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Nowadays, there are molecular biology techniques providing information related to cervical cancer and its cause: the human
Papillomavirus (HPV), including DNA microarrays identifying HPV subtypes, mRNA techniques such as nucleic acid based
amplification or flow cytometry identifying E6/E7 oncogenes, and immunocytochemistry techniques such as overexpression
of p16. Each one of these techniques has its own performance, limitations and advantages, thus a combinatorial approach via
computational intelligence methods could exploit the benefits of each method and produce more accurate results. In this article
we propose a clinical decision support system (CDSS), composed by artificial neural networks, intelligently combining the results
of classic and ancillary techniques for diagnostic accuracy improvement. We evaluated this method on 740 cases with complete
series of cytological assessment, molecular tests, and colposcopy examination. The CDSS demonstrated high sensitivity (89.4%),
high specificity (97.1%), high positive predictive value (89.4%), and high negative predictive value (97.1%), for detecting cervical
intraepithelial neoplasia grade 2 or worse (CIN2+). In comparison to the tests involved in this study and their combinations, the
CDSS produced the most balanced results in terms of sensitivity, specificity, PPV, and NPV. The proposed system may reduce the
referral rate for colposcopy and guide personalised management and therapeutic interventions.

1. Introduction

Cervical cancer is the third most common cancer and the
fourth leading cause of cancer death in females worldwide

[1]. Cervical cancer is known to be caused almost always by
human papillomavirus (HPV) infection which is the com-
monest sexually transmitted infection worldwide. However,
the presence of HPV does not always lead to disease [2].
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About 100 types of HPV virus have been identified that
can infect humans. Among them, at least 15 are oncogenic
and thus can cause cancer of the cervix [3, 4]. Improved
understanding of HPV infection and the natural history of
cervical neoplasia have resulted in the addition of the HPV
DNA test along with the Pap test.

From the meta-analysis of the most authoritative pub-
lished studies [5–8] it can be concluded that the sensitivity
of Pap test combined with the HPV DNA test is higher than
the sensitivity of each individual method. This observation
suggests that the two methods complement each other
effectively. In contrast, the specificity of the Pap test combined
with the HPVDNA test was lower than the ratings of the two
methods separately as they differ in sensitivity and specificity
[9, 10]. Regarding the positive predictive value (PPV) the
findings are equivocal: some studies report that the values of
PPV were similar for each method separately and for their
combination, while others report smaller values of PPV for
their combination. As expected, the negative predictive value
(NPV) of HPVDNA test in conjunction with the Pap test was
high and some studies report values of almost 100%.

In the recent years, new technologies for cervical cancer
detection have been promoted to physicians and the public.
Some studies proposed the shift from DNA detection to
mRNA identification of the viral E6/E7 oncogenes that are
linked to oncogenic activation. Among them, mRNA typing
with nucleic acid sequence based amplification (NASBA) [11–
13] and flow cytometry (mRNA-Flow-FISH) techniques for
E6/E7 HPV mRNA detection have been enrolled in cancer
and precancerous lesions’ detection with promising results
in increasing PPV and reducing unnecessary recalls and
referrals to colposcopy [14–18]. At the same time, it seems that
the immunocytochemical detection of genetic effects such as
overexpression of p16 is a methodology which can increase
the diagnostic accuracy of the Pap test [19, 20].

Several published studies in the literature are attempting
to clarify the role of each technique as a unique test to
substitute or replace the Pap test [5–8, 11, 14–24]. By the
detailed analysis of the published studies it can be con-
cluded that the performance of the methods under control
differ significantly, affected by the disease incidence and
the prevalence of HPV infection in the population study
group, resulting in that the individual application of one
method, even if it offers a level of protection, does not reliably
determine the risk of each individual woman.

Advances in the areas of computer science and artificial
intelligence allow the development of computer systems that
support clinical diagnosis or therapeutic and treatment deci-
sions based on individualised patient data [25, 26]. Clinical
decision support systems (CDSSs) aim to codify and strate-
gically manage biomedical knowledge to handle challenges
in clinical practice using mathematical modelling tools,
medical data processing techniques, and artificial intelligence
methods. CDSSs cover a wide range of applications, from
diagnosis’ support tomodelling the probability of occurrence
of various diseases or the efficiency of alternative therapeutic
schemes. To do so, they are using not only individual patient
data but also data on risk factors and efficiency of available
therapeutic schemes stored in databases. CDSSs are based

on statistical analysis methods, such as regression analysis,
or artificial intelligence techniques, such as artificial neural
networks (ANNs) and pattern recognition techniques [27].
These can be used in order to extract hidden informationwith
essential clinical value from large datasets. Based on complex
algorithms, CDSSs may combine in a nonlinear complex
way a number of characteristics, for example, data related
to the patient (epidemiologic data, medical history, etc.),
data related to the disease (examinations’ results, biomarkers,
course of the disease, etc.), or data related to the treatment
(drug selection, drug doses, etc.). In this way, CDSSs provide
clinicians with patient-specific assessments or recommenda-
tions to aid clinical decisionmaking, or, evenmore, to provide
predictions of diagnostic or prognostic outcomes.

Regarding cervical cancer, an intelligent decision making
system may support physicians to improve the selection of
protocols for monitoring, diagnosing, and treating women
with intraepithelial lesions or cervical cancer or even support
the rational selection and the patient-specific follow-up
decision making for women who have been treated for high-
grade lesions. The majority of published studies, regarding
intelligent systems for cervical cancer support, are concerned
about computer aided diagnosis systems based on either
cytology or colposcopy image analysis [28–31]. On the other
hand, various papers have been published in the past few
years concerning bioinformatics’ CDSSs based on ANNs
for cancer improved detection, treatment, and follow-up
support [32–37]. To the best of our knowledge, however,
a similar bioinformatics intelligent CDSS for supporting
and improving cervical cancer detection and triage, like the
proposed system, has not been reported in the literature.

This study aims to investigate the potential role of a
novel intelligent bioinformatics CDSS which intelligently
combines the results of various diagnostic techniques used
in the modern cytopathology laboratory in order to provide
clinicians with patient-specific predictions of diagnostic or
prognostic outcomes and thus to identify women at true
risk of developing cervical cancer. The preliminary results
suggest that the proposed system may improve the accuracy
of diagnosis and in comparison to other combinatorial
approaches produces the most balanced results in terms of
specificity, sensitivity, PPV, and NPV.

2. Materials and Methods

2.1. Clinical Data. Data have been collected randomly from
women enrolled in a research project conducted by the
Department of Cytopathology of the Medical School of
Athens University (“ATTIKON” University Hospital) and
the Department of Obstetrics and Gynaecology of the Uni-
versity Hospital of Ioannina. Our study has been approved
by the Bioethics Committee of the “ATTIKON” University
Hospital and the Bioethics Committee of the University
Hospital of Ioannina. Participating women had signed an
informed patient consent (ICON) form allowing the use of
their epidemiologic, diagnostic, and molecular data for the
needs of the system’s development and research. The clinical
data (molecular examinations’ results, cytological diagnoses,
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histological examination of biopsies, visit number and date,
patient age, etc.) have been registered and stored into a
database which has been developed for the research project
purposes. For the processing of the data and algorithm
training and testing, anonymised data were extracted from
the database.

The study was carried out on ThinPrep LBC specimens
obtained from women referred for colposcopy for two rea-
sons: (1) either because they had a previous abnormal Pap
test, or (2) they volunteered to participate in the study
and accepted a colposcopical examination as well as the
application of various biomarkers on their biological material
even if they had a normal Pap test (e.g., women with HPV).
In case that a negative Pap test was followed by negative
colposcopy, no biopsy was taken and the case was considered
as clinically negative. The smears were routinely prepared
for cytological examination and the remaining material was
used for evaluation of additional biomarkers (reflex tests).
The cytology was assessed by experienced cytopathologists.
Biopsies were obtained from samples during colposcopy
and/or from surgical specimens through conization and were
fixed and prepared according to standard histopathology
protocols. All cases except the clinically negative ones were
diagnosed by a single expert histopathologist as daily routine
diagnosis and the evaluation of the biopsy was blinded
from the results of cytology and other ancillary tests. The
histopathologist uses as standard procedure p16 test (CINtec)
in all histological material from the cervix.

The patients’ database includes more than 5,000 patients
with more than 10,000 tests’ series due to follow-up cases.
Each of these series includes the following tests: cytology
according to the revised Bethesda classification (TBS2001
system) [38, 39]; HPV DNA typing using the CLART
HUMAN PAPILLOMAVIRUS 2 (GENOMICA) that allows
simultaneous detection of 35 different HPV genotypes (both
high and low risk) by PCR amplification of a fragment within
the highly conserved L1 region of the virus [40]; NASBA
assays [41] (NucliSENS EasyQ HPV v1.0) that are used for
the identification of E6/E7 mRNA of the HPV types 16, 18,
31, 33, and 45; the PermiFlow (Invirion Diagnostics, LLC,
Oak Brook, IL) that allows the identification of E6/E7 mRNA
expression of high-risk HPV using flow cytometry technique
[17]; and finally the immunocytochemical expression of p16
using the CINtec Cytology Kit [42]. All these examinations
produce results that can be used in a classification process and
they provide assessments of the clinical cytological sample as
a whole and not of individual cells.

Cytological findings of each patient were interpreted
according to the Bethesda classification system andwere clas-
sified as follows: (a) within normal limits (WNL); (b) atypical
squamous cells of undetermined significance (ASCUS); (c)
low-grade squamous intraepithelial lesion (LSIL); (d) high-
grade squamous intraepithelial lesion (HSIL); (e) squa-
mous cell carcinoma (SCC) or adenocarcinoma (Adeno-
Ca). Regarding the HPV DNA test, for which the cytology
laboratory is accredited by WHO and is proficient for the
specific technique, we considered high-risk (HR) HPV types
as HPV types 16, 18, 26, 31, 33, 35, 39, 45, 51, 52, 53, 56, 58,
59, 66, 68, 73, 82, and 85; and low-risk (LR) HPV types as

HPV types 6, 11, 40, 42, 43, 44, 54, 61, 62, 70, 71, 72, 81, 83, 84,
and 89 [3, 4]. It is well known that the probability of a low-
risk subtype to cause cervical lesions is very small; however,
the specificHPVDNA test is simultaneously identifying both
high-risk and low-risk HPV subtypes and thus we used all
available typing results during the development of the system,
in order to evaluate its performance based on all available
information.

For the cases that had histological outcome, the his-
tological diagnosis was used as the golden standard. Ran-
dom biopsies were not obtained in clinically negative cases,
which are defined as cases that had negative cytology and
additionally negative colposcopy; for these cases it is not
allowed by the ethical committee to have a sample for
histological examination. These cases may introduce a small
bias in the interpretation of the cytology performance. A
cervical biopsy was performed if Pap test revealed ASCUS
and above cytological categories (ASCUS+) or there was
a visible lesion upon colposcopy. Biopsy was performed
by experienced colposcopists (in practice for more than 10
years) as part of the study protocol. The three-tiered cervical
intraepithelial neoplasia (CIN) grading system was used for
histological diagnosis; thus the cases with histology were
classified as follows: (a) without evidence of malignancy
(negative histology); (b) cervical intraepithelial neoplasia
grade I (CIN1); (c) cervical intraepithelial neoplasia grade
II or III (CIN2/3); (d) squamous cell carcinoma (SCC) or
adenocarcinoma (Adeno-Ca).

From the more than 10,000 tests’ series, 740 cases that
were fully completed were selected for examination in this
study and were further analysed (Table 1). Cases with one
or more missing or invalid/inadequate tests’ results were
excluded from the study.

For each of the 740 cases, a feature set consisting of 46
variables derived by the applied tests was created. The result
of the cytological examination has been used according to the
Bethesda system. Results of the HPV DNA test examination
were expressed as 35 individual variables (either positive or
negative), one for each HPV DNA genotype. For the EasyQ
test (NASBA) we used the result for each individual HPV
type (16, 18, 31, 33, and 45). The result of the PermiFlow test
(FLOW) was used as positive or negative, as was the result
of the immunocytochemical expression of p16. Additionally,
other variables expressing the HPV DNA test results were
added; for instance, the existence of high-risk or low-risk
types was expressed as either positive or negative. Table 2
shows in detail the 46 independent variables/features that
were collected for each case.

According to the final outcome (the histological exami-
nation or a clinically negative result), each of the 740 cases
was classified into the following classes: class 1: negative
or clinically negative, class 2: CIN1, class 3: CIN2 or CIN3
(CIN2/3), and class 4: cancer (SCC or Adeno-Ca).

2.2. Feature Selection. The first step of our study was to
employ feature selection algorithms in order to identifywhich
of the 46 aforementioned features contributes most to the
prediction of the underlying condition of eachwoman, that is,
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Table 1: Correlation between the cytological and histological findings of the dataset used in the study.

Pap test result Total
WNL ASCUS LSIL HSIL SCC/Adeno-Ca

Histological examination result
Clinically negative 196 0 0 0 0 196 (26.5%)
Negative 35 60 22 5 0 122 (16.5%)
CIN1 31 66 142 22 0 261 (35.3%)
CIN2/3 3 13 27 93 0 136 (18.4%)
SCC/Adeno-Ca 0 1 2 7 15 25 (3.4%)

Total 265 (35.8%) 140 (18.9%) 193 (26.1%) 127 (17.2%) 15 (2%) 740
WNL: within normal limits, ASCUS: atypical squamous cells of unknown significance, LSIL: low-grade squamous intraepithelial lesion, HSIL: high-grade
squamous intraepithelial lesion, SCC: squamous cell carcinoma, Adeno-Ca: adenocarcinoma, CIN: cervical intraepithelial neoplasia.

the class of each case.The feature selection (FS) [43] problem
in pattern recognition may be stated as follows: given a set of
𝑁 features, find the best subset consisting of 𝑙 features that
contribute most to classification/prediction accuracy.

Feature subset selection algorithms can be classified into
two main categories: the filter approach and the wrapper
approach. In the filter approach the FS is done independently
of the learning algorithm of a classifier. A class separability
measuring criterion C(k) is adopted in order to rank all the
features. The value of the criterion C(k) is computed for each
of the features 𝑘 = 1, 2, . . . 𝑚. Features are then ranked
in the order of descending values of C(k). The 𝑙 features
corresponding to the 𝑙 best values of the specific criterion are
selected to form the best subset. Inwrapper typemethods, the
FS is “wrapped” around a learningmethod: the usefulness of a
feature subset is directly judged by the estimated accuracy of
a trained classifier. For high-dimensional datasets, wrapper
methods are far too computationally expensive to be used
because each feature subset considered must be evaluated
with the trained classifiers. For this reason, wrapper methods
will not be considered in this study.

In order to perform the FS task, we combined two
different filter methods [44]. The area between the empirical
receiver operating characteristic (ROC) curve and the ran-
dom classifier slope has been proposed as a class separability
measuring criterion [43]. As presented in [43], itmeasures the
overlap between the probability density functions describing
the data distribution of a feature in two classes. This criterion
serves as a measure of the class discrimination capability
of a specific feature. The second filter method we applied
is the recently proposed minimum redundancy-maximum
relevance (MRMR) feature selection framework, a mutual
information based methodology, which has proved to be one
of the best filter methods [45]. Both methods return the best
feature subset for a selected value l.

During feature ranking using the ROC FS method, we
applied an ad hoc cross correlation technique that incorpo-
rates correlation information into the ranking procedure so
as to avoid the existence of correlated features into the best
subset. The cross correlation coefficient between features is
considered in order to exclude features which are correlated
with the top-ranked. This technique is described in detail in

[43]. Using this procedure we are able to define themaximum
number of the 𝑙 best features.

Both of the adopted FS methods measure the classifica-
tion capability of a specific feature with respect to a two-
class problem. Since our dataset consists of 4 classes, in order
to perform the FS task, we adopted a similar to the “one
against one” multi-class classification strategy. Thus, we split
the dataset into 6 splits, one for each pair of classes; then
we applied the 2 mentioned FS techniques to each split and
lastly we explored the common top-ranked features between
the 12 best feature subsets returned by the two FS techniques.
Ultimately, these 𝑙 common top-ranked features form the best
feature subset which was used for the development of the
presented system.

2.3. Classification/PredictionModels and System’s Architecture.
The development of an intelligent clinical decision support
system involves the employment of several machine learning
methods and pattern recognition/classification techniques.
Machine learning is concerned about the development and
the study of intelligent systems that can learn fromdata, while
pattern recognition/classification aims to use these systems
in order to classify an object into a correct class based on
features characterising the object. These features are the ones
provided by the FS task. The machine learning algorithms
that implement pattern classification are known as classifiers.
There is a variety of classifiers used for pattern classification;
each one of those has certain limitations and advantages.
There are simple classifiers like the 𝑘-nearest neighbours (k-
NN) and the Bayesian classifier and more complex ones like
the artificial neural networks (ANNs) [27, 43, 46, 47]. For
example, the 𝑘-NN may be considered as a simple classifier
because it classifies a sample based on the 𝑘-closest training
samples in the feature space; it just computes the distances
between the new sample and the samples of the training set
and according to these distances it classifies the sample to the
class of the closest training samples. On the contrary, ANNs
are complex networks of artificial neurons interconnected
with each other, which obtain knowledge and the ability
to classify a sample by the application of complex learning
algorithms. This capability of learning from a certain dataset
makes the neural networks suitable for classification and
prediction tasks in practical situations. Furthermore, neural
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Table 2: Variables characterising patients’ biological status.

Variable name Description Value range

Pap test
The result of the cytological
examination expressed according to
Bethesda system

1 :WNL, 2 : ASCUS, 3 : LSIL,
4 : HSIL, 5 : SCC or ADENO-Ca

HPV DNA Arrays: HPV-6, HPV-11, HPV-16,
HPV-18, HPV-26, HPV-31, HPV-33, HPV-35,
HPV-39, HPV-40, HPV-42, HPV-43, HPV-44,
HPV-45, HPV-51, HPV-52, HPV-53, HPV-54,
HPV-56, HPV-58, HPV-59, HPV-61, HPV-62,
HPV-66, HPV-68, HPV-70, HPV-71, HPV-72,
HPV-73, HPV-81, HPV-82, HPV-83, HPV-84,
HPV-85, HPV-89

The existence of individual subtypes
according to the HPV DNA
examination

0 if the specific subtype is not
found, 1 if the specific subtype is
found

HR-HPV DNA The existence of high-risk subtypes
found by the HPV DNA test

0 if none of the high-risk types
was found, 1 if at least one of the
high-risk types is found

LR-HPV DNA The existence of low-risk subtypes
found by the HPV DNA test

0 if none of the low-risk types is
found, 1 if at least one of the
low-risk types is found

Arrays number The number of HPV subtypes found
by the HPV DNA test Expressed as number

N16 The result of the NASBA mRNA test
for HPV subtype 16 0 if negative, 1 if positive

N18 The result of the NASBA mRNA test
for HPV subtype 18 0 if negative, 1 if positive

N31 The result of the NASBA mRNA test
for HPV subtype 31 0 if negative, 1 if positive

N33 The result of the NASBA mRNA test
for HPV subtype 33 0 if negative, 1 if positive

N45 The result of the NASBA mRNA test
for HPV subtype 45 0 if negative, 1 if positive

FLOW
The result of the identification of
E6/E7 mRNA expression of high-risk
HPV using flow cytometry technique

0 if negative (positive expression
<1.5%), 1 if positive (positive
expression >1.5%)

p16 The result of the p16
immunocytochemical examination 0 if negative, 1 if positive

WNL: within normal limits, ASCUS: atypical squamous cells of unknown significance, LSIL: low-grade intraepithelial lesion, HSIL: high-grade squamous
intraepithelial lesion, SCC: squamous cell carcinoma, ADENO-Ca: adenocarcinoma.

networks are inherently nonlinear which makes them more
suitable for processing complex data patterns, in contrast to
many traditional methods.

In this study, in order to develop the proposed CDSS, we
employed and tested 6 classifiers: the k-nearest neighbours
(k-NN) classifier [46], the näıve Bayesian (NB) classifier [43],
the classification and regression tree (CART) [48], and 3 types
of ANNs, namely, the multilayer perceptron network (MLP)
[47], the radial basis function network (RBF) [47], and the
probabilistic neural network (PNN) [49, 50].

The classifiers were designed to classify the cases into the
following 4 groups corresponding to the cervical histology:
negative, CIN1, CIN2/3, and cancer (SCC or Adeno-Ca). The
feature subset characterising each case, which is derived by
the FS task, was used as the input of each classifier. Thus,
each classifier takes as inputs results from the examinations
of each case and outputs its classification group, providing
in this way a prediction regarding the actual cervical status

of each woman. The available dataset (Table 1) was divided
into 3 sets: the training set (486 cases) which was used to
build and train the classifiers, the validation set (126 cases)
which was used to optimise the parameters of each classifier,
and the test set (128 cases) which was used to evaluate their
predictive performance. The 3 sets were properly stratified
so that the classes’ distribution in each set is approximately
the same as that in the initial dataset. Thus, each set contains
representative samples of the same larger population. We
have also to note that, due to the many different classes and
the diversity of the examinations’ results, we had to use a large
set for training (66% of the initial dataset) so as to provide
to the classifiers representative samples of every situation.
During the training phase, the cases of the training set are
provided to the classifiers alongwith their classes (their actual
histology) and the classifiers learn from this specific dataset
using a learning algorithm. The cases of the validation and
the test sets are not used during training; thus these cases are
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unknown to the classifiers (unseen data).The validation set is
used as a test platform for fine tuningmodel’s parameters and
selecting the best-performingmodel, while the test set is used
to assess the predictive performance of the developedmodels
on data which have not been used in any way in the designing
process.

Through a process of designing, training, and testing
the aforementioned classifiers, we tried to investigate the
potential role of these models to improve the accuracy of
diagnosis. However, no single classifier produced satisfactory
results. By thoroughly investigating the classification results
for each case separately, we discovered that the PNN demon-
strated good predictive performance for most cases with
cytology LSIL and above, and specifically for women with
cytology LSIL harbouring CIN grade 2 or worse (CIN2+).
However, the PNN showed poor performance on identifying
the correct histology of women with ASCUS cytology. On
the other hand, we discovered that the MLP, even though
underperformed regarding the whole dataset, produced good
prediction outcomes for the cases with ASCUS cytology.This
fact led us to design a hybrid architecture, by combining a
PNN and a MLP.

The presented CDSS consists of two subsystems: themain
subsystem is a PNN, while the secondary is a MLP. The
PNN is used for the management of all the cases excluding
those with Pap test ASCUS, while the MLP is used for the
management of the ASCUS cases only. According to the
value of the Pap test, each case is promoted to the main
or the secondary subsystem; if Pap test is ASCUS, the data
are promoted to the MLP; otherwise they are promoted to
the PNN. The schematic diagram of the proposed decision
support system is presented in Figure 1. This architecture
proved to provide better classification results comparing to
a single classifier approach.

The learning and the predictive ability of an ANN is
determined by several factors, such as the type of the
network and the parameters of the specific type, the network’s
architecture (topology), the learning algorithm chosen for
training, and the characteristics of the data provided to the
network. Therefore, in order to construct the CDSS, the task
of identifying the optimal architecture and parameters of the
PNN and the MLP has to be accomplished.

2.3.1. The Probabilistic Neural Network (PNN). A proba-
bilistic neural network is a kind of multilayer feed-forward
radial basis artificial neural network suitable for classification
and prediction problems. PNNs are widely used for pattern
recognition problems, nonlinear mapping, and estimation of
the probability of classmembership and likelihood ratios.The
PNN is based on the theory of Bayesian classification and is
closely related to classical estimators for probability density
functions [49, 50]. The basic operation performed by the
PNN is an estimation of the probability density function of
each class from the provided training samples using Gaussian
kernels. These estimated densities are then used in a decision
rule to perform the classification.

The PNN architecture consists of four layers: the input
layer, the pattern layer, the summation layer, and the output

layer, as depicted in Figure 2. The number of neurons of
the two hidden layers (pattern and summation layers) is
determined by the training set.The pattern layer contains one
neuron for each sample of the training set, while the summa-
tion layer contains one neuron for each class of the training
set. The training process of the PNN is straightforward and it
is accomplished by setting the weights of the network using
the samples of the training set; thus no learning algorithm is
applied during PNN’s implementation. The weights between
the input and the pattern layer are set as follows:

𝑤
(𝑃)

𝑖𝑗 = 𝑝𝑖𝑗, (1)

where 𝑤
(𝑃)

𝑖𝑗
is the weight between the 𝑖th neuron of the input

layer and 𝑗th neuron of the pattern layer, and 𝑝𝑖𝑗 is the value
of the 𝑖th feature of the 𝑗th sample of the training set. The
weights between the pattern and the summation layer are set
as follows:

𝑤
(𝑆)

𝑗𝑘
= {

1 if 𝑇
(𝑗)

𝑘
= 1

0 else,
(2)

where𝑤(𝑆)
𝑗𝑘

is theweight between the 𝑗th neuron of the pattern
layer and 𝑘th neuron of the summation layer. The value of
𝑇
(𝑗)

𝑘
is 1 only when sample 𝑗 is associated with class 𝑘 and 0

elsewhere.
When an input is presented, the pattern layer computes

the distances between the input vector and the training
vectors and produces a vector which indicates how close the
input is to the training samples, as follows:

𝑑
(𝑃)

𝑗 = √∑
𝑖

(𝑤
(𝑃)

𝑖𝑗
− 𝑥𝑖)
2
, (3)

where𝑑(𝑃)
𝑗

is the distance between the input vector and the 𝑗th
sample of the training set, while 𝑥𝑖 denotes the 𝑖th variable of
the input (𝑖th node of input layer).

The transfer function of the neurons of the pattern layer
is a radial basis function. The output of each pattern neuron
is computed as

𝑃𝑗 = exp(−
𝑑
(𝑃)

𝑗

2𝜎2
) , (4)

where 𝜎 is a smoothing parameter corresponding to the
standard deviation of the Gaussian distribution.

Each summation neuron sums the contributions for each
class of the input to produce at the net output a vector of
probabilities. The output of each summation node can be
expressed as

𝑆𝑘 =
1

∑𝑗 𝑤
(𝑆)

𝑗𝑘

∑
𝑗

𝑤
(𝑆)

𝑗𝑘
⋅ 𝑃𝑗. (5)

Finally, a competitive transfer function in the output
layer (single neuron) classifies the input vector into a specific
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Figure 1: Schematic block diagram of the proposed decision support system. The examinations’ results of each patient are used as inputs
to the CDSS. The medical information is transformed to data appropriate for processing by the PNN and the MLP subsystems. According
to the value of the Pap test, the transformed data of each case is promoted to the PNN or the MLP subsystem; if Pap test is ASCUS, the
data are promoted to the MLP; otherwise they are promoted to the PNN. The output of each network is properly transformed by the data
interpretation block to medical information. At the end, the CDSS provides predictions regarding the actual cervical status of each woman.
NASBA: nucleic acid sequence based amplification for the identification of E6/E7 mRNA of the HPV types 16, 18, 31, 33, and 45; FLOW: flow
cytometric E6/E7 HPVmRNA assay; p16: p16 immunocytochemical examination; ASCUS: atypical squamous cells of unknown significance;
PNN: probabilistic neural network; MLP: multilayer perceptron network.
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Figure 2: Architecture of a probabilistic neural network (PNN).

class if that class had the maximum output value from the
corresponding neuron at the summation layer:

𝑦 = argmax
𝑘

𝑆𝑘. (6)

From the above, it is obvious that in the PNN architecture
the number of the hidden layers and the transfer functions of
the neurons are predefined and the number of the neurons
of each hidden layer depends on the size and the form of the
training set. The single free parameter of this network is the

smoothing parameter sigma (𝜎), the standard deviation of the
Gaussians.Thus, the selection of the optimal PNN, which will
constitute the main subsystem of the CDSS, is essentially the
act of determining the optimal sigma value.

2.3.2. The Multilayer Perceptron Network (MLP). The mul-
tilayer perceptron is the most widely used neural network.
It is a feed-forward ANN with an input layer that receives
external inputs, one or more hidden layers and an output
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layer providing the output of the network. Each layer of
the MLP includes one or more neurons directionally linked
with the neurons from the previous and the next layer.
Determining the right architecture of a MLP is the task of
selecting the optimal parameters of the network, such as the
number of the hidden layers and the number of the neurons
of each hidden layer. As far as the learning algorithm is
concerned, the back-propagation (BP) algorithm [47] is the
most common learning technique for training a typical MLP.
During trainingwith theBP algorithm, information about the
errors of the network on known data is propagated backwards
from the output layer to the input layer and it is used to adjust
the connections between the layers and their neurons (the
weights and biases of the network) in order to minimize the
error and thus improve performance.

As far as the training of the MLPs is concerned, the
Levenberg-Marquardt BP algorithmwas used for the learning
process, while the mean squared normalized error (MSE)
was used as the network’s cost function [47]. Training a
MLP is essentially the process of modifying the weights
and biases of the network in order to minimize this cost
function. The learning rate and the momentum of the BP
algorithm were set equal to 0.1 and 0.9, respectively. In order
to avoid overfitting, an early-stopping learning technique
was implemented, according to which the classification error
on the validation subset was monitored during the training
process. When the validation error increases for a specified
number of iterations of the BP algorithm, the training is
stopped, and the weights and biases at the minimum of the
validation error are returned. For the training process, criteria
for convergence were met with 40 maximum validation
failures or when MSE ≤ 0.0001 or when a maximum of 1000
iterations (epochs) was reached.

As discussed in [51], empirical studies often found that
networks with many hidden layers generally perform no
better, and often worse, than neural networks with one or
two hidden layers. Thus, in this study, we considered MLP
architectures with one or two hidden layers. All neurons in
the hidden and the output layers use the sigmoidal activation
function. In order to identify the optimal network topology,
we applied a trial-and-error cascade constructive process
by adding neurons to the hidden layers, one at time, and
evaluating the developed MLPs. For each MLP architecture
(one-hidden-layered and two-hidden-layered), this process
was stopped when the MLPs showed continuous impaired
performance.

With the determined number of hidden layers and neu-
rons, both the learning rate and the momentum coefficient of
the BP algorithm were further investigated to ensure a high
probability of global network convergence.

2.3.3. Selection of the Optimal Models. In order to identify
the optimal parameters of the developed classifiers and
eventually select the optimal PNN and MLP which comprise
the CDSS’s subsystems, we performed the parameter tuning
task by evaluating the developedmodels on the validation set.
However, during this task we discovered that classifiers with
different parameters presented the same best performance on

the validation set, making it difficult to select the optimal
models. Thus, in order to perform more accurately the
model selection task, we also took into consideration the
classification performance on the training set.

Let the classification error on the training set (resubsti-
tution error) be denoted as 𝜀

𝑟 and the classification error on
the validation set as 𝜀V. For each classification algorithm used
in this study, we build 𝑆 classifiers with different parameters,
and we define as optimal the classifier which minimizes the
cost function:

𝐽𝑚 =
𝜀𝑟𝑚 + 𝜀V𝑚

2
, ∀𝑚 ∈ 𝑆, ∀𝜀

V
𝑚 ≡ min {𝜀

V
𝑚} . (7)

Utilizing the above cost function for the selection of
the optimal parameters, we ensure that the optimal models
demonstrate the best predictive performance on the valida-
tion set (the models which minimize the cost function must
produce the minimum classification error on the validation
set) and at the same time they perform well on the cases of
the training set (themodels whichminimize the cost function
must produce low resubstitution error).

2.3.4. Performance Evaluation. The final performance evalu-
ation task was carried out using resubstitution and holdout
validations. In resubstitution validation, the model is tested
on the data which have been used in the learning process,
that is, the data of the training set. This method provides
a measure of the network’s learning ability; yet it is not
preferable for performance evaluation tasks as it is known
to be optimistically biased. However, as shown in [52, 53], in
discrete classification problems with large-sample categorical
datasets, like the classification problem of this study, resubsti-
tution can be significantly accurate relative to more complex
error estimation schemes, since the optimistic bias and the
variance of the method tend to be vanished as the sample
size increases, provided that classifier complexity is not too
high. For this reasonwedecided to take into consideration the
performance of the final models when for testing the training
and the validation sets are used. In holdout validation the
optimal models are tested on data that were not used in any
way in the building process (training and parameter tuning),
that is, the data of the test set.The holdout classification error
serves as a measure of the model’s predictive (generalization)
ability.

We have to note that we did not use complex error
estimation schemes like the 𝑘-fold cross validation, so as to be
able to study the classification result for each case separately
and thus to evaluate the system at individual level. It must be
noted that for the clinicians the significance of such a system
stands on its ability to correctly identify cases with conflicting
tests’ results which are difficult to be evaluated by them.
Hence, more than the overall accuracy, what is important is
the correct identification of as many as possible women with
insignificant cytological findings harbouring CIN2+ lesions,
as well as the correct identification of women with HSIL+
cytology but with actual histology below CIN2.

Due to the above, the predictive performance of the finally
selected ANNs is presented by confusion matrices obtained
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Table 3: Classification accuracies on the training, validation, and test sets of the 6 classifiers developed (single classifier approach).

Classifier k-NN NB CART MLP RBF PNN

Optimal
parameters k = 5 —

(i) Pruning level = 7/11
(ii) Number of terminal

nodes = 8
2 hidden layers 18 × 18

(i) 486 neurons in the
hidden layer (all samples

of training set)
(ii) Sigma = 0.6

Sigma = 0.4

Training set 78.6% 76.8% 77.6% 78.4% 87.6% 87.6%
Validation set 79.4% 80.9% 78.6% 77.0% 77.7% 80.2%
Test set 82.8% 82.8% 75.8% 80.5% 70.3% 80.0%
k-NN: k-nearest neighbours classifier, NB: naı̈ve Bayesian classifier, CART: classification and regression tree, MLP: multilayer perceptron network, RBF: radial
basis function network, PNN: probabilistic neural network.

through testing the networks on the training, validation, and
test sets.

3. Results

3.1. Feature Selection. As described, 12 feature subsets have
been produced by the application of the adopted FS tech-
niques to the split datasets, 6 of them corresponding to
the ROC FS method and 6 to the MRMR FS framework.
Incorporating cross correlation information into the ranking
procedure of the ROC FS method, we discovered that,
from the 46 variables obtained from the 5 medical tests
considered, only 24 contain useful uncorrelated information.
Investigating the common top-ranked uncorrelated features
between the 12 subsets, we concluded that the following 18
contribute importantly to the prediction of the underlying
condition of each case: Pap test, HPV-16, HPV-18, HPV-
31, HPV-33, HPV-45, HPV-51, HPV-53, HPV-58, HR-HPV
DNA, LR-HPV DNA, N16, N18, N31, N33, N45, FLOW, and
p16. Since the attributes HPV-16, HPV-18, HPV-31, HPV-33,
HPV-45, HPV-51, HPV-53, and HPV-58 correspond to high-
risk subtypes of the HPVDNA test, we properly transformed
the attribute HR-HPV DNA so as to correspond to the
existence of the rest high-risk subtypes only. This process
took place in order to dismiss the correlation between the
HR-HPV DNA attribute and the rest. Eventually, these 18
features form the best feature subset characterizing each
patient. Therefore, for each case, the classifiers take as inputs
the values of these 18 variables.

3.2. Classification/Prediction Models Selection and
Performance Evaluation

3.2.1. Single Classifier Approach. As discussed previously,
firstly we explored the single classifier approach, according
to which a single classifier is being used for the management
of all the cases. Six different classifiers have been developed
and evaluated. Table 3 presents the classification accuracy on
the training, validation, and test sets of each model, along
with its optimal parameters. It seems that the single classifier
approach is not adequate to address the problem, as none
of these classifiers produced satisfactory results. However, by
investigating the classification results for each case separately,
we discovered that, between these 6 classifiers, the PNN was

superior in classifying correctly those cases with Pap test
LSIL and above, whereas the MLP was superior in classifying
correctly those cases with Pap test ASCUS. With regard to
the cases with negative cytology, all the classifiers produced
similar results with none of them performing significantly
better compared to the others. Because of these findings, we
designed the hybrid solution, by combining a PNN for the
classification of all the cases excluding those with cytology
ASCUS and a MLP for the classification of the cases with
ASCUS cytology, which, according to the following results,
proved to be better than the single classifier approach.

3.2.2. Selection and Performance of the Optimal PNN. As
mentioned before, in the PNN architecture, the only free
parameter is the smoothing parameter sigma (𝜎). Thus,
in order to identify the optimal network, we trained and
evaluated several PNNs with different sigma values.

As the optimal PNN was used for the management of all
the cases excluding those with Pap test ASCUS, in order to
train and evaluate the developed PNNs, the 140 cases with
ASCUS cytology were excluded from the 3 datasets; thus, 400
cases have been used for training, 100 cases for validation and
100 cases for testing these networks. The training, validation,
and test sets of the PNNs are presented in Tables 4, 5, and 6,
respectively.

The topology of each of the PNNs developed is described
as follows: the input layer consists of 18 nodes, one for each
of the features of the feature subset derived by the FS task;
the pattern layer contains 400 neurons, one for each of
the training samples; and the summation layer contains 4
neurons, one for each class of the training set.

Employing several PNNs with different sigma values, we
concluded that performance was decreasing significantly for
sigma values greater than 0.8. In order to obtain the optimal
value of the parameter 𝜎, and thus identify the PNN which
performs best, we trained and evaluated 800 PNNs, for 𝜎 =
0.001 to 0.801, with a step of 0.001. It must be noted that PNNs
are by design very fast networks and thus the time required
to train and test 800 PNNs is not an important issue.

Evaluating the 800 developed PNNs, we concluded that
the cost function 𝐽𝑚 is minimized for a sigma value equal
to 0.380. Thus, the optimal PNN comprising the main
subsystem of the CDSS is the PNN with 𝜎 = 0.380. The
predictive performance of this PNN is presented through
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Table 4: Training set of PNNs (histology and cytology).

Pap test result Total
WNL LSIL HSIL SCC/Adeno-Ca

Histological examination result
Negative/clinically negative 154 16 3 0 173 (43.3%)
CIN1 21 97 11 0 129 (32.2%)
CIN2/3 2 18 62 0 82 (20.5%)
SCC/Adeno-Ca 0 1 6 9 16 (4.0%)

Total 177 (44.2%) 132 (33.0%) 82 (20.5%) 9 (2.3%) 400

Table 5: Validation set of PNNs (histology and cytology).

Pap test result Total
WNL LSIL HSIL SCC/Adeno-Ca

Histological examination result
Negative/clinically negative 40 2 1 0 43 (43.0%)
CIN1 5 23 5 0 33 (33.0%)
CIN2/3 1 4 15 0 20 (20.0%)
SCC/Adeno-Ca 0 1 1 2 4 (4.0%)

Total 46 (46.0%) 30 (30.0%) 22 (22.0%) 2 (2.0%) 100

Table 6: Test set of PNNs (histology and cytology).

Pap test result Total
WNL LSIL HSIL SCC/Adeno-Ca

Histological examination result
Negative/clinically negative 37 4 1 0 42 (42.0%)
CIN1 5 22 6 0 33 (33.0%)
CIN2/3 0 5 16 0 21 (21.0%)
SCC/Adeno-Ca 0 0 0 4 4 (4.0%)

Total 42 (42.0%) 31 (31.0%) 23 (23.0%) 4 (4.0%) 100

Table 7: Confusion matrix obtained through testing the PNN on
the cases of the training set (Table 4).

PNN classification result
Negative CIN1 CIN2/3 Ca

Histological examination result
Negative/clinically negative 163 10 0 0
CIN1 13 109 7 0
CIN2/3 1 5 76 0
SCC/Adeno-Ca 0 0 4 12

confusion matrices obtained by testing the network on the
training, validation, and test sets (Tables 7, 8, and 9). The
overall classification accuracies of the PNN on the training,
validation, and test sets are 90.0%, 82.0%, and 84.0%, respec-
tively.

Table 10 depicts the comparison between the cytological
diagnosis obtained from the Pap test and the PNN, for
all the cases excluding ASCUS. Moreover, by comparing
Tables 4–6 (cytological diagnosis) with Tables 7–9 (PNN’s
classifications), respectively, it can be observed that the PNN

Table 8: Confusion matrix obtained through testing the PNN on
the cases of the validation set (Table 5).

PNN classification result
Negative CIN1 CIN2/3 Ca

Histological examination result
Negative/clinically negative 40 2 1 0
CIN1 5 24 4 0
CIN2/3 1 3 16 0
SCC/Adeno-Ca 0 1 1 2

Table 9: Confusion matrix obtained through testing the PNN on
the cases of the test set (Table 6).

PNN classification result
Negative CIN1 CIN2/3 Ca

Histological examination result
Negative/clinically negative 37 5 0 0
CIN1 5 24 4 0
CIN2/3 0 2 19 0
SCC/Adeno-Ca 0 0 0 4
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Table 10: Diagnostic accuracy of cytology and the PNN for all the cases excluding ASCUS.

Cytological diagnosis PNN diagnosis
Training set Validation set Test set Training set Validation set Test set

Histology
Negative/clinically negative 89.0% 93.0% 88.1% 94.2% 93.0% 88.1%
CIN1 75.2% 69.7% 66.7% 84.5% 72.7% 72.7%
CIN2/3 75.6% 75.0% 76.2% 92.7% 80.0% 90.5%
SCC/Adeno-Ca 56.3% 50.0% 100.0% 75.0% 50.0% 100.0%

Average accuracy per set 80.5% 80.0% 79.0% 90.0% 82.0% 84.0%
Overall accuracy 80.2% (481/600 cases) 87.7% (526/600 cases)

Table 11: Training, validation, and test sets of the MLPs (ASCUS cases only).

Training set Validation set Test set Total
Histological examination result

Negative 36 12 12 60 (42.8%)
CIN1 40 12 14 66 (47.2%)
CIN2/3 9 2 2 13 (9.3%)
SCC/Adeno-Ca 1 0 0 1 (0.7%)

Total 86 (61.4%) 26 (18.6%) 28 (20.0%) 140

Table 12: Confusion matrix obtained through testing the MLP on
the training set of the ASCUS cases.

MLP classification result
Negative CIN1 CIN2/3 Ca

Histological examination result
Negative/clinically negative 34 2 0 0
CIN1 14 25 1 0
CIN2/3 2 1 6 0
SCC/Adeno-Ca 0 0 1 0

Table 13: Confusion matrix obtained through testing the MLP on
the validation set of the ASCUS cases.

MLP classification result
Negative CIN1 CIN2/3 Ca

Histological examination result
Negative/clinically negative 11 1 0 0
CIN1 4 8 0 0
CIN2/3 0 1 1 0
SCC/Adeno-Ca 0 0 0 0

outperformed cytology, as it correctly classified 240 negative
cases (Tables 7–9: 163 + 40 + 37), 157 CIN1 cases (Tables 7–9:
109+24+24), 111 CIN2/3 cases (Tables 7–9: 76+16+19), and 18
Ca cases (Tables 7–9: 12+2+4), comparing to the 231 negative
cases (Tables 4–6: 154 + 40 + 37), 142 CIN1 cases (Tables 4–6:
97+23+22), 93 CIN2/3 cases (Tables 4–6: 62+15+16), and 15
Ca cases (Tables 4–6: 9+2+4) that cytology correctly detected.
In total, the PNN predicted correctly the histology of 526 of
the 600 cases, whereas cytology diagnosed correctly 481 of
the 600 cases of the available dataset (excluding ASCUS). It
is noteworthy that the PNN classified correctly 17 of the 27

Table 14: Confusion matrix obtained through testing the MLP on
the test set of the ASCUS cases.

MLP classification result
Negative CIN1 CIN2/3 Ca

Histological examination result
Negative/clinically negative 11 1 0 0
CIN1 3 11 0 0
CIN2/3 0 0 2 0
SCC/Adeno-Ca 0 0 0 0

LSIL cases harbouring CIN2/3 (Tables 4–6: 18 + 4 + 5 = 27

LSIL cases with CIN2/3 histology, Tables 7–9: 5 + 3 + 2 = 10

of these cases classified from the PNN as CIN1 and the rest
17 classified as CIN2/3) and 7 of the 22 HSIL cases with CIN1
histology (Tables 4–6: 11 + 5 + 6 = 22 HSIL cases with CIN1
histology, Tables 7–9: 7 + 4 + 4 = 15 of these cases classified
from the PNN as CIN2/3 and the rest 7 classified correctly as
CIN1).

3.2.3. Selection and Performance of the Optimal MLP. As
mentioned before, the MLP was employed exclusively for
the classification of the cases with ASCUS cytology. Table 11
shows in detail the distribution of the ASCUS cases used in
the training, validation, and test sets of the MLPs.

Adopting the trial-and-error constructive process
described previously, we eventually trained and evaluated
514MLPs: 30 of themwith one hidden layer, with their layer’s
size ranging from 10 to 40 neurons, and 484 with two hidden
layers, with hidden layers’ sizes ranging from 5 to 27 neurons.

Based on the experimental results, the optimal architec-
ture of the MLP was found to be a network with two hidden
layers, with 11 neurons on the first hidden layer and 17 on
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Table 15: Definition of positivity of the medical tests involved in this study for performance evaluation purposes.

Medical tests Definition of positivity
Pap test (cut-off ASCUS+) ASCUS or worse
Pap test (cut-off LSIL+) LSIL or worse
Pap test (cut-off HSIL+) HSIL or worse
HPV DNA test Existence of any HPV subtype found by the HPV DNA test
HR-HPV DNA Existence of at least one of the high-risk subtypes found by the HPV DNA test

NASBA E6/E7 HPV mRNA test Positive result of the E6/E7 HPV mRNA test (NASBA) for any of the HPV
subtypes 16, 18, 31, 33, and 45

Flow cytometric E6/E7 HPV mRNA assay Positive result of the identification of E6/E7 mRNA expression of high-risk
HPV using flow cytometry technique (positive expression >1.5%)

p16 Positive result of the p16 immunocytochemical examination
Different positivity thresholds have been taken into consideration for Pap test andHPVDNA test. HR-HPV: high-risk human papillomavirus, ASCUS: atypical
squamous cells of unknown significance, LSIL: low-grade intraepithelial lesion, and HSIL: high-grade squamous intraepithelial lesion.

Table 16: Diagnostic performance of cytology, biomarkers, and the CDSS to identify high-grade cervical intraepithelial neoplasia or cancer
(CIN2+).

Histology endpoint CIN2+ Sensitivity (%) Specificity (%) PPV (%) NPV (%) Youden’s index
Pap test (cut-off ASCUS+) 98.1 45.3 33.3 98.9 0.43
Pap test (cut-off LSIL+) 89.4 67.0 43.0 96.0 0.56
Pap test (cut-off HSIL+) 71.4 95.3 81.0 92.3 0.67
HPV DNA test 91.9 61.5 39.9 96.5 0.53
HR-HPV DNA 89.4 67.4 43.2 95.8 0.57
NASBA E6/E7 HPV mRNA test 77.0 90.2 68.5 93.4 0.67
Flow cytometric E6/E7 HPV mRNA assay 93.2 81.9 58.8 97.7 0.75
p16 58.4 92.9 69.6 88.9 0.51
CDSS 89.4 97.1 89.4 97.1 0.87
Statistical measures have been calculated using all the cases of the dataset (Table 1). Histology endpoint is CIN2+ for all cases. Definition of positivity of each
medical test is presented in Table 15. For the CDSS, positivity was defined as a classification result of CIN2/3 or cancer. CIN2+: cervical intraepithelial neoplasia
grade 2 or worse, PPV: positive predictive value, and NPV: negative predictive value.

the second. The input layer of the MLP consists of 17 nodes,
one for each of the 18 features of the feature subset excluding
Pap test (as all the cases had ASCUS cytology). The output
layer contains 4 neurons, one for each class of the dataset. In
addition, by adopting a trial-and-error approach, the network
appeared to bemore efficient with the learning rate at 0.01 and
the momentum at 0.8.

The overall classification accuracies of the MLP on the
training, validation, and test sets are 75.6%, 76.9% and, 85.7%,
respectively. Tables 12–14 present the confusion matrices
of the MLP obtained through testing the network on the
training, the validation, and the test sets of the ASCUS
cases, respectively. Using the optimal MLP, we managed to
correctly detect the actual histology of 109 of the 140 ASCUS
cases (Tables 12–14). It must be noted that due to positive
biomarkers, the MLP detected 9 of the 13 ASCUS cases
harbouring CIN2/3 (Tables 12–14: 6 + 1 + 2).

3.3. Comparison between the CDSS and the Medical Tests to
Detect CIN2+ Lesions. In order to evaluate the performance
of the proposed CDSS compared to the tests involved in
this study, we calculated the sensitivity, specificity, positive
predictive value (PPV), and negative predictive value (NPV)
of the methods on the basis of detecting high-grade cervical

intraepithelial neoplasia and cancer (CIN2+). Moreover, we
calculated Youden’s index (Sensitivity+Specificity-1) of each
method, which is a single statistic measure of a test’s perfor-
mance, used for the evaluation of the overall discriminative
power of a test and for comparison of this test with others.

The performancemeasures have been calculated using all
the cases of the dataset (740 cases). The cutoff of CIN2+ was
used in order to have comparable results between the CDSS
and the other medical tests. According to this threshold,
the cases with histologic diagnosis of CIN1 and below were
considered negative and the cases with histologic diagnosis
of CIN2 and above were considered positive. The definition
of positivity of each medical test is presented in Table 15. As
shown is Table 15, different positivity thresholds have been
taken into consideration for the Pap test and the HPV DNA
test. As far as the CDSS is concerned, the values of the
18 features characterizing each patient are provided to the
system and the latter classifies the case into one of the 4
groups corresponding to cervical histology. For the CDSS,
positivity was defined as a classification result of CIN2/3
or cancer. Table 16 presents the diagnostic performance of
the CDSS and the medical tests, in terms of sensitivity,
specificity, PPV, and NPV, in predicting high-grade cervical
intraepithelial neoplasia or cancer.
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Table 17: Performance of type “OR” combinations between two tests in detecting CIN2+.

Combinations of medical tests Cytology cutoff Sensitivity (%) Specificity (%) PPV (%) NPV (%) Youden’s index

Pap test or HPV DNA ASCUS+ 99.4 37.5 30.7 99.5 0.37
Pap test or HPV DNA LSIL+ 96.3 52.0 35.8 98.0 0.48
Pap test or HPV DNA HSIL+ 96.3 60.3 40.3 98.3 0.57
Pap test or HR-HPV DNA ASCUS+ 98.8 39.2 31.1 99.1 0.38
Pap test or HR-HPV DNA LSIL+ 95.7 54.7 37.0 97.8 0.50
Pap test or HR-HPV DNA HSIL+ 95.7 65.8 43.8 98.2 0.62
Pap test or NASBA ASCUS+ 98.8 44.2 33.0 99.2 0.43
Pap test or NASBA LSIL+ 94.4 64.6 42.6 97.7 0.59
Pap test or NASBA HSIL+ 88.8 87.4 66.2 96.6 0.76
Pap test or FLOW ASCUS+ 99.4 41.8 32.2 99.6 0.41
Pap test or FLOW LSIL+ 97.5 61.7 41.4 98.9 0.59
Pap test or FLOW HSIL+ 96.9 80.3 57.8 98.9 0.77
Pap test or p16 ASCUS+ 99.4 45.3 33.5 99.6 0.45
Pap test or p16 LSIL+ 92.5 66.1 43.2 97.0 0.59
Pap test or p16 HSIL+ 81.4 90.2 69.7 94.6 0.72
HPV DNA or NASBA 93.8 60.3 39.6 97.2 0.54
HPV DNA or FLOW 98.1 56.6 38.6 99.1 0.55
HPV DNA or p16 93.8 59.6 39.2 97.2 0.53
HR-HPV DNA or NASBA 91.9 65.8 42.8 96.7 0.58
HR-HPV DNA or FLOW 97.5 61.5 41.3 98.9 0.59
HR-HPV DNA or p16 92.5 64.8 42.2 96.9 0.57
NASBA or FLOW 96.3 79.6 56.8 98.7 0.76
NASBA or p16 87.0 85.7 62.8 95.9 0.73
FLOW or p16 96.3 77.5 54.4 98.7 0.74
Statistical measures have been calculated using all cases of the dataset (Table 1). Histology endpoint is CIN2+ for all cases. Definition of positivity of each
medical test is presented in Table 15. CIN2+: cervical intraepithelial neoplasia grade 2 or worse, HR-HPV: high-risk human papillomavirus, NASBA: nucleic
acid sequence based amplification for the identification of E6/E7 mRNA of the HPV types 16, 18, 31, 33, and 45, FLOW: flow cytometric E6/E7 HPV mRNA
assay, PPV: positive predictive value, and NPV: negative predictive value.

In addition, we evaluated the performance of the CDSS in
comparison to several combinatorial approaches of the med-
ical tests. Two different combinatorial approaches have been
taken into consideration; the “logical OR” and the “logical
AND” combinations. In “OR” combinatorial approach, the
combination is defined as positive when any of the combined
tests is positive, while, in “AND” approach, the combination is
defined as positive when all of the combined tests are positive.
Tables 17, 18, 19, and 20 present the performance of the several
combinations considered in detecting CIN2+ lesions.

The CDSS showed high sensitivity (89.4%), high speci-
ficity (97.1%), high PPV (89.4%), and high NPV (97.1%), for
detecting CIN2+. In comparison to themedical tests involved
in this study and their combinations, CDSS produced the
most balanced results in terms of sensitivity, specificity, PPV,
and NPV. Moreover, when ranking the tests by maximal
Youden’s index, which gives equal weight to sensitivity and
specificity, the CDSS ranked highest (Youden’s index of 0.87),
outperforming all the tests and their combinations.

4. Discussion and Conclusions

The gynaecological smear is viewed as the most successful
cancer test of all time and of all organs [54]. Nevertheless,
and despite the advances of the last decade, there is still
lack of consensus on the optimal management of women
with abnormal pap smears; actually a proportion of women
having LSIL may have a HSIL and additionally it is not
infrequent that women with HSIL cytology may have CIN1
or even normal histology; finally women with ASCUS in
cytology present similar problems on their management.
There have been many efforts to apply various biomarkers
in the triage of abnormal Pap smears [14, 19, 36, 37, 55–65].
The studied methods are either highly sensitive or highly
specific, however not both at the same time and thus no
perfect method is available today; in our study similar results
were found (see Tables 16–20). In ourmaterial the percentage
of CIN2+ cases in the total of the cases given as ASCUS is
(Table 1: 13 + 1) 14/140 = 10.0%; additionally the percentage
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Table 18: Performance of several type “OR” combinations between more than two tests in detecting CIN2+.

Combinations of medical tests Cytology cutoff Sensitivity (%) Specificity (%) PPV (%) NPV (%) Youden’s index

Pap test or HPV DNA or NASBA ASCUS+ 99.4 36.6 30.4 99.5 0.36
Pap test or HPV DNA or NASBA LSIL+ 96.3 51.1 35.4 98.0 0.47
Pap test or HPV DNA or NASBA HSIL+ 96.3 59.1 39.5 98.3 0.55
Pap test or HPV DNA or FLOW ASCUS+ 100.0 35.1 30.0 100.0 0.35
Pap test or HPV DNA or FLOW LSIL+ 98.1 48.9 34.8 99.0 0.47
Pap test or HPV DNA or FLOW HSIL+ 98.1 56.0 38.3 99.1 0.54
Pap test or HPV DNA or p16 ASCUS+ 99.4 37.5 30.7 99.5 0.37
Pap test or HPV DNA or p16 LSIL+ 96.3 51.3 35.5 98.0 0.48
Pap test or HPV DNA or p16 HSIL+ 96.3 58.9 39.4 98.3 0.55
Pap test or HPV DNA or NASBA or FLOW ASCUS+ 100.0 34.9 29.9 100.0 0.35
Pap test or HPV DNA or NASBA or FLOW LSIL+ 98.1 48.7 34.7 98.9 0.47
Pap test or HPV DNA or NASBA or FLOW HSIL+ 98.1 55.4 38.0 99.1 0.54
Pap test or HPV DNA or NASBA or FLOW or p16 ASCUS+ 100.0 34.9 29.9 100.0 0.35
Pap test or HPV DNA or NASBA or FLOW or p16 LSIL+ 98.1 48.0 34.4 98.9 0.46
Pap test or HPV DNA or NASBA or FLOW or p16 HSIL+ 98.1 54.4 37.4 99.1 0.53
HPV DNA or NASBA or FLOW 98.1 56.1 38.3 99.1 0.54
HPV DNA or NASBA or p16 93.8 58.5 38.6 97.1 0.52
HPV DNA or NASBA or FLOW or p16 98.1 54.7 37.6 99.1 0.53
NASBA or FLOW or p16 98.1 76.7 53.9 99.3 0.75
Statistical measures have been calculated using all cases of the dataset (Table 1). Histology endpoint is CIN2+ for all cases. Definition of positivity of each
medical test is presented in Table 15. CIN2+: cervical intraepithelial neoplasia grade 2 or worse, HR-HPV: high-risk human papillomavirus, NASBA: nucleic
acid sequence based amplification for the identification of E6/E7 mRNA of the HPV types 16, 18, 31, 33, and 45, FLOW: flow cytometric E6/E7 HPV mRNA
assay, PPV: positive predictive value, and NPV: negative predictive value.

of CIN2+ cases in the total of LSIL cases is (Table 1: 27 + 2)
29/193 = 15.0% and both percentages are in agreement with
these reported by other researchers in the literature [66];
specifically these are 5–17% and 9–16%, respectively. On the
other hand the percentage of cases given in cytology as HSIL
and being lower thanCIN2 is (Table 1: 22+5) 27/127 = 21.26%,
a percentage in agreement with the literature [67, 68].

Today, the widely accepted management options of
ASCUS andLSIL smears remain either the immediate referral
to colposcopy or the cytological surveillance with repeated
smears. A policy of immediate referral to colposcopy could
potentially result not only in the overloading of colposcopy
clinics but also in overtreatment due to subtle colposcopical
findings. Many young nulliparous women might be exposed
to the physical and psychological sequelae of unnecessary
treatment with long-term perinatal morbidity in women
being in reproductive age [69–71]. On the other hand,
repeating a cervical smear carries the risk of missing high-
grade lesions (HSILs), increases nonattending rates (non-
compliance [72]), and increases social and psychological
burden of women, directly questioning organized screening
programs’ (OSPs) credibility. Therefore, it is essential to
reduce unnecessary colposcopies and, if feasible, to have in
advance indication for women treatment, even before the
colposcopical examination. Thus, a methodology for more
accurate diagnosis is extremely important.

Although HPV related tests may be used in the triage
of ASCUS cases [65, 73], every effort should be made to
develop new tools and biomarkers to improve the accuracy of
diagnosis and allow tailored management. Nowadays, there
are numerous methods and biomarkers that are available for
cervical cancer detection; nevertheless no single method is
optimal [56]. Thus, a different approach is required that will
be able to combine many parameters in order to produce an
accurate risk assessment for each woman. Instead of the futile
search for a single golden marker we should evolve current
ones and invent more elaborate methods for result evaluation
and utilisation. Based on this, we are working since 2010 on
an innovative approach of employing advancedmathematical
and computing tools for the nonlinear combination of the
methods and biomarkers that are available for cervical cancer
detection. Up to now preliminary results are presented in the
literature [36, 37].

The aim of this study was to create a decision support
system for the triage of women before referral to colposcopy.
This system is based on the standard cytological diagnosis
on ThinPrep Pap test smears and the expression of various
biomarkers. The preliminary results suggest that the pro-
posed neural network architecturemay improve the accuracy
of diagnosis; according to Tables 16–20, CDSS provided the



BioMed Research International 15

Table 19: Performance of type “AND” combinations between two tests in detecting CIN2+.

Combinations of medical tests Cytology cutoff Sensitivity (%) Specificity (%) PPV (%) NPV (%) Youden’s index
Pap test and HPV DNA ASCUS+ 90.7 69.3 45.1 96.4 0.60
Pap test and HPV DNA LSIL+ 85.1 76.5 50.2 94.9 0.62
Pap test and HPV DNA HSIL+ 67.1 96.5 84.4 91.3 0.64
Pap test and HR-HPV DNA ASCUS+ 88.8 73.4 48.1 95.9 0.62
Pap test and HR-HPV DNA LSIL+ 83.2 79.6 53.2 94.5 0.63
Pap test and HR-HPV DNA HSIL+ 65.2 96.9 85.4 90.9 0.62
Pap test and NASBA ASCUS+ 76.4 91.2 70.7 93.3 0.68
Pap test and NASBA LSIL+ 72.0 92.6 73.0 92.3 0.65
Pap test and NASBA HSIL+ 59.6 98.1 89.7 89.7 0.58
Pap test and FLOW ASCUS+ 91.9 85.3 63.5 97.4 0.77
Pap test and FLOW LSIL+ 85.1 87.2 64.9 95.5 0.72
Pap test and FLOW HSIL+ 67.7 96.9 85.8 91.5 0.65
Pap test and p16 ASCUS+ 57.1 92.9 69.2 88.6 0.50
Pap test and p16 LSIL+ 55.3 93.8 71.2 88.3 0.49
Pap test and p16 HSIL+ 48.4 98.1 87.6 87.3 0.47
HPV DNA and NASBA 75.2 91.4 70.8 93.0 0.67
HPV DNA and FLOW 87.0 86.7 64.5 96.0 0.74
HPV DNA and p16 56.5 94.8 75.2 88.7 0.51
HR-HPV DNA and NASBA 74.5 91.7 71.4 92.8 0.66
HR-HPV DNA and FLOW 85.1 87.7 65.9 95.5 0.73
HR-HPV DNA and p16 55.3 95.5 77.4 88.5 0.51
NASBA and FLOW 73.9 92.4 73.0 92.7 0.66
NASBA and p16 48.4 97.4 83.9 87.2 0.46
FLOW and p16 55.3 97.2 84.8 88.7 0.53
Statistical measures have been calculated using all cases of the dataset (Table 1). Histology endpoint is CIN2+ for all cases. Definition of positivity of each
medical test is presented in Table 15. CIN2+: cervical intraepithelial neoplasia grade 2 or worse, HR-HPV: high-risk human papillomavirus, NASBA: nucleic
acid sequence based amplification for the identification of E6/E7 mRNA of the HPV types 16, 18, 31, 33, and 45, FLOW: flow cytometric E6/E7 HPV mRNA
assay, PPV: positive predictive value, and NPV: negative predictive value.

most balanced results in terms of specificity, sensitivity, PPV,
and NPV in comparison to the medical tests involved in
this study and their combinations. The cutoff of CIN2+
was used because it is the decision threshold that a case
is therapeutically handled; cases below CIN2+ are strictly
monitored.

In our material, regarding the underestimated cases
(CIN2+ cases which were classified by the CDSS as negatives
or CIN1), only 1 out of the 4 misclassified ASCUS cases
(Tables 12 and 13) was CIN3 and from the 13 misclassified
non-ASCUS cases (Tables 7–9); 2 were CIN3 and 1 Adeno-
Ca. Especially for the one misclassified adenocarcinoma, the
total of the biomarkers was negative and the case was given as
LSIL in cytology. On the other hand, the case of SCC that was
given as LSIL in cytology (Table 4) was correctly classified by
the PNN due to the fact that there were positive biomarkers
(Table 7). Moreover, it is noteworthy that the CDSS classified
correctly 9 of the 13 ASCUS cases and 17 of the 27 LSIL cases
harbouring CIN2/3 (as presented in the results section).

In this study, the sensitivity of cytology using ASCUS+
as a cutoff was higher than HR-HPV DNA test (see Table 16:
98.1% versus 89.4%) in contrast to other studies, such as the
ATHENA study [74]. The reader should be aware that this
may be caused by verification bias related to the fact that
cytology positive and HPV negative women had biopsies, in
contrary to cytology negative and HPV positive women with

a negative colposcopy. According to other studies [74] the
sensitivity of HPV DNA test is higher than the sensitivity of
cytology; however, in our case a special small population for
referral to colposcopy is involved, in contrast to the generic
population used in the ATHENA study. In addition, the
laboratory bases the cytological examination on experienced
cytopathologists as reported in our previous study [56] and
thus the performance of the cytological examination is higher
than the standard reported performance. In another study
[75], the sensitivities of LBC andHPVDNA test are compara-
ble with our results; additionally in another study [76] lower
sensitivity of the HPV DNA test than the sensitivity of the
cytological examination is reported. To conclude, performing
our study on meta-analysis data would be impossible as
detailed information for each individual case tests’ results is
required in order to train and test the CDSS system; therefore,
a rather small but controlled population was preferred.

A potential application of this system is to support the
decision of referring a woman to colposcopy or not. A work
flow scenario is as follows: the cytological examination is
used as primary test and only an ASCUS+ result is followed
by the application of the other four ancillary tests using the
remaining material in the vial. Subsequently, the five tests’
results (including cytology) serve as inputs to the CDSS for
evaluation and the CDSS outcome supports the final decision
making for referring to colposcopy or not. The application
of all five tests in general population would be a very costly
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Table 20: Performance of several type “AND” combinations between more than two tests in detecting CIN2+.

Combinations of medical tests Cytology cutoff Sensitivity (%) Specificity (%) PPV (%) NPV (%) Youden’s index

Pap test and HPV DNA and
NASBA

ASCUS+ 74.5 91.5 71.0 92.8 0.66

Pap test and HPV DNA and
NASBA

LSIL+ 70.2 92.9 73.4 91.8 0.63

Pap test and HPV DNA and
NASBA

HSIL+ 57.8 98.1 89.4 89.3 0.56

Pap test and HPV DNA and
FLOW

ASCUS+ 86.3 87.7 66.2 95.8 0.74

Pap test and HPV DNA and
FLOW

LSIL+ 80.7 88.9 67.0 94.3 0.70

Pap test and HPV DNA and
FLOW

HSIL+ 63.4 97.4 87.2 90.5 0.61

Pap test and HPV DNA and p16 ASCUS+ 55.3 94.8 74.8 88.4 0.50

Pap test and HPV DNA and p16 LSIL+ 53.4 95.0 74.8 88.0 0.48

Pap test and HPV DNA and p16 HSIL+ 46.6 98.6 90.4 86.9 0.45

Pap test and HPV DNA and
NASBA and FLOW

ASCUS+ 71.4 93.1 74.2 92.1 0.65

Pap test and HPV DNA and
NASBA and FLOW

LSIL+ 67.1 94.0 75.5 91.1 0.61

Pap test and HPV DNA and
NASBA and FLOW

HSIL+ 55.3 98.4 90.8 88.8 0.54

Pap test and HPV DNA and
NASBA and FLOW and p16

ASCUS+ 44.7 98.8 91.1 86.5 0.44

Pap test and HPV DNA and
NASBA and FLOW and p16

LSIL+ 43.5 98.8 90.9 86.3 0.42

Pap test and HPV DNA and
NASBA and FLOW and p16

HSIL+ 38.5 99.5 95.4 85.3 0.38

HPV DNA and NASBA and
FLOW

72.0 93.1 74.4 92.3 0.65

HPV DNA and NASBA and p16 46.6 97.6 84.3 86.8 0.44

HPV DNA and NASBA and
FLOW and p16

45.3 98.8 91.3 86.7 0.44

NASBA and FLOW and p16 47.2 98.8 91.6 87.1 0.46

Statistical measures have been calculated using all cases of the dataset (Table 1). Histology endpoint is CIN2+ for all cases. Definition of positivity of each
medical test is presented in Table 15. CIN2+: cervical intraepithelial neoplasia grade 2 or worse, HR-HPV: high-risk human papillomavirus, NASBA: nucleic
acid sequence based amplification for the identification of E6/E7 mRNA of the HPV types 16, 18, 31, 33, and 45, FLOW: flow cytometric E6/E7 HPV mRNA
assay, PPV: positive predictive value, and NPV: negative predictive value.

process and thus our method nowadays has the potential
for application in the triage of ASCUS+ cases. However, a
detailed cost/benefit, cost/effectiveness analysis is required
as the cost of the tests is not the only factor that should be
taken into account. Other important factors are the cost of
the woman’s transportation to a colposcopy clinic, especially
in mountainous places, islands, or isolated cities/villages, the
increment of recall time, and the psychological effects to the
woman and her family among others.

In the literature there are already simpler techniques
proposed for the triage of ASCUS and LSIL, such as the repeat
cytology and the application of mRNA testing. As mentioned
in [77–79], the use of NASBA HPV mRNA test in triage
of women with ASCUS and LSIL may reduce the referral
rate to colposcopy. As presented in [77], the HPV mRNA
test significantly reduced the time from the first abnormal
cytology until biopsy and had predictive values comparable
with those of repeat cytology. In [79], the authors report that
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HPV mRNA testing is a better triage test for women with
LSIL than repeat cytology, as it was more sensitive (94.2%)
and specific (86.0%) for detecting CIN2+. In addition, the
HPV mRNA test showed higher PPV (67.0%) compared to
repeat cytology (38.4%). In a meta-analysis of the accuracy
of mRNA testing for detecting CIN2+, the mRNA testing
was substantially more specific than the HPV DNA test in
womenwithASCUS andLSIL [79].However, it demonstrated
lower sensitivity and thus women with negative mRNA test
results cannot be considered free of CIN2+ and require
followup [79]. In our study, the proposed system showed
higher sensitivity, higher specificity, higher PPV, and higher
NPV compared to NASBA mRNA testing, for detecting
CIN2+. In comparison to the HPV DNA test, the proposed
system is a little less sensitive in detecting CIN2+; however,
its specificity and PPV are significantly higher. According to
our results, the proposed system produced themost balanced
results in terms of sensitivity, specificity, PPV, and NPV
and demonstrated the highest Youden’s index, compared to
cytology and the biomarkers used in the study and their
combinations. Thus, in comparison to the already proposed
schemes for triage of ASCUS+, our approach may produce
more accurate results, leading to improved triage of ASCUS+
and improved detection of CIN2+. Therefore, the overhead
for both cytological laboratories and colposcopy rooms can
be reduced.

The application of the proposed CDSS gave promising
results, suggesting that such an approach may significantly
improve the accuracy of diagnosis. Furthermore, the notable
performance of the CDSS in identifying women with LSIL
cytology at risk of developing cancer suggests that such sys-
temsmay play an important role in triage decisions and hence
may reduce the overload of colposcopy clinics and guide
personalisedmanagement and therapeutic interventions.The
results should be further assessed in larger datasets in order
to confirm the reproducibility of these findings. As some of
the tests and biomarkers may result in increased cost, our
research is now directed to develop a more cost-effective
CDSS which will use fewer tests, without losing much in
performance. Furthermore, machine learning techniques for
handling missing values are under examination, in order to
be able to provide outcomes also for cases with missing or
invalid examinations’ results.

Today, the CDSS is available to users as a PC application.
Our future work involves the upgrade of the CDSS to
an intelligent web service for patient-specific prediction,
progression, and prognosis of cervical cancer, available over
the Internet to the worldwidemedical community, which will
serve as a decision support system to physicians and medical
researchers for the management of new cases or the followup
of existing cases.
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