An outline of the microRNA overexpression and inhibition study to assess the potential combination of microRNAs

promoting differentiation to endocrine pancreatic lineage. A non-targeting control microRNA overexpressing line (N) or

five selected individual microRNA-overexpressing lines (shown in green) combined in equal proportions in the absence
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to either increase (shown in green) or decrease (shown in red) target mRNA gene expression. As an alter-

nate validation, we assessed the expression levels of these microRNAs and islet mRNAs in our bulk RNA-

seq data sets (GSE134068; n = 18 (Wong et al., 2019)) and correlated selected microRNAs (miR-375, miR-

141, miR-30d, and miR-216b) with key pancreatic gene transcripts. As shown in (Figure 4B), several pancre-

atic genes positively correlated with miR-375, while negatively correlating with the levels of miR-216b (or

miR-30d) in human islets. These analyses provided additional evidence in the selection of microRNA can-

didates for future overexpression and knockdown studies. In summary, forced expression of specific micro-

RNAs induced pancreatic genes (Figures 3C, 4A, and 4B) that map to sub-populations of human pancreatic

hormone-producing cells (confirmed through scRNA sequencing; Figure 3D) and microRNA-mRNA

expression in human islets provided supportive evidence to identify candidates for future studies.

A combination of microRNAs directs differentiation to endocrine pancreatic lineage

Since islets are heterogeneous cell clusters, we hypothesized that protocols involving co-culture, aggrega-

tion (and differentiation) of multiple microRNA-overexpressing lines would help in assessing the role of

select sets of microRNAs. We previously reported the potential of human pancreatic progenitor cells

(PANC1 [Hardikar et al., 2003] and hIPCs [Gershengorn et al., 2004]) to form cell aggregates that contain

several transcripts of mature islet-like cells. Our microRNA overexpression data (Figure 3C) identified

that certain microRNAs (miR-141-3p, miR-183-3p, miR-433-3p, and miR-183-5p) promote the expression

of IGF2 and NKX2.2, which are characteristic of human pancreatic endocrine cells (Figure 3D). Since

miR-375-3p has been well known to be an important islet-enriched microRNA and has been observed to

promote early pancreatic genes (HNF1b and HNF3b), we selected it along with the above four microRNA

over-expressing lines (miR-141-3p, miR-183-3p, miR-433-3p, and miR-183-5p) in further studies. Other mi-

croRNAs (miR-30d-5p, miR-30e-5p, miR-200a-3p, and miR-124-3p) suppressed the expression of the

pancreatic master regulator transcription factor PDX1. The microRNA miR-7-2-3p was seen to reduce

several (pro-)endocrine gene transcripts such as NKX2.2, NKX6.1, as well as the (pro-)hormone GCG.

The five microRNAs (miR-30d-5p, miR-30e-5p, miR-200a-3p, miR-124-3p, and miR-7-2-3p) were therefore

inhibited in further studies. Since miR-216b-5p was observed to suppress NKX6.1 that is known to control

a gene regulatory network for maintaining human islet b-cell identity (Schaffer et al., 2013), we inhibited

miR-216b-5p at later stages of our differentiation protocol (Figure 5A). We used an equal proportions of

five different microRNA-overexpressing lines (miR-183-5p, miR-183-3p, miR-375-3p, miR-433-3p, and

miR-141-3p), in doxycycline-containing media for 3 days before induction of differentiation in serum-free

defined media (Figure 5A). We then inhibited the expression of other microRNAs (miR-7-2-3p, miR-124-

3p, miR-200a-3p, miR-30e-5p, miR-30d-5p, miR-216b-5p) using Locked Nucleic Acid (LNA) inhibitors in a

stage-specific manner (Figure 5A). We assessed changes in expression of pancreatic genes in non-target-

ing control/NTC line (referred to as ‘‘N’’; Figure 5B), a mix of the five selected miRNA-overexpressing cell

lines (referred to as ‘‘M’’; Figure 5B) or the mix of these five miRNA-overexpressing lines with LNA inhibitors

(referred to as ‘‘ML’’; Figure 5B). MiRNA, mRNA, and insulin release/content assessments were carried out

for all the three experimental conditions (N, M, and ML).

Figure 5. Continued

(M) or presence (ML) of LNA power inhibitors targeting microRNAs (shown in red) were differentiated (see methods).

All cells were maintained in serum-containing (growth promoting) media for three days before inducing

differentiation in a serum-free medium (SFM), with doxycycline-regulated microRNA expression at all times.

Differentiation promoted aggregation and formation of islet-like cell aggregates in serum-free medium. LNA power

inhibitors were added again at day seven of the differentiation process in the ML group. Islet-like cell aggregates were

harvested for downstreammRNA and microRNA analysis, as well as glucose-stimulated insulin secretion (GSIS) assays

at the end of 14 days.

(B) Violin plots displaying transcript abundance of select pancreatic transcription factors, genes, and (pro-) hormones in

differentiated human pancreatic duct cells. Transcript abundance was calculated using the fold-over detectable method

(Hardikar et al., 2014). On the x axis are data for the non-target/scramble control (N) (n = 5), the combination of five

selected individual microRNA-overexpressing cell lines without LNA inhibitors (M) (n = 5), or with LNA inhibitors (ML) (n =

3). Each data point represents a different experiment. The horizontal red line marks the median and dotted black lines

within each polygon represent quartiles. All polygons represent the density of individual data points and extend to min/

max values. Three different primer probes used to measure the (pro-)insulin gene are shown in three different colors with

the TaqMan microRNA assay ID listed in Table S5 and S6. Statistical significance was calculated compared to N using

Dunn’s multiple comparisons test. Ordinary one-way ANOVA was used for the trend analysis between N, M, and ML.

Exact p values for comparison and trend are reported for significantly different comparisons and trend (p % 0.05).

See also Table S6.
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Combined microRNA overexpression alone (M) or with LNAs (ML) induced a significant increase in GCG,

GLUT1, HNF4a, and IGF2 transcripts (Figure 5B), as compared to the non-targeting control (N). A signifi-

cant trendwas observed for PDX1,HNF4a, IGF2, andGLUT1, suggesting the added roles of microRNAs (M)

and with LNAs (ML) in regulating their expression. Interestingly, HES1 and P48 were reduced in ML, sug-

gesting progression to endocrine (rather than exocrine) lineage. (Pro-)insulin expression was

comparable in all the three conditions but was consistently higher when five different microRNA-overex-

pressing lines and six LNA inhibitors were combined (ML) during differentiation (Figure 5B). Although

differentiated control (N) cells showed comparable C-peptide concentrations (20.0 G 0.7 pmol/L/mg of

DNA; mean G SEM, n = 3) to that in the microRNA overexpressing lines (15.5 + 5.1 pmol/L/mg of DNA;

mean G SEM, n = 3), the latter demonstrated over 4-fold efficient glucose-stimulated insulin secretion

(0.8 G 0.6% of C-peptide content in N vs 4.2 + 1.1% of C-peptide content in M; mean G SEM, n = 3-4/

group). No significant difference in C-peptide content was observed between M and ML groups (data

not shown).

We further tested if the effects of these (pro-)insulin transcript-associated microRNAs in human pancreatic

duct cells could be replicated in primary human islet cells. We used primary hIPCs that we described earlier

(Gershengorn et al., 2004; Joglekar and Hardikar, 2012;Joglekar et al., 2009b, 2016) to create lentiviral-

mediated, doxycycline-inducible, microRNA-overexpressing hIPC lines (Figure S2A). Limited availability

of freshly isolated human islets, as well as the reduced proliferative capacity after lentiviral transduction,

were some major constraints in selecting only three candidate microRNAs as against all of the top eight.

Compared to the non-targeting control (NTC), miR-375-3p overexpression led to an increase, although

insignificant, in INS, SST, and PDX1 transcripts (Figure 6A), while GCG transcript levels were reduced in

all the three microRNA-overexpressing hIPC lines. Our studies in differentiating human pancreatic (duct

and islet derived) microRNA-overexpressing lines demonstrate the potential of these microRNAs in pro-

moting the expression of genes that are known to be restricted to specific endocrine pancreatic sub-sets.

Interdependence of (pro-)insulin expression and microRNAs

To understand the regulatory hierarchy and the interdependence between (pro-)insulin transcripts and in-

sulin-associated microRNAs, we first forced the expression of a furin-cleavable insulin gene (Ren et al.,

2007) in five biological replicates (five different pancreas donors) of hIPCs. Furin-cleavable insulin was

used to enable the processing of (pro-)insulin in the absence of desired levels of (pro-)hormone convertase

in undifferentiated hIPCs. Although overexpression of the furin-cleavable insulin led to a 100- to �50,000-

fold increase in its mRNA as compared to the empty vector transduced cells (Figure 6B), no significant

changes were observed in the level of expression of any of the bootstrap signature of microRNAs (including

the top eight microRNAs; Figure S3A). These data confirmed that although overexpression of insulin-asso-

ciated microRNAs (Figures 3, 4, and 5) drives (pro-)endocrine gene transcripts, the forced expression of in-

sulin gene does not change the abundance of microRNAs associated with and predictive of (pro-)insulin

gene transcription. We then assessed if the loss of these microRNAs had any impact on human (pro-)insulin

gene transcription. We obtained freshly isolated human islets and maintained these in a defined Con-

naught Medical Research Laboratories (CMRL) medium with or without the specific microRNA LNA power

inhibitors for the next 3–6 days. As compared to the control, there was 63% (range: 26–98%) reduction in

microRNA expression in just three days of incubation, which further decreased to 72% (range: 29–98%)

over the next three days (Figure S3B). This decline in human islet microRNAs significantly reduced the

expression of (pro-)insulin gene in miR-375-3p, miR-7-5p, miR-183-3p, miR-183-5p, miR-217-5p, or miR-7-

2-3p knockdown islet cells as compared to control at day 6. These data support the necessity of these mi-

croRNAs in human (pro-)insulin transcription (Figure 6C).

Since selective depletion of microRNAs reduced (pro-)insulin gene transcription under these in vitro con-

ditions, we investigated if lower expression of our bootstrap microRNAs were associated with reduced

(pro-)insulin transcription in islets from human subjects. As shown earlier (Figure 2D), low levels of the

top eight microRNAs were associated with low levels of (pro-)insulin in human gallbladders and brains.

It is well recognized that the progressive loss of pancreatic islet b-cell function is a major cause leading

to T2D (Weyer et al., 1999; Kahn, 2003). We therefore screened human islets that were isolated from indi-

viduals with T2D. The levels of (pro-)insulin transcripts were significantly lower in all (n = 9) T2D islets

(Figure S4A) as compared to islet samples (n = 53) from donors without diabetes. Analysis of all 754 discov-

ery microRNAs in these T2D islets confirmed that several microRNAs were significantly differentially ex-

pressed (Figure S4B). Intriguingly, the levels of multiple insulin-associated microRNAs that we identified
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in our bootstrap analysis were significantly reduced in T2D islets (Figure S4C). Thus, a pathological reduc-

tion in islet (pro-)insulin gene transcript was associated with the depletion of insulin-associatedmicroRNAs,

suggesting their potential role in functional b-cell loss in diabetes.

Figure 6. Interdependence of insulin-associated microRNAs and (pro-)insulin gene expression in primary human

islet-derived cells

(A) Real-time TaqMan qPCR-based expression analysis of the islet (pro-)hormones and pancreatic transcription factors in

microRNA-overexpressing human islet-derived progenitor cells (hIPCs) following in vitro differentiation (see methods).

Results are normalized to 18S rRNA and presented as transcript abundance, calculated using fold above detectable

method (Hardikar et al., 2014). Selected microRNAs (and non-target control/NTC) used in generating overexpressing

hIPCs lines are listed on X axis. Each dot in the floating bar plot represents data from 2–3 different islet donors and two

separate experiments. The horizontal black line represents the mean and bars extend to min/max values.

(B) Gene expression analysis in hIPCs transduced with the Furin-cleavable (pro-)insulin vector (Ins-Fur; n = 5) or an empty

vector (n = 5). Box plots show mean values (indicated by ‘‘+’’), line at the median and whiskers extending to the minimum

and maximum values in the set. Statistical significance based on a two-way ANOVA. **:p < 0.01 and five biological (islet

donor) preparations of hIPCs.

(C) (Pro-)insulin mRNA expression in human islet cells (from different donors, n = 3–5) following selected power LNA inhibitor-

mediated knockdown of microRNAs. The levels of normalized (pro-)insulin gene transcript at day 3 and day 6 are presented as

percent of scramble control. The horizontal red line represents the median, and the horizontal dotted black lines within each

polygon represent quartiles. The polygons represent the density of distribution of the data and extend to min/max values.

Statistical significance was calculated using a two-way ANOVA, and exact p values (compared to control) are presented.

(D and E) A summary of our findings understanding the interdependence of regulatory microRNAs (small colored wheels)

and (pro-)insulin (large green wheel) in human islet/pancreatic progenitor cells (see text for details).

See also Figures S3–S5.
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Indeed, these top eight microRNAs regulate several human pancreatic genes (Figure S5A) and target mul-

tiple pathways (Figure S5B) related to pancreatic islet development/differentiation (WNT, MAPK, VEGF,

TGFb signaling), insulin production/release (calcium signaling, gap junctions, pancreatic secretion), and

islet dysfunction (T1D, T2D, MODY, RNA degradation pathways). Overall, our study results using unbiased

machine learning analyses identified a set of microRNAs that are associated with, predictive of, and neces-

sary for (pro-)insulin gene transcription in human islets.

DISCUSSION

Subtle changes in microRNA expression and/or processing can have important biological consequences

on (pro-)insulin gene transcription. Conventional genetic manipulation strategies in non-human systems

have used knockouts, reporters, and transgenic overexpression models. Such approaches (Lynn et al.,

2007; Latreille et al., 2015), although useful to identify and understand the functional role(s) of individual

microRNAs, do not fully recapitulate physiologically relevant changes in human pancreatic gene expres-

sion networks. The goal of our study was to identify microRNAs associated with human (pro-)insulin

gene transcription via profiling human cells and tissues using objective analytical workflows. Machine

learning approaches that take out the sampling bias through simulation of a thousand sets of insulin-pos-

itive and insulin-negative human tissues were used to derive a signature of insulin-associated microRNAs.

We then correlated the abundance of these microRNAs in multiple human tissues representing physiolog-

ical and pathological depletion of (pro-)insulin, followed by an assessment of their regulatory potential in

human pancreatic progenitors and islet cells.

We observed that the overexpression of any single microRNA from our analysis was unable to restore (pro-)

insulin expression in pancreatic duct progenitor cells. However, depletion of a single microRNA (such as

miR-183-5p, -375-3p, -183-3p, -7-5p, -7-2-3p, or -217-5p) was responsible for a significant reduction but

not total absence in (pro-)insulin transcript (Figure 6C). These data suggest that the insulin-associated mi-

croRNAs that we identified are not direct regulators of (pro-)insulin gene transcription but possibly act

through the coordination of regulatory elements and transcription factors (Figure 6D). Indeed, microRNA

target prediction across seven different platforms using miRSystem (Lu et al., 2012) confirmed the absence

of any targeting microRNAs for human (pro-)insulin gene transcripts. Our data from human pancreatic pro-

genitor and islet cells demonstrate that overexpression of microRNAs associated with (pro-)insulin abun-

dance (Figure S1C) regulates several pancreatic transcription factors and a combination of these factors

fine-tune (pro-)insulin expression, while losses of these miRNAs impact significantly on (pro-)insulin

mRNA levels (Figure 6E).

Several microRNAs (including miR-375, miR-7, miR-200, miR-184, miR-124, miR-429) from our bootstrap

analysis were previously reported to have specific roles in human b-cell maintenance and function such

as (pro-)insulin transcription, glucose uptake, calcium signaling, insulin exocytosis, and b-cell apoptosis

(Esguerra et al., 2018; Bolmeson et al., 2011; Wang et al., 2013; Martinez-Sanchez et al., 2018; Filios

et al., 2014; Belgardt et al., 2015; Baroukh et al., 2007). In addition to this, we identified several other micro-

RNAs that were not previously associated with human (pro-)insulin transcript levels (e.g. miR-217-5p, miR-

183-3p, miR-7-2-3p, miR-183-5p). These microRNAs are, however, reported in other context; miR-217 was

noted in developing zebrafish intestine, liver, and pancreas (Stuckenholz et al., 2009) and was shown to

inhibit proliferation and invasion of pancreatic adenocarcinoma cells (Chen et al., 2017). MiR-7-2-3p was

described in human blood cells following saturated fatty acid feeding (Lopez et al., 2018), while miR-

183-5p was reported through in silico studies as a T2D gene set targeting microRNA (Baran-Gale et al.,

2013).

We also recognize that few previously reported microRNAs were not selected through our analyses. MiR-

204, a b-cell-enriched microRNA, was shown to target MAFA and block insulin production (Xu et al., 2013,

2016). However, another study demonstrated that although miR-204 is highly abundant in human islets, it

did not significantly change (pro-)insulin gene transcript levels in human islets as well as in EndoC-betaH1

(Marzinotto et al., 2017). Another such candidate microRNA is miR-30d, a member of the miR-30 family that

we reported to be islet enriched in human fetal islets (Joglekar et al., 2009c). MiR-30d was also reported to

regulate (pro-)insulin gene transcription inmouse cells (Tang et al., 2009). In our analyses, bothmiR-204 and

miR-30d were identified as highly significant (p < 2.3493 10�19) microRNAs and expressed at higher levels

in adult human islets (8.4-cycles or 28.4 = 338-fold higher for miR-204 and 2.5-cycles or 22.5 = 5.7-fold higher

for miR-30d; Table S2). These microRNAs, although islet enriched, were not selected through the unbiased
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machine learning analytical workflow that we implemented in the identification of microRNAs associated

with presence/abundance of (pro-)insulin transcript.

ForcedmicroRNA overexpression was previously reported to enhance differentiation of human insulin-pro-

ducing cells, most commonly using miR-375 (Nathan et al., 2015; Lahmy et al., 2014, 2016; Piran et al., 2017;

Shaer et al., 2014; Williams et al., 2020). Similarly, miR-7 overexpression increased human embryonic stem

(ES) cell differentiation (Lopez-Beas et al., 2018), whereas a cluster of microRNAs (miR-375, let-7a, let-7g,

and miR-200a) was overexpressed using a polycistronic construct (Jin et al., 2019) during the differentiation

of human ES cells into insulin-producing cells. The microRNAs that were previously reported to induce/

improve differentiation to insulin-producing cells (miR-375, miR-200a, miR-7, and miR-9) are observed in

our bootstrap analysis (Figure 1F). Interestingly, while our data confirm that miR-375 is significantly abun-

dant in human islets (p = 1.73 10�21), miR-9 was identified to be significantly abundant (p = 0.02) in human

insulin-negative tissues (Table S2). This is in line with the approach of miR-375 overexpression along with

miR-9 inhibition, which was reported in the differentiation of human bone-marrow-derived stromal cells to

insulin-producing lineage (Jafarian et al., 2015). MicroRNA-7 is reported to target Pax6 in mouse islet cells

and reduce (pro-)insulin expression (Kredo-Russo et al., 2012), corroborating with our observations that

miR-7 overexpression (in PANC1 or hIPCs) did not induce (pro-)insulin expression. The modest increase

in (pro-)insulin transcripts or C-peptide production observed in our study may be due to the choice of mi-

croRNA overexpressing line(s), as well as the timing and dosage of microRNA overexpression or inhibition

achieved in the study.

Targeted transient depletion of candidate microRNAs (Figure 6C) in human islets reduced (pro-)insulin

expression, validating the previously reported role of microRNAs (Melkman-Zehavi et al., 2011) and miRNA

processing (Kalis et al., 2011; Lynn et al., 2007) in reducing (pro-)insulin transcription in rodent models.

Indeed, several of these microRNAs (Figure S1C) were significantly reduced in islets from organ donors

with T2D, in agreement with data previously published using a smaller set of human islet samples and other

(small RNA sequencing) technologies (Kameswaran et al., 2014). Even though knockdown of miR-216b-5p

and miR-429-3p did not result in significant reduction of (pro-)insulin transcript, this could be the result of

inefficient knockdown or higher interdependence/correlation between some families of microRNAs

affecting function. Future studies with multiple replicates of human islet cells to confirm our observations

are merited.

Our study strengths reside in the generation of this resource of microRNA expression profiles in a large

number and mixture of human tissues using a previously verified sensitive and reliable OpenArray micro-

RNA profiling platform. Compared to other studies on profiling microRNAs in human pancreas/islets (Cor-

rea-Medina et al., 2009; Joglekar et al., 2009a; Bolmeson et al., 2011; van de Bunt et al., 2013; Sebastiani

et al., 2015; Klein et al., 2013; Grieco et al., 2017; Fred et al., 2010; Kameswaran et al., 2014), our microRNA

data present one of the largest human tissue set (n = 353) of insulin-positive and insulin-negative tissues.

Our design incorporates three separate sets of samples for use in discovery, validation, and prediction

studies, as well as machine learning resampling approaches to take out sampling bias. Our study revealed

correlations between this specific set of microRNAs and human (pro-)insulin transcripts in other tissues that

naturally transcribe the (pro-)insulin gene. To our knowledge, this is the first report demonstrating an as-

sociation of microRNA levels to (pro-)insulin transcript across a range of insulin-positive and insulin-nega-

tive primary human tissues. Our study also demonstrates the potential regulatory role of these microRNAs

in human diabetes. Since functional loss of b cells is common to T1D (Atkinson et al., 2014; Kim et al., 2016)

as well as T2D, our observations open future avenues for assessing the roles of specific microRNAs in dia-

betes progression. Another strength is the generation of this resource of microRNA overexpressing human

pancreatic progenitor lines that allows the study of microRNA-target interactions. The use of analytical and

validation tools led to the identification of microRNAs including miR-217-5p, miR-7-2-3p, miR-183-3p, and

miR-183-5p that were not previously associated with human (pro-)insulin gene transcription. Without such

an approach, the relevance and importance of these microRNAs in islet cells would not have been

deciphered.

Limitations of the study

A limitation is the under-representation of some tissue types within our diverse sample set (Table S1), which

was difficult to control due to its human origin. We had to work with available tissue sets while trying to

include a diverse array of insulin-positive and insulin-negative tissues available through our collaborating
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investigators. The use of machine learning algorithms with resampling validation (Efron and Tibshirani,

1997; Chernick and Labudde, 2011) was therefore useful to eliminate any sampling bias. Since 10,000 re-

sampling iterations delivered the same signature as with 1000 iterations, we used the latter to save on

computing time. However, we acknowledge that the tissue specificity/enrichment of these microRNAs

needs to be further examined using more numbers and different types (e.g. thymus) of insulin-producing

tissues. The other study limitation is the focus on a selected set and combination of microRNAs presented

in this study. We selected the top eight microRNAs from our logistic regression bootstrap analyses as they

were also common to the linear regression workflow (Figure S1C). Since the top eight microRNAs (n = 8)

could generate up to 255 different combinations

� P8
r = 1

n!
r!�ðn�rÞ!

�
of microRNA overexpressing cell lines,

we were unable to plan for all of these combinations in the current study. Therefore, a single combination

of most relevant microRNA lines was planned and analyzed. Our study presents an example (from 255 com-

binations) and offers this resource of human pancreatic microRNA-overexpressing lines and data sets for

future studies. The association of microRNA levels to (pro-)insulin transcripts in human gallbladder and

brain is intriguing. Although lower microRNA levels in these tissues do not establish causality, we also

observe a significant reduction in several of our bootstrap microRNAs in islets from human T2D donors

(with reduced (pro-)insulin levels). Mixing top eight microRNA-overexpressing lines in equal proportion

did not significantly increase (pro-)insulin abundance, which suggests that although the machine learning

approach identified the important microRNAs, the understanding of the timing and dosage of their expres-

sion/repression and the proportion of their individual contribution in regulating insulin transcription is

necessary.

METHODS

All methods can be found in the accompanying transparent methods supplemental file.
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Supplementary Figure 1. Pancreatic gene and microRNA expression analysis, related to Figure 1 and 2 

 

 
 

Figure S1. Pancreatic gene and microRNA expression analysis, related to Figure 1 and 2  

(A) Unsupervised bidirectional hierarchical cluster analysis for the three pancreatic islet (pro-) 

hormones and four transcription factors in different human tissue samples from the discovery set 

(n=92). Lower Ct-values (higher abundance) are presented in shades of red whereas higher Ct-values 

(low to no expression) appear in the range from yellow to white color. Euclidean distance metric and 

average linkage were applied to the unsupervised hierarchical cluster analysis. (Ct)-values presented 

are normalized to 18S rRNA. (B) The microRNAs used in prediction of (pro-)insulin transcript 

(Figure 2F) were identified through penalized linear regression workflow and are presented as 

bootstrap frequency (%) on x-axis using a discovery set of islets (n=30; all insulin-positive) and 

insulin negative (n=62) samples. (C) Euler plot illustrating that the top-eight microRNAs obtained 

through penalized logistic regression analysis (highlighted in Figure 1F) is a subset of the 

microRNAs obtained from penalized linear regression analysis (Figure S1B). (D) Correlation plot 

between the Ct-value for laboratory-measured (pro-)insulin mRNA (x-axis) from the prediction set 

(n=202) with the computationally predicted (pro-)insulin Ct-value (y-axis) (Spearman r=0.8, 

p<0.0001). Each dot represents a different sample from the prediction set, while color of the point 

indicates the tissue type in the correlation plot.   

  



Supplementary Figure 2. MicroRNA-overexpressing cell lines generated through this study, related to 

Figure 3 

 
  



Supplementary Figure 2: MicroRNA-overexpressing cell lines generated through this study, 

related to Figure 3  

(A) Euler plot of puromycin-selected and doxycycline-regulated microRNA-overexpressing lines 

generated and used for this study.  The specific lines in primary human islet-derived progenitor cells 

(hIPCs) as well as in human pancreatic duct (PANC1) cells are shown. All of these lines (and 

associated resources) will be available to academic researchers on reasonable request from lead 

contact. (B) Transcript abundance of specific transcription factor or (pro-)hormone after the top 8 

microRNA lines were mixed and co-cultured in equal proportions (n=11, separate experiments; with 

each experiment presented as a purple dot). Transcript abundance was calculated relative to the non-

targeting/scramble control (NTC, n=4, separate experiments) PANC1 cell line and presented on the 

Y-axis.  *: p<0.05, **: p<0.01, ***: p<0.001, ****: p<0.0001; compared to NTC. 

  



Supplementary Figure 3. Inhibition of individual microRNA in human islet cells, related to Figure 6 

\ 

 

Figure S3: Inhibition of individual microRNA in human islet cells, related to Figure 6  

(A) Volcano plot for changes in expression of the 754 (discovery) microRNAs following forced 

expression of the Furin-cleavable insulin (Ins-Fur/IF-; n=5) vs empty vector (EV-)expressing hIPCs 

(n=5). The Ct-value differences are depicted on the x-axis and the −log10 p-value (calculated using two-

tailed Welch’s t-test) is plotted on the y-axis. The dotted horizontal line represents the cut-off of p=0.05, 

while the dotted vertical lines represent a difference of one Ct-value (2-fold). Each point represents a 

unique microRNA. None of our bootstrap microRNAs were changed/regulated by forced expression of 

insulin (B) Abundance of the microRNAs following knock-down with LNA power inhibitors in human 

islet cells (n=3) on day 3 and 6 post-incubation. The horizontal red line represents the median.  Polygons 

represent the density of distribution of the data and extend to min/max values. The y-axis presents 

microRNA abundance as % of scramble controls (n=3). Statistical significance calculated using two-

way ANOVA compared to the control) are presented where *: p<0.05, **: p<0.01, ***: p<0.001, ****: 

p<0.0001.  



Supplementary Figure 4. Insulin-associated microRNA are significantly downregulated in type 2 diabetes, 

related to Figure 6 

 

 

 
  



Figure S4: Insulin-associated microRNA are significantly downregulated in type 2 diabetes, 

related to Figure 6  

(A) Real-time TaqMan® qPCR data for (pro-)insulin gene transcript abundance in human islets (n=53) 

from individuals without diabetes vs T2D islets (n=9). Cycle threshold values were normalized to 18S 

rRNA and then converted to transcript abundance as described(Hardikar et al., 2014). Data are plotted 

as mean+SEM and analyzed using a two-tailed Welch’s t-test to present the exact p-value. (B) Volcano 

plot comparing significantly differentially-expressed microRNAs between T2D islets (n=9) and islets 

from donors without diabetes (n=53) for all the 754 (discovery) microRNAs. The Ct-value differences 

are on the X-axis and the −log10 p-value (calculated using two-tailed Welch’s t-test) is on the Y-axis. 

The dashed horizontal line represents the significant p-value=0.05 while the vertical dashed lines 

represent a difference of 2-fold (1 Ct value). Each point represents a unique microRNA. Significantly 

different microRNAs are colored in red. (C) Several of the microRNAs identified through the penalized 

logistic regression bootstrap analysis (Figure 1F) in islets from donors without diabetes and T2D islets. 

Global-normalized microRNA data are converted to transcript abundance as described(Hardikar et al., 

2014). The mean+SEM is presented for each plot. Data were analyzed using a two-tailed Welch’s t-

test and exact p-values are provided.  

 



Supplementary Figure 5. microRNA target and KEGG Pathway analysis, related to Figure 6



          Figure S5: microRNA target and KEGG Pathway analysis, related to Figure 6 

(A) The top eight microRNAs targeting pancreatic genes were assessed using TargetScan 

(http://www.targetscan.org/vert_72/) and interactions between each of the top-eight microRNAs and 

pancreatic genes (selected for this study) are demonstrated as connecting color-coded lines. (B) The 

most significant and relevant KEGG (Kyoto Encyclopedia of Genes and Genomes) pathways associated 

with key bootstrap microRNAs are presented. The y-axis represents −log10 p-value, the dashed 

horizontal line represents the significant p-value=0.05 and relevant pathways are provided on the x-axis.  

 

  



Supplementary Table 1. Human cell/tissue samples assessed in this study, related to Figure 1 

 
 

 

Supplementary Table 1. Human cell/tissue samples assessed in this study, related to Figure 1.  

Different cell/tissue types with their numbers used under the discovery, validation and prediction studies 

are presented herein. Islets from nine T2D donors were also assessed in a separate set. Impure islet 

fractions refer to human islet preparations that had a (pro-)insulin Ct-value >16.8. Gallbladder and brain 

samples show significant heterogeneity in (pro-)insulin transcript as measured by qPCR. The gallbladder 

and brain samples are therefore sub-classified into “Insulin+” (Ct-value <39) and “Insulin-” (Ct-value >39) 

samples. Discovery and validation studies were based on a set of 142 (92 and 50 respectively) tissue 

samples available to the group and randomly assigned into the discovery and validation set. The discovery 

set (n=92) was used to identify the key microRNAs associated with insulin transcription via machine 

learning (penalized regression and bootstrap analysis) as presented in Figure 1. The validation set (n=50) 

was used to assess the ability of the top 8 microRNAs associated with insulin transcript in separating 

human islets and insulin-negative samples using ROC curve analysis as presented in Figure 2E. The 

prediction set (n=202) was used to assess the correlation between the computationally predicted (pro-

)insulin Ct values to those of the laboratory-measured (pro-)insulin Ct values as presented in Figure 2F 

and S1D. The T2D islets (n=9) were presented in Figure S4.  

*Islets and pancreas from donors without diabetes (ND). 

  

Sample type Discovery set Validation set Prediction set T2D samples 

Brain 10(Insulin-)  4 (Insulin+)  
Endothelial cell 1(Insulin-) 14 (Insulin-)   

Gallbladder 13(Insulin-) 11(Insulin-) 51(Insulin+)  
Islet* 30 (Insulin+) 23 (Insulin+)   

Muscle 2(Insulin-) 2 (Insulin-)   
Liver 1 (Insulin-)    
Skin 1 (Insulin-)    

Spleen 34 (Insulin-)    
Impure islet fraction   85 (Insulin+)  

Pancreas*   62 (Insulin+)  
T2D islet  

  9 (Insulin+) 

Total (n) 92 50 202 9 
Analysis method for 

each set 
Penalized 
regression 

ROC curve 
analysis 

Correlation  
T2D vs ND 

Presented in Figure 1 2E 2F and S1D S4 
     

Grand total 353    



Supplementary Table 3. MicroRNAs used in t-SNE analysis, related to Figure 1 

 

Top eight miRNAs in penalized 

logistic regression bootstrap  

Total # of 

samples (and 

%) present 

Random eight 

miRNAs 

Total # of samples 

(and %) present 

Set 1 (shown in Figure 1H) 

       

 
miR-183-5p 37 (40) miR-516b-3p 38 (41) 

 
miR-375-3p 77 (84) miR-601-5p 77 (84) 

 
miR-216b-5p 50 (54) miR-1290-3p 50 (54) 

 
miR-183-3p 39 (42) miR-624-5p 39 (42) 

 
miR-7-5p 78 (85) miR-664a-3p 78 (85) 

 
miR-217-5p 38 (41) miR-17-3p 38 (41) 

 
miR-7-2-3p 43 (47) miR-638-5p 43 (47) 

 
miR-429-3p 72 (78) miR-511-5p 72 (78) 

     Set 2 

 
       

 miR-183-5p 37 (40) miR-651-5p 36 (39) 

 miR-375-3p 77 (84) miR-629-5p 78 (85) 

 miR-216b-5p 50 (54) miR-34c-5p 50 (54) 

 miR-183-3p 39 (42) miR-92a-1-5p 39 (42) 

 miR-7-5p 78 (85) miR-26b* 78 (85) 

 miR-217-5p 38 (41) miR-888-5p 38 (41) 

 miR-7-2-3p 43 (47) miR-34b-3p 43 (47) 

 miR-429-3p 72 (78) miR-146b-3p 72 (78) 

  
 

 
 

      



     Set 3 

        

 miR-183-5p 37 (40) miR-550a-5p 36 (39) 

 miR-375-3p 77 (84) miR-192-3p 76 (83) 

 miR-216b-5p 50 (54) miR-224 50 (54) 

 miR-183-3p 39 (42) miR-24-2-5p 40 (43) 

 miR-7-5p 78 (85) miR-539-5p 77 (84) 

 miR-217-5p 38 (41) miR-100-3p 39 (42) 

 miR-7-2-3p 43 (47) miR-627-5p 43 (47) 

 miR-429-3p 72 (78) miR-495-3p 72 (78) 

     
 
Supplementary Table 3. MicroRNAs used in t-SNE analysis, related to Figure 1 

Three different sets of eight random miRNAs (shown in column 3) were selected with a similar detectability (present) to the top-eight microRNAs obtained from 

the logistic regression analyses (Figure 1F and shown here in the first column). The similar detectability/presence between the corresponding top-eight microRNA 

to the random eight microRNA (within the discovery set of samples; n=92) are shown in columns 2 and 4 of this table respectively. The t-SNE plot (on the 

discovery set; n=92) displayed on the right is generated from using the corresponding random set of eight microRNAs shown on the left. The t-SNE plot using 

the top eight microRNAs for the discovery set samples (n=92) is presented in Figure 1G.  The above table presents the t-SNE plots for three sets of random eight 

microRNAs with levels/distribution matched to the top eight microRNAs identified through our analysis.   
  



Supplementary Table 4. Correlation between microRNA and (pro-)insulin expression, 

related to Figure 2 

 
vs INS Pearson r Pearson p-value (two-tailed) Pearson 95% confidence interval 

miR-183-5p 0.6 <0.0001 0.5 to 0.7 
miR-375-3p 0.7 <0.0001 0.6 to 0.8 
miR-216b-5p 0.6 <0.0001 0.4 to 0.7 
miR-183-3p 0.6 <0.0001 0.5 to 0.7 
miR-7-5p 0.7 <0.0001 0.6 to 0.8 

miR-217-5p 0.5 <0.0001 0.3 to 0.6 
miR-7-2-3p 0.7 <0.0001 0.6 to 0.8 
miR-429-3p 0.7 <0.0001 0.5 to 0.7 

 
Supplementary Table 4. Correlation between microRNA and (pro-)insulin expression, 

related to Figure 2  

Pearson correlation analysis of the individual microRNA (belonging to the top 8 microRNAs, 

highlighted in Figure 1F) with the respective (pro-)insulin transcript expression from islets 

(n=30), gallbladder (n=51), brain (n=4) and spleen (n=34; as shown in Figure 2D). Pearson’s 

r and p-value (two-tailed) along with 95% confidence interval are provided for each 

microRNA.   

 



Supplementary Table 5. Gene assay IDs used for qPCR, related to Figure 2 

 
 

Assay ID Gene symbol Gene name Dye Stock 

1 Hs03003631_g1 18S Eukaryotic 18S rRNA VIC-MGB  60x* 

2 Hs02741908_m1 INS Insulin FAM-MGB 20x 

3 Hs00355773_m1 INS Insulin FAM-MGB 20x 

4 Hs00356618_m1 INS Insulin FAM-MGB 20x 

5 Hs00174967_m1 GCG Glucagon FAM-MGB 20x 

6 Hs00174949_m1 SST Somatostatin FAM-MGB 20x 

7 Hs01651425_s1 MAFA 
V-Maf Avian Musculoaponeurotic 

Fibrosarcoma Oncogene Homolog A 
FAM-MGB 20x 

8 Hs00360700_g1 NGN3 Neurogenin 3 FAM-MGB 20x 

9 Hs00172878_m1 HES1 
Hairy and Enhancer of Split 1 (Hes 

Family BHLH Transcription Factor 1) 
FAM-MGB 20x 

10 Hs00236830_m1 PDX1 Pancreatic And Duodenal Homeobox 1 FAM-MGB 20x 

 

Supplementary Table 5. Gene assay IDs used for qPCR, related to Figure 2 

List of TaqMan® primer/probe assays selected for real-time qPCR on ViiA7 platform. *A one 

in three dilution was performed to the stock 18S (60x) to match the probe-primer concentration 

of other assays. 

  



 

Supplementary Table 6. Pancreatic gene and transcription factors used on customized 

OpenArray™ panel, related to Figure 3 and 5 

 
 Assay ID Gene Symbol Gene Name 
1 Hs00173014_m1 PAX4 Paired box 4 
2 Hs00236830_m1 PDX1 Pancreatic And Duodenal Homeobox 1 
3 Hs00355773_m1 INS Insulin 
4 Hs01031536_m1 GCG Glucagon 
5 Hs00356144_m1 SST Somatostatin 
6 Hs01875204_s1 NEUROG3 Neurogenin 3 (referred herein as NGN3) 

7 Hs01651425_s1 MAFA 
V-Maf Avian Musculoaponeurotic Fibrosarcoma Oncogene 
Homolog A 

8 Hs00271378_s1 MAFB 
V-Maf Avian Musculoaponeurotic Fibrosarcoma Oncogene 
Homolog B 

9 Hs00359592_m1 NOVA1 Neuro-Oncological Ventral Antigen 1 
10 Hs00240858_m1 PAX2 Paired Box 2 
11 Hs03003631_g1 18S Eukaryotic 18S rRNA 
12 Hs00240871_m1 PAX6 Paired Box 6 
13 Hs00268388_s1 SOX4 SRY-Box Transcription Factor 4 
14 Hs01001343_g1 SOX9 SRY-Box Transcription Factor 9 
15 Hs00603586_g1 PTF1A Pancreas Associated Transcription Factor 1a 

16 Hs00413554_m1 
HNF6 

(ONECUT1) 
Hepatocyte Nuclear Factor 6 (One Cut Homeobox 1) 

17 Hs01001602_m1 HNF1β (TCF2) Hepatocyte Nuclear Factor 1-Beta (Transcription Factor 2) 
18 Hs00167041_m1 HNF1α (TCF1) Hepatocyte Nuclear Factor 1-Alpha (Transcription Factor 1) 
19 Hs00230853_m1 HNF4α Hepatocyte Nuclear Factor 4-Alpha 
20 Hs00541450_m1 GLIS3 GLIS Family Zinc Finger 3 
21 Hs00232355_m1 NKX6.1 NK6 Transcription Factor Related, Locus 1 
22 Hs00356618_m1 INS Insulin 
23 Hs00159616_m1 NKX2.2 NK2 Transcription Factor Related, Locus 2 
24 Hs00896294_m1 PROX1 Prospero-Related Homeobox 1 

25 Hs01367669_g1 HES3 
Hairy And Enhancer Of Split 3 (Hes Family BHLH 
Transcription Factor 3) 

26 Hs00172878_m1 HES1 
Hairy And Enhancer Of Split 1 (Hes Family BHLH 
Transcription Factor 1) 

27 Hs01922995_s1 NEUROD1 Neuronal Differentiation 1 

28 Hs00892681_m1 
GLUT1 

(SLC2A1) 
Solute Carrier Family 2 (Facilitated Glucose Transporter), 
Member 1 

29 Hs01096908_m1 
GLUT2 

(SLC2A2) 
Solute Carrier Family 2 (Facilitated Glucose Transporter), 
Member 2 

30 Hs01564555_m1 GCK Glucokinase 
31 Hs00846499_s1 UCN3 Urocortin 3 
32 Hs00158126_m1 ISL1 ISL LIM Homeobox 1 
33 Hs00171403_m1 GATA4 GATA Binding Protein 4 



34 Hs00232018_m1 GATA6 GATA Binding Protein 6 
35 Hs00292465_m1 ARX Aristaless Related Homeobox 
36 Hs00355773_m1 INS Insulin 
37 Hs01005963_m1 IGF2 Insulin Like Growth Factor 2 
38 Hs00264887_s1 POU3F4 POU Class 3 Homeobox 4 
39 Hs02758991_g1 GAPDH Glyceraldehyde-3-Phosphate Dehydrogenase 

40 Hs00703572_s1 
BHLHA15 
(MIST1) 

Basic Helix-Loop-Helix Family Member A15 

41 Hs00907365_m1 HB9 (MNX1) Homeobox HB9 (Motor Neuron And Pancreas Homeobox 1) 

42 Hs00158750_m1 
LMX1.2 

(LMX1B) 
LIM Homeobox Transcription Factor 1 Beta 

43 Hs00892663_m1 
LMX1.1 

(LMX1A) 
LIM Homeobox Transcription Factor 1 Alpha 

44 Hs01078080_m1 CDX2 Caudal Type Homeobox 2 
45 Hs00793699_g1 GSX1 GS Homeobox 1 
46 Hs02741908_m1 INS Insulin 
47 Hs00370195_m1 GSX2 GS Homeobox 2 
48 Hs01116195_m1 EXO1 Exonuclease 1 
49 Hs00170171_m1 REG3A Regenerating Family Member 3 Alpha  
50 Hs01551078_m1 TLR3 Toll Like Receptor 3 
51 Hs00358111_g1 PPY Pancreatic Polypeptide 
52 Hs00230829_m1 AIRE Autoimmune Regulator 
53 Hs01074053_m1 GHRL Ghrelin And Obestatin Prepropeptide 
54 Hs01026107_m1 PCSK1 Proprotein Convertase Subtilisin/Kexin Type 1 
55 Hs00159922_m1 PCSK2 Proprotein Convertase Subtilisin/Kexin type 2 
56 Hs00232764_m1 HNF3β (FOXA2)  Hepatocyte Nuclear Factor 3-Beta (Forkhead Box A2) 

 

Supplementary Table 6. Pancreatic gene and transcription factors used on customized 

OpenArray™ panel, related to Figure 3 and 5 

List of the TaqMan® primer/probe gene expression assays for real-time qPCR on the 

OpenArray™ platform.  All assays use FAM-MGB dye at 20x stock concentration. Three 

different assays for (pro-)insulin present on the OpenArray™ panel are highlighted in yellow 

of which one assay (Hs00355773_m1) was placed on two (geographically) separate areas of 

the panels (well #3 and #36) as quality control to assess for any differences in the measurement 

of the same gene assay across different regions of the plate. Matching samples across different 

plates confirmed no significant variation in the lots/batches of custom plates. Housekeeping 

genes (18S and GAPDH) are highlighted in grey. 
 
  



Transparent Methods 
 
Sample collection and storage 

All tissue samples were obtained through human research ethics committee (HREC) approvals 

X16-0289 (previously X12-0176) and the HREC/12/RPAH/282 as well as MQ5201300330 

protocols.  Human  pancreas from individuals without diabetes, impure and pure islet samples 

(from donors without diabetes and T2D donors) were obtained as part of the research consented 

tissues through the National Islet Transplantation Program (at Westmead Hospital, Sydney and 

the St Vincent’s Institute, Melbourne, Australia). Human spleen samples were obtained from 

collaborating investigators at the Westmead Hospital, Sydney, Australia. Human gallbladder 

and muscle samples were obtained as surgical waste tissues generated following 

cholecystectomies or other Gastrointestinal (GI) surgeries involving non-cancerous tissue 

through the surgical teams (at Strathfield Private Hospital and The Royal Prince Alfred 

Hospital, Australia). Human gallbladder epithelial cells were separated in the lab by scraping 

off the epithelial cells with a disposable scalpel blade after washing off the bile under aseptic 

conditions.  Cells were resuspended in Phosphate Buffered Saline (PBS), visualized under the 

microscope and then stored immediately as a dry pellet for subsequent RNA isolation. The 

human brain, liver, and skin tissue samples were the only developing tissue samples (around 

16-20 weeks gestation age) acquired from collaborating investigators at Macquarie University, 

Australia. All tissue samples were obtained in the transport medium, washed thrice with 

generous amounts of dPBS (1x) (Gibco, Thermo Fisher Scientific, Waltham, MA) and snap-

frozen immediately as a dry pellet.  Human Umbilical Vein Endothelial Cells (HUVECs) were 

obtained through collaborators at the Centenary Institute, Sydney, Australia. The umbilical 

cord was washed by passing through generous volumes of sterile dPBS (1x) until no traces of 

blood were detected in the wash through. Endothelial cells were isolated following collagenase 

digestion and washed in culture media.  HUVECs were cultured in 25cm2 (T25) flasks coated 

with 1ml of gelatine (Sigma-Aldrich, St Louis, MO) in HUVEC medium (M199 with Earle’s 

Salts, 20mM HEPES, 20% fetal calf serum, sodium bicarbonate, 2mM glutamine, 1% non-

essential amino acids (NEAA), 1mM sodium pyruvate, penicillin and gentamicin (all from 

Invitrogen, Thermo Fisher Scientific, Waltham, MA). Endothelial cells were maintained at 

37°C, in 5% CO2 and used for RNA isolation within 3-4 days. All samples were stored at -80°C 

until RNA isolation.  

 

 



 

RNA isolation and Quantification 

Total RNA isolation from samples was carried out using the TRIzol® (Thermo Fisher 

Scientific, Waltham, MA). Tissue samples were first homogenized on ice in 200µl of TRIzol® 

reagent and then the volume was made up to 1ml. Total RNA was isolated from cell and tissue 

samples using the standard manufacturer’s protocol with minor modification as described 

elsewhere(Joglekar and Hardikar, 2012). A small subset of human islet samples was used to 

isolate microRNA and mRNA using the mirVana miRNA isolation kit (Thermo Fisher 

Scientific, Waltham, MA) following the manufacturer’s instruction. RNA quality and quantity 

were assessed using the Nanodrop™ spectrophotometric platform, where all samples (Table 

S1) were found to have an average 260/280 of 1.84. Small RNA and miRNA content were 

measured using the 2100 Bioanalyzer Small RNA kit (Agilent Technologies, Santa Clara, CA) 

as per manufacturer’s instructions.  

 

Synthesis of cDNA and TaqMan® real-time qPCR 

Synthesis of cDNA (from total RNA or enriched mRNA) was carried out using the High 

Capacity cDNA reverse transcription kit (Thermo Fisher Scientific, Waltham, MA). TaqMan® 

real-time qPCR was performed in 5µl reactions using 96-well plates with 33.3ng input 

cDNA/reaction and TaqMan® Fast Universal PCR Master Mix (Thermo Fisher Scientific, 

Waltham, MA). Ten TaqMan® primer/probe gene expression assays were selected (Table S5) 

to quantify transcript abundance on the ViiA7 platform (Thermo Fisher Scientific, Waltham, 

MA). The amplification curve in the linear region was set at a threshold of 0.1 for all samples. 

Our samples (Table S1) had an average 18S rRNA cycle threshold (Ct) value of 9.06. Gene 

expression data were normalized to 18S.  The cut-off of normalized (pro-)insulin Ct-

value<16.8 was chosen to identify pure islet preparations while Ct-value >16.8 was used for 

islet preparations with impurities. For all other tissues, when Ct-value for normalized (pro-

)insulin was < 39, they were considered as insulin-positive and if >39, then insulin-negative. 

Ct-value of 39 is the limit of detectability measured using a gold-standard TaqMan-based RT-

qPCR system (ViiA-7, ThermoFisher, USA) (Hardikar et al., 2014). 

 

 

Nanofluidics-based TaqMan® real-time PCR on 754 validated human miRNAs  

MicroRNA transcript abundance was quantified using the TaqMan® OpenArray™ human 

microRNA Panels on the QuantStudio™ 12K Flex platform (Thermo Fisher Scientific, 



Waltham, MA).  Reverse transcription and pre-amplification were carried out using the 

megaplex Reverse Transcription (RT)/Pre-amplification (PA) primer pools as per 

manufacturer’s protocol described elsewhere(Wong et al., 2015). Briefly, each sample (100ng 

input), underwent 12 pre-amp cycles, then diluted 1:40 in 0.1x TE (pH 8.0), combined with 

TaqMan® OpenArray™ PCR Master Mix, loaded onto the TaqMan® OpenArray™ Human 

MicroRNA Panel using the robotic AccuFill™ system (Thermo Fisher Scientific, Waltham, 

MA) and qPCR was completed using the QuantStudio™ 12K Flex. The microRNA off-the-

shelf panel includes 754 known/validated human miRNA assays. All acquired data was 

uploaded, and global normalization protocol was applied through the Thermo Fisher Cloud 

data analysis workflow (Thermo Fisher Scientific, Waltham, MA). Global normalization 

method has been described previously (Mestdagh et al., 2009) that identifies the assays 

common to all samples and uses their geometric mean value as the normalization factor for 

each sample. PCR results below the amplification score of 1.24 were classified as having no 

amplification and were considered undetectable for further analyses.  

 

Digital droplet PCR 

Digital droplet PCR (ddPCR) was carried out on a Bio-Rad QX200™ Droplet Digital™ PCR 

System (Bio-Rad, Hercules, CA) with an automated droplet generator as per manufacturer’s 

instructions. The Insulin TaqMan® primer/probe assay (Hs02741908_m1) (Thermo Fisher 

Scientific, Waltham, MA) was used to measure (pro-)insulin expression in human islet, 

gallbladder, brain, endothelial cell, muscle and spleen samples on ddPCR. For each human 

sample – a total of 125ng cDNA input was used per reaction, except for human islet samples 

that had to be diluted to avoid signal saturation on the ddPCR system. For each human islet 

sample, a 0.125ng input of cDNA was used per reaction. Nuclease-free water was used as a 

no-template control to set the threshold. Plate set up and calculations were performed as 

described before(Maynard et al., 2019). Some data were obtained using QuantStudio™ 3D 

Digital PCR system (Thermo Fisher Scientific, Waltham, MA) with the same insulin 

primer/probe assay. 

 

Cell culture 

PANC1 cells were maintained in serum-containing medium (SCM) prepared by mixing high 

glucose (4.5g/L) DMEM with 1% GlutaMAX™, 10% fetal bovine serum, 100U/mL penicillin 

and 100µg/mL streptomycin. Cells were maintained in an incubator at 37°C and with 

humidified 5% CO2 in air.  PANC1 cells were passaged 1:3 when confluent.  



Around 5000 freshly isolated human  islets were cultured in 75cm2 tissue culture-treated flasks 

with 10ml CMRL-1066 medium containing 1x GlutaMAX™, 100U/mL penicillin and 

100µg/mL streptomycin and 10%(v/v) fetal bovine serum (all media and reagents from Thermo 

Fisher Scientific, Waltham, MA) and 10ng/mL epithelial growth factor (Sigma-Aldrich, St 

Louis, MO).  Cells were maintained in an incubator at 37°C and with humidified 5% CO2 in 

air and passaged 1:2 when confluent. Human islet cells attached, migrated and then proliferated 

for several passages in vitro to generate human islet-derived progenitor cells (hIPCs) that 

typically exhibit mesenchymal characteristics and do not contain any (pro-)insulin 

transcripts(Joglekar et al., 2009, Gershengorn et al., 2004).  

Human islet cells at around day 3-12 in culture ((pro-)insulin transcript positive) were used for 

microRNA LNA inhibitor experiments, whereas human islets expanded/grown for several 

passages ((pro-)insulin transcript negative; hIPCs) were used for microRNA and insulin 

overexpression experiments as described below.   

 

Generation of microRNA-overexpressing PANC1 and hIPCs lines 

Third-generation doxycycline-inducible and puromycin-resistant SMARTvector™ shRNA 

lentiviral vectors with GFP or RFP reporters and transcribing the desired mature miRNA 

sequences (Dharmacon, Lafayette, CO) were used. PANC1 and hIPCs were seeded in 12-well 

culture plates and lentiviral vectors along with 8μg/mL polybrene (Sigma-Aldrich, St Louis, 

MO) were added. The multiplicity of infection (MOI) of 0.2 was used to obtain most of the 

transduced cells with a single integrated copy. After 24 hours of incubation, the media was 

changed. After 3 days, the cells were grown in medium containing optimal puromycin (Thermo 

Fisher Scientific, Waltham, MA) concentration of 8μg/mL for PANC1 or 2μg/mL for hIPCs, 

for another 7 days, to eliminate any remaining untransduced cells. Transduced cells were grown 

in the presence of doxycycline (Sigma-Aldrich, St Louis, MO) thereafter (1000ng/mL for 

PANC1 cells and 200ng/mL for hIPCs).  One non-target/scramble control and 16 different 

microRNA-overexpressing PANC1 cell lines were generated (Figure S2A). At least six 

separate experiments were performed by three different wet-lab researchers for each of the 17 

PANC1 lines generated.  For hIPCs, one non-target/scramble control and three different 

microRNA-overexpressing lines were generated with at least three different biological 

replicates/ pancreas donor islets (Figure S2A).        



Forced expression of insulin in hIPCs 

Insulin transcript-negative hIPCs (from n=5 different organ donors) that typically exhibit 

mesenchymal characteristics(Joglekar et al., 2009, Gershengorn et al., 2004) were generated 

and transduced with HMD-INS-FUR(Ren et al., 2007) vector to overexpress insulin. FACS 

analysis of eGFP expression in hIPCs transduced with the INS-FUR vector (relative to empty 

vector) was performed on a BD LSR II™ in the Microbial Imaging Facility (UTS, Australia). 

Flow cytometry data were analyzed using BD FACSDiva™ software (Version 8.0.1). The top 

20% eGFP-expressing cells were sorted and either cultured or processed for RNA isolation.   

 

Differentiation of microRNA-overexpressing hIPCs  

Day 0 serum-free medium (SFM) was prepared in CMRL by mixing 1% bovine serum albumin 

(BSA), 1x Insulin-Transferrin-Selenium (ITS-G), 1x GlutaMAX™, 100U/mL penicillin and 

100µg/mL streptomycin. Day 4 serum-free medium is a day 0 SFM containing 0.3mM taurine. 

Day 10 SFM is day 0 SFM containing 0.3mM taurine, 1mM nicotinamide, 100nM exendin-4 

(all media and reagents from Thermo Fisher Scientific, Waltham, MA). Three different 

biological preparations of hIPC lines overexpressing microRNAs and a non-target/scramble 

control were grown in 75cm2 flasks in SCM. Cells were washed with 1x PBS, trypsinized using 

0.25% trypsin-EDTA and seeded into 24-well suspension plates (Greiner Bio-One, Austria) in 

day 0 SFM containing 200ng/mL doxycycline. On day 1, media was replaced with day 0 SFM; 

on day 4 and day 7, media was replaced with day 4 SFM; and on day 10 media was replaced 

with day 10 SFM. Cells were harvested on day 14 for gene transcript analysis. Experiments 

were performed with four lines and three different biological preparations and repeated at least 

two times.  

 

Differentiation of microRNA-overexpressing PANC1 lines  

Differentiation was set up as per the schematic in Figure 5A, where cells were incubated with 

100nM of each miRNA Power LNA inhibitor (Qiagen, Hilden, Germany). After three days, 

cells were trypsinized and allowed to aggregate in Day 0 SFM on 24-well suspension culture 

plates. Day 0, Day 4, and Day 10 SFM were prepared as mentioned in hIPCs differentiation 

methodology above, using low-glucose DMEM (1g/L D-glucose) and Ham’s F-12 nutrient mix 

in a 1:1 ratio (Thermo Fisher Scientific, Waltham, MA) instead of CMRL. In all conditions, 

Day 4 SFM was added on day 4 and Day 10 SFM was added on day 7, with additional 

doxycycline added on day 10. Cells were harvested on day 14 for gene transcript analysis. 

Three to five separate experiments were performed for N, M, and ML conditions (Figure 5A). 



MicroRNA inhibition in human islets cells  

MicroRNA expression was knocked down using miRNA Power LNA inhibitors (Qiagen, 

Hilden, Germany). Human islet cells (n=3-5 biological replicates) were incubated with 500nM 

of miRNA Power LNA inhibitor in SCM on a tissue culture plate. Untransfected and negative 

siRNA (scramble) transfected human islet cells were used as controls. There were no 

significant differences between the negative siRNA and the untransfected controls. Cell culture 

medium was not changed and cells were harvested on Day 3 and Day 6.  

 

Static glucose-stimulated insulin secretion (GSIS) 

Three conditions of the day 14 differentiated PANC1 cell clusters (N, M, and ML; Figure 5A) 

were washed in 1x dPBS and then with basal glucose medium (2.5mM D-glucose in 0.1% BSA 

in 1x dPBS). Clusters were incubated in 150µL basal glucose medium for 1h at 37°C, 100µL 

of the supernatant was then collected and stored at -80°C.  Next, 100µL of high glucose 

medium was added to yield a final concentration of 25mM glucose and incubated for 1h at 

37°C. Clusters were gently spun down, and 150µL of supernatant was collected. The GSIS cell 

pellets were stored in acidified ethanol (0.18M HCl in 70% ethanol) for insulin content and 

protein measurement (for C-peptide normalization) and analysis, whilst the supernatants 

(devoid of any cells) were frozen at -80°C for further analyses.  

 

C-peptide ELISA 

GSIS cell pellets (described above) were sonicated and re-suspended in acid ethanol (0.18M 

HCl in 70% ethanol). Ultrasensitive C-peptide ELISA kit (Mercodia, Sweden) was used to 

measure C-peptide from GSIS supernatants (C-peptide released in response to glucose) as well 

as the GSIS cell pellets (cellular content for C-peptide), using the protocol provided with the 

kit. Protein content was measured on Qubit (Thermo Scientific, Waltham, MA) following the 

manufacturer’s instructions.  

 

Probe-based microRNA TaqMan® Real-time qPCR  

MicroRNAs used to generate overexpressing lines were quantified using ultra-sensitive 

TaqMan® qPCR chemistry, either on nanofluidic high-throughput QuantStudioTM 12K Flex 

platform or on the ViiA7 platform (both from Thermo Fisher Scientific, Waltham, MA). 

Measurement of microRNAs (such as miR-433-3p, miR-200a-3p, miR-30e-5p, miR-141-3p) 

was carried out on the ViiA7 platform following our previously reported protocol(Wong et al., 

2015). Remaining microRNAs were measured on a customized microRNA panel using the low 



sample input (LSI) protocol supplied by the manufacturer (Thermo Scientific, Waltham, MA). 

Briefly, RNA was reverse transcribed, pre-amplified for 16 cycles and then diluted 1 in 20 in 

0.1x TE (pH 8.0) before amplification on the QuantStudioTM 12K Flex platform. Data with 

amplification score <1.24 and Cq confidence interval <0.6 was converted to undetectable and 

then normalized to ath-miR-159a spike-in added during reverse transcription. Transcript 

abundance of a microRNA was calculated based on its normalized Ct-value, using the formula 

“transcript abundance=2(39-Ct value)”, where ‘39’ is the Cycle threshold (Ct) limit of 

detection(Hardikar et al., 2014). Relative transcript abundance was calculated as a difference 

between transcript abundance values of a test sample and control (NTC/scramble lines).  

 

Pancreatic gene measurement using OpenArray™ Custom mRNA Panel 

A customized OpenArray™ Human mRNA panel containing 56 selected TaqMan® 

primer/probe gene expression assays (Thermo Fisher Scientific, Waltham, MA), relevant to 

pancreas development was designed (Table S6). The customized panel was used to quantify 

mRNA profile of the 56 genes in the PANC1 lines using the robotic QuantStudioTM 12K Flex 

Real-Time PCR platform. Briefly, cDNA was synthesized using a High Capacity cDNA 

reverse transcription kit (Thermo Fisher Scientific, Waltham, MA). A total of 120ng cDNA 

was pre-amplified for 14 cycles, then diluted 1 in 20 in 0.1x TE (pH 8.0) and amplified on the 

qPCR OpenArray™ platform. Data with amplification score <1.24 and Cq confidence interval 

<0.6 was converted to undetectable and then normalized to GAPDH.  Transcript abundance 

was calculated as described above. 

 

Pancreatic single-cell (sc)RNA sequencing analysis 

Human pancreatic single-cell sequencing data (n=14,890) was extracted from public datasets 

(GSE84133, GSE85241, E-MTAB-5061, GSE83139, GSE81608). The Panc8 dataset was 

analyzed via R (version 3.6.1) on R studio version 1.2.5033 using the SeuratData (version 

0.2.1), Seurat (3.2.2), ggplot2 (3.3.3) and cowplot (1.1.1) package. The Seurat Panc8 

package(Stuart et al., 2019) contains eight different pancreas single-cell RNA-sequencing 

datasets from across five technologies (inDrop, CEL-Seq1, CEL-Seq2, Smart-Seq2, and 

Fluidigm C1). To improve the integrity of the data, low read count datasets obtained through 

the inDrop technology were excluded. Analytical workflow included data preprocessing and 

feature selection, dimension reduction and identification of “anchor” correspondences between 

datasets, filtering, scoring, and weighting of anchor correspondences, and data matrix 

correction, or data transfer across experiments as described elsewhere(Stuart et al., 2019). 



Immunostaining  

Freshly isolated human islets, gallbladder epithelial cells and brain neurospheres (generated in 

vitro and grown over coverslips) were fixed in 4% fresh paraformaldehyde, permeabilized 

using 0.1% Triton X-100, blocked in 4% normal donkey serum (all from Sigma-Aldrich, St 

Louis, MO), and then incubated overnight with primary antibodies at 4°C. Cells were 

thoroughly washed with 1x dPBS and incubated with secondary antibodies at 37°C for 1h. Both 

primary and secondary antibodies were diluted in 4% normal donkey serum (blocking buffer).  

Cells were washed again with 1x dPBS and mounted in Vectashield™ mountant (Vector 

laboratories, Burlingame, CA) containing Hoechst 33342 (Thermo Fisher Scientific, Waltham, 

MA).  Guinea-pig anti-insulin, rabbit anti-somatostatin (both from Dako, Glostrup, Denmark) 

were used at 1:100 dilution whilst mouse anti-glucagon (Sigma-Aldrich, St Louis, MO) was 

used at 1:400 dilution. Alexa-Fluor 488, 546, 633 F(ab’)2 secondary antibodies (Thermo Fisher 

Scientific, Waltham, MA) were used at 1:200 dilution. Hoechst 33342, was used to visualize 

nuclei. Somatostatin was not assessed in brain samples.  Immunostained cell preparations were 

scanned and assessed using a Zeiss LSM 510 laser confocal microscope (Zeiss, Oberkochen, 

Germany) after setting their thresholds below saturation with constant laser power and 

acquisition parameters across all samples.  

 

Circos plot 

The circos plot was generated using Circos v0.69-4 (17 Dec 2016) running on Perl 5.018002.  

The circos data visualization tool is based on the work by Krzywinski, M. et al.(Krzywinski et 

al., 2009) as well as on-line tutorials (http://circos.ca/). Results are presented in four different 

plots. Results are presented in four plots; (i) Scatter type plot illustrates the cycle threshold 

data. The plot is inverted so that the smaller values are at the top (further away from the center). 

(ii) Line plot presents z-scores of the expression data. Z-scores were calculated as the observed 

microRNA Ct values minus the average Ct-value for that microRNA divided by standard 

deviation of the samples and multiplied by -1.  (iii) Histogram plot shows the relative z-scores 

(relative to the insulin-negative samples, n=39: comprising of 34 spleen, 2 muscle and one of 

each of the endothelial, liver, and skin donor tissues). The innermost plot displays correlations 

between miRNAs and mRNA levels. (iv) Pearson correlation coefficient is calculated for each 

of the miRNA – mRNA pairs with a cut-off set at Pearson’s r=0.6. Correlations are plotted in 

the form of colored link (as per the labeled colors of the mRNA).  

 

 



RNA-seq analysis 

RNA-seq analysis was carried out using the Strand Next-generation sequencing (NGS) version 

2.5 software on the human islet RNA-seq dataset (GSE134068, n=18) as described in (please 

refer to the accompanying related manuscript provided in confidence for review). Briefly, 

RNA-seq data were aligned to the human hg38 transcriptome and genome with unique splice 

variants through using Ensembl and transcript model and filtered based on base and read 

quality. DEseq was used to quantify and normalized the reads. Sequencing data are available 

from study accession GSE134068. 

 

Statistical Analysis 

Unsupervised bidirectional (cases-samples/variables-microRNAs) hierarchical clustering 

analysis involved average linkage and Euclidean distances between cases/variables to draw the 

heatmap using R package gplots (3.1.0) heatmap.2 function and RColorBrewer (1.1.2). 

Microsoft Excel ver. 2016 was used to generate the volcano plot by calculate Ct difference and 

p-values. Ct difference was obtained by subtracting average values for each microRNA 

between the two groups, while p-values were obtained using two-tailed t-test. Multiple testing 

using Benjamini-Hochberg approach to derive a critical value was performed in excel. L1-

penalized logistic and linear regression techniques are used as described elsewhere(Goeman, 

2010). This approach prevents overfitting of collinear and high-dimensional data and utilizes 

the LASSO (least absolute shrinkage and selection operator) algorithm. Penalized regression 

was used to derive a microRNA signature that is associated with (pro-)insulin expression. 

Model selection was performed using the LASSO method. Penalty applied to the regression 

coefficients allows for improving the predictive power and interpretability of regression models 

by selecting only a subset of all the available independent variables (microRNAs) rather than 

using all of them.  Penalized regression analysis was carried out using logistic (dependent 

variable defined as presence (1) vs. absence (0) of (pro-)insulin expression) or linear 

(laboratory-measured Ct-value of (pro-)insulin gene and microRNA transcripts) regression 

workflow.  The microRNAs identified by penalized regression analyses were validated using 

bootstrapping (n=1000 iterations) via the R package glmnet (4.0-2). Approximately 37% of 

samples are randomly eliminated and replaced with the same number of randomly selected 

samples within the set in each iteration for analysis. This proportion is the attribute of simple 

random sampling with replacement. When performing such sampling many times, on average 

~63.2% of the observations would be obtained for each subset. This approach is based on the 

previous sampling methods (Efron and Tibshirani, 1997, Chernick and LaBudde, 2011) and 



has been used in our previous study (Wong et al., 2019).  Penalized regression analysis was 

generated using the R package penalized (0.9.51).  ROC curve analysis was performed using 

R package pROC (1.16.2). T-Distributed Stochastic Neighbor Embedding (t-SNE) analysis and 

t-SNE plots creation were performed using R packages plyr (1.8.6),  Rtsne (0.15), ggplot2 

(3.3.2), devtools (2.3.2), tidyverse (1.3.0), colorspace (1.4.1), ggthemes (4.2.0) and scales 

(1.1.1). A perplexity of 30 with 1000 iterations were used for each t-SNE analysis. A 

categorical bubble plot was generated using the R packages ggplot2 (3.3.2), ggpubr (0.4.0) and 

proto (1.0.0). Correlation plot and analysis was generated using the R packages corrplot (0.84), 

Hmisc (4.4.1) and dplyr (1.0.2). All data presented herein were analyzed using Statistica for 

Windows ver. 13 (Dell Inc. Tulsa, OK), Microsoft Excel (Microsoft, Redmond, WA, USA), 

XLStat (Adinsoft, Paris, France), GraphPad Prism 8.4.1 (GraphPad Software, San Diego, CA, 

USA) and/or the R software ver. 3.6.2 (R Foundation for Statistical Computing, Vienna, 

Austria).  

 

Pathway analysis 

Mature miRNA sequences were obtained using miRBase. The validated and predicted gene 

targets for each miRNA were obtained using the computational web tool TargetScan Human 

7.2 (http://www.targetscan.org/vert_72/)(Agarwal et al., 2015). KEGG Pathway analysis was 

performed in the miRSystem(Lu et al., 2012). The name of each selected microRNA was 

individually entered in both tools. In TargetScan, all predicted targets (irrespective of site 

conservation) are selected using the cumulative weighted context++ score as a guide to predict 

the interaction between the mRNA and microRNA. While in miRSystem, default parameters 

Hit (>3) and Default O/E ratio (>2) were used, with minimum total genes in pathways set at 4. 

KEGG pathways ranked with raw p-value converted to -log10(p-value), with a cut-off at 

p<0.05 (or >1.30103 in -log10) are presented. 
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