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ABSTRACT: Homozygosity mapping has played an impor-
tant role in detecting recessive mutations using families of
consanguineous marriages. However, detection of regions
identical and homozygosity by descent (HBD) when family
data are not available, or when relationships are unknown,
is still a challenge. Making use of population data from
high-density SNP genotyping may allow detection of regions
HBD from recent common founders in singleton patients
without genealogy information. We report a novel algorithm
that detects such regions by estimating the population
haplotype frequencies (HF ) for an entire homozygous
region. We also developed a simulation method to evaluate
the probability of HBD and linkage to disease for a
homozygous region by examining the best regions in
unaffected controls from the host population. The method
can be applied to diseases of Mendelian inheritance but can
also be extended to complex diseases to detect rare founder
mutations that affect a very small number of patients using
either multiplex families or sporadic cases. Testing of
the method on both real cases (singleton affected) and
simulated data demonstrated its superb sensitivity and
robustness under genetic heterogeneity.
Hum Mutat 32:345–353, 2011. & 2011 Wiley-Liss, Inc.
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Introduction

Autosomal recessive mutations are involved in Mendelian diseases
and probably a small proportion of cases of complex diseases.
Detecting such mutations holds much promise in improving our

understanding of disease mechanism and gene function. The power
of detection is lower for recessive mutations in most situations
compared to autosomal dominant ones, because usually the number
of affected is small in a family. Also, genetic heterogeneity often
poses problems even when multiple families for a disease are
available. Homozygosity mapping was designed to increase the
power of detection for recessive mutations by recognizing that a
proportion of such families are inbred, and these inbred families are,
in fact, informative even in the absence of affected siblings [Kruglyak
et al., 1995; Lander and Botstein, 1987]. However, the method has
been mainly applied to families with apparent consanguineous
marriages of close relatives. In many situations, the relationship
between parents can be remote and unknown, and the common
ancestor is untraceable. Detection of such regions of recent common
ancestry requires development of novel methods.

The challenge in detecting such recessive mutations is how to
distinguish the haplotypes that are likely derived from a recent
founder (homozygosity by descent (HBD), defined by 5–50
generations of recombination events, for example) from those that
are more likely to have arisen within a population that is defined
by hundreds or thousands of generations of recombination events
(homozygosity by chance, HBC). Although the length of the
homozygous regions has been used to help with this distinction
and in mutation detection [Carr et al., 2006, 2009], numerous
studies have shown that length alone is a poor parameter in
revealing a region’s history [Gibson et al., 2006; Lencz et al., 2007;
Li et al., 2006; McQuillan et al., 2008].

Traditional homozygosity mapping is based on inference of HBD
using a relatively sparse marker set (typically 400–800 microsatellite
markers). This means that the detection is relatively low resolution
and often relies on having genotype data on family members.
Furthermore, linkage disequilibrium (LD) among markers on a
population scale is often irrelevant for this level of marker density.
Moreover, none of the traditional linkage analysis tools can deal
with distant relationships that are usually unclear in modern
societies, unless markers of extremely low population allele
frequency are typed and closer relationships are assumed to make
analysis computationally feasible. Although these programs make
use of population marker allele frequency, without being able to use
LD information, there is a limitation in estimating haplotype
frequencies (HF) even with multipoint analysis and dense single
nucleotide polymorphism (SNP) marker genotyping. Making full
use of high-density SNP genotyping and haplotype frequency (i.e.,
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LD) information derived from population data or reference
databases (such as HapMap), it becomes possible to construct a
method with greater power and resolution in identifying ancestral
haplotypes, which requires neither pedigree structure information
nor genotype data on family members (e.g., [Sham et al., 2009]).

In the present study, we developed an algorithm to estimate the
HF of any homozygous region in a patient’s genome, making use
of information from unaffected individuals from the same
population rather than relying on data from family members.
This approach extends the conceptual framework of homozygosity
mapping and the pioneer work by Houwen et al. [1994] to apply
to high-density SNP genotyping data and to distantly related
patients even when the relationship is unknown.

The accompanying software implementing the algorithm, Homo-
zygous Regions of Recent Ancestry (HRRA), can be used with
recessive Mendelian diseases when only one or a few patients are
available and with no genealogy data. Rare, recessive founder
mutations may also play a role in patients with severe manifestations
of complex diseases, or complex traits at the extreme tail of the
population distribution. Both linkage and association studies for such
situations are constrained by power and genetic heterogeneity. HRRA
can be extended to such situations to identify recent founder
mutations even if the mutation may affect only a very small number of
patients and the genetic variants have very low population frequency.

Materials and Methods

Estimating the HF of a Homozygous Region in a Single
Individual

Estimating the HF of a homozygous region is a simple and
accurate way of distinguishing regions HBD from a recent
common ancestral founder from regions HBC. We adopted a
Markov model to estimate the HF of an entire homozygous region,
because directly estimating allele frequency of a long region can be
computationally challenging and inaccurate [Kong et al., 2008]. In
this method, the population haplotype frequency for two adjacent
SNPs is first estimated based on data from population controls,
according to an Expectation–Maximization (EM) algorithm [Clark
et al., 2001; Fallin and Schork, 2000]. Consider two SNPs A (with
alleles A and a) and B (with alleles B and b), with allele frequencies
designated PA (Pa) and PB (Pb), such that PA1Pa 5 1, and PB1

Pb 5 1. The four haplotypes that can be formed by the two SNPs
are AB, Ab, aB, and ab, and the HF for these haplotypes are
designated PAB, PAb, PaB, Pab, and can be estimated based on the
control samples using the EM algorithm. In situations where a
particular haplotype (e.g., AB) does not appear in the control
samples, its HF (i.e., PAB) is replaced by K, assuming K is such that
there is a 95% probability that it will not be observed in the
controls based on the sample size (v):

ð1� KÞ2v
¼ 95%; and

K ¼ 1�2v
ffiffiffiffiffiffiffiffiffi
95%
p

:

A Markov model is then constructed by using the pairwise HF to
evaluate the HF for an entire homozygous region. Let Gi denote the
ith SNP in the entire homozygous region, containing SNPs G1 to
Gn, and Pgi�1gi

is the pairwise HF between alleles gi�1 and gi at
adjacent SNPs Gi�1 and Gi, and pgi

is the frequency for the gi allele
of SNP Gi, the HF from G1 to Gn then can be calculated as:

HFg1!gn
¼ pg1

Yn

i¼2

pgi�1gi

pgi�1

Due to the homozygous nature of the region, the probability of this
region appearing by chance in this population can be defined as
HBCs 5 HF2, with the subscript ‘‘s’’ indicating a single-patient
scenario.

Evaluating Situations Where Multiple Individuals Share a
Common Homozygous Allele

The following algorithm is adopted to evaluate situations where
multiple individuals share a common homozygous region. HF2 as
described above is used to evaluate a homozygous region in a single
individual. Let us assume that the number of patients sharing the
same homozygous region is N and the total number of patients being
considered is T. A parameter HBCm is introduced here representing
the probability of the region being shared by N individuals:

HBCmN ¼
YN

i¼1

HF2
si

T!

N!ðT � NÞ!
:

For example, when four patients share a common homozygous
region in a total of 300 patients, HBCm can be calculated as:

HBCm4 ¼ HF2
1 �HF2

2 � HF2
3 � HF2

4 �
300!

4!ð300� 4Þ!
:

Estimating the Probability of HBC Through a Simulation
Process

Although HBCs and HBCm reflect in a way the random chance
for a homozygous region to appear or to be shared in controls, as
with nominal P-values in genome-wide studies, direct evaluation
of statistical significance based on these parameters is difficult. For
example, uneven coverage across the genome may make these
parameters noncomparable among different regions. Therefore,
we used a simulation method to try to derive a corrected genome-
wide significance measure.

For the simulation process for a single-patient scenario, the
homozygous region with the smallest HF2 in the entire genome in
each control individual is recorded, and these frequencies provide
a null distribution for assessing the empirical, genome-wide
probablility for a homozygous region to appear by chance in a
particular patient. By so doing, we measure each homozygous
region against the best regions in the genomes of controls and
therefore reduce false positive detections. This also helps overcome
uneven coverage of different regions of the genome as only the
region with the best HF2 contributes to this null distribution.

In the situation where multiple patients (N) from a pool of a
total of T patients share a common homozygous region, the
simulation was performed such that each time T individuals are
randomly selected from all the available control samples, and the
common homozygous region shared by N or fewer individuals
that produces the best HBCmN value is recorded for each
simulation. Afterward, the region with the best HBCmN in this
round of simulation will be excluded from further consideration.
The HBCmN parameters generated through thousands of simula-
tions are used to form the null distribution of this parameter.
Again, the area under the curve on the right is used to estimate the
probability of a homozygous region shared by N out of T patients
by random chance.

When evaluating shared homozygous regions for affected sib
pairs, within-family homogeneity is assumed. The region that
produces the smaller HF2 between two siblings in each family is
used for the calculation of HBCm, a between-family parameter.
Because the chance for a sib pair to share two alleles identical by
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descent (IBD) is one-quarter, (1/4)N is also factored into the
calculation of the P-values afterward, and N stands for the number
of sib pairs who share the same founder homozygous allele.

Simulation of Founder Alleles and the Inheritance Process

The simulation process is depicted in Figure 1A, which is
similar to one we described previously [Yang et al., 2008]. Briefly,
a mutation was assigned randomly to one of the chromosomes of
an individual serving as an ancestor, and meiosis events of
between 10 and 50 generations were then simulated, shortening
the mutation-carrying haplotype further and further by recombi-
nation events. Afterward, an ‘‘affected’’ individual was simulated
to inherit two copies of the ancestral allele, generated through two
independent inheritance paths. Detailed description of the
simulation process can be found in the Supporting Information.
All the simulations used data on Hong Kong Chinese genotyped
by Illumina 610-Quad as reported previously [Yang et al., 2010].

Real Cases

Six patients with an autosomal recessive kidney disease,
nephronophthisis (NPHP), who are known to carry homozygous
mutations in one of the 13 candidate genes, were used to test our
program (F30-2, F399-1, F408, F409, A159 A1730-2; from
[Hildebrandt et al., 2009]). The samples were genotyped using
the Affymetrix Human Mapping 250K StyI Array platform.
Controls were 112 nonfounders from HapMap Phase II CEPH
data. There were 180,000 overlapping SNPs between the HapMap
data and the 250K StyI platform, which were used in this test.

Results

Detection of Homozygous Regions of Recent Ancestry in a
Singleton Patient

In Figure 1B, we showed the result evaluating a representative
case carrying a simulated homozygous region HBD of 30
generations in age. The HF2 for this region was calculated as
described in Materials and Methods and the P-value for this
parameter was estimated according to the null distribution derived
from the best regions in the control individuals. The P-value for
this HBD region in this case ranked at the 50th percentile among
all the simulations. It is clear that the simulated region can be easily
distinguished from other homozygous regions in this individual’s
genome. We also compared evaluating the simulated homozygous
regions by either their physical length (Fig. 1C) or their HF2

(Fig. 1D), in contrast to regions assumed HBC in controls. The
results clearly demonstrated the superiority of HF2 in evaluating
regions derived from recent common ancestry compared to
evaluations based on physical size of the homozygous regions.

It is clear that for haplotypes that have gone through 10
generations of meioses, the simulated homozygous regions can be
easily distinguished from the best regions in the control
individuals in most cases (Fig. 1D, left panel). For haplotypes
that have gone through 30 generations of meioses or more, only in
certain cases can they be distinguished from those in controls
(Fig. 1D, middle and right panels), although the separation would
also depend on the consanguinity of the host population and
the population history (the older and the less consanguineous the
population, the better the detection in terms of the age of the
recent common ancestry).

Analysis of the correlation between physical sizes of the regions
HBD and their corrected P-values evaluated by HRRA revealed a
correlation coefficient of 0.645. As seen in Figure 1E, regions
significantly smaller than 0.7 MB are basically undetectable and
regions larger than 2 MB can be easily detected in most cases, with
the detectability varying for regions in between those sizes.

We examined how the modern linkage analysis software Merlin
[Abecasis et al., 2002] would perform in detecting these simulated
homozygous regions. In order to make Merlin work with these
situations which it is not designed to handle, we assumed a second
cousin marriage and added an affected sibling with no genotype
data, a method similar to what Hildebrand et al. [2009] employed
(Supp. Fig. S1a). The result from Merlin analyzing the same case
as shown in Figure 1B is presented in Supp. Figure S1b. It can be
seen that the simulated region does not stand out by physical size,
and many other regions in this individual’s genome achieved the
same LOD score as the simulated homozygous region.

Detection of Homozygous Regions HBD Shared by Multiple
Patients

The next question we asked was whether additional patients sharing
a homozygous region HBD increases the sensitivity of detection, and
whether any increased sensitivity would still hold in the face of
increased genetic heterogeneity. We simulated a situation in which two
patients each inherited two copies of the same recessive mutation (30
generations in age; Fig. 2A). The two individuals were then mixed with
eight others (all unrelated individuals) who do not carry the same
homozygous haplotype for analysis by HRRA (Fig. 2B). In Figure 2C,
we showed the evaluation result on a representative case whose P-value
for the simulated region ranked at the 50th percentile among all the
simulations. The region did stand out, compared to other homozygous
regions in these individuals’ genome, with a significant P-value. In
Figure 2D, we showed the separation between the simulated regions
and the best homozygous regions in the controls in three situations: 2
in 10 patients, 4 in 10 patients, and 4 in 50 patients sharing the same
founder haplotype HBD. The results indicate that increasing the
number of patients sharing the same haplotype allele would aid its
detection (comparing the middle and the left panels), whereas the total
number of patients considered (genetic heterogeneity) had little effect
(comparing the right and the middle panels).

Detection of Regions HBD in Unrelated Cases of Complex
Diseases

Even for complex diseases, major mutations may play a role in a
small proportion of patients, particularly among those who
display unique manifestations. Some of the mutations could be
recessive and arose recently in history. Therefore, we tested
whether a recessive mutation affecting a very small proportion of
patients in a case–control study can still be detected using HRRA.

As shown in Figure 3, we simulated four individuals who each
inherited two copies of a common haplotype derived from a
recent ancestor (50 generations in age). These four individuals
were mixed with 396 other individuals in an assumed case–control
study scenario and were examined by HRRA (Fig. 3B). Figure 3C
shows the result from a representative simulation for which the
HRRA P-value ranked at the 50th percentile among all the
simulated cases. Similar to scenarios in diseases of Mendelian
inheritance, our algorithm is sensitive to the absolute number of
individuals who share a common homozygous region and is very
much immune to the total number of the patients considered.
This is an important feature for detecting rare, recessive mutations
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Figure 1. HRRA results on singleton patient cases. A: The simulation process. Shown is the process of generating the genotypes of the
‘‘affected’’ individual who inherits two copies of a recent ancestral allele. The data made available to HRRA are the genotypes of the singleton
‘‘affected’’ individual (inside the larger square) plus genotype data for control individuals. B: HRRA result on a representative simulated case.
This case inherited two copies of a haplotype that is 30 generations in age and the P-value for this region ranks at the 50th percentile among all
simulations. The y-axis is the �log of P-values generated through a simulation process and the x-axis is the chromosomal position. C, D: The
distributions of the simulated homozygous regions and the best homozygous regions in the controls based on their physical length (C) or the
�log of HBCs estimated by HRRA (D). The x-axis is MB (C) or �log(HBCs) (D) of the simulated haplotypes (solid line) aged 10 generations (left),
30 generations (middle), or 50 generations (right), and the best regions in the control individuals (dashed line). Calculation of the y-axis is based
on a probability density function (gamma distribution) of the physical length (MB) or �log(HBCs) of the regions considered (see Supporting
Information). E: Correlation between physical size and HRRA P-values. Left panel: overall correlation (R2 5 0.645); right panel: zoomed in on
regions 1.5 MB and smaller. [Color figures can be viewed in the online issue, which is available at www.wiley.com/humanmutation.]

348 HUMAN MUTATION, Vol. 32, No. 3, 345–353, 2011



that may affect a very small proportion of patients of complex
diseases, especially for genome-wide association studies when
usually a large number of samples are studied.

Detection of Regions HBD from Multiplex Families—Sib
Pairs as an Example

Linkage on multiplex families has been used extensively in the
search for mutations involved in complex diseases, largely by
nonparametric methods. Here we examined whether HRRA can
detect such a recessive mutation when only a small proportion of
multiplex families carries the mutation haplotype. We simulated
three sib pairs who inherited the same founder mutation haplotype
that is 30 generations in age from a common ancestor (Fig. 4A). The

three sib pairs were analyzed together with 27 other sib pairs who
do not carry the same haplotype allele (Fig. 4B). Very significant
P-values were achieved from the majority of simulations, as
demonstrated by a representative case whose P-value for the
simulated region ranked at the 50th percentile among all the
simulations (Fig. 4C). The simulated region could not be detected by
traditional linkage analysis methods using either a parametric (based
on a recessive model; Supp. Fig. S2, left panel) or nonparametric
(Supp. Fig. S2, right panel) method [Kong and Cox, 1997].

Real Case Examples

We evaluated six real cases with nephronophthisis (NPHP)
disease, which have known homozygous mutations on one of the

Figure 2. Multiple patients sharing a region HBD. A: The simulation process. Two individuals were simulated to each inherit two copies of a
common founder mutation allele. B: Input data to HRRA. Genotype data on 10 patients (all singleton patients) is made available to HRRA, of
which two individuals carry the same homozygous mutation. C: Result on a representative simulated case. The P-value on the region HBD (30
generations in age) for this case ranked at the 50th percentile in all simulations. D: Distribution of the simulated mutation regions (solid line) and
the best regions shared by a corresponding number of controls (dashed line). Left: 2 of the 10 patients were simulated to inherit two copies of a
recent founder allele and they were analyzed together with eight other patients who do not inherit the allele. Middle: 4 of the 10 patients were
simulated to inherit the same founder allele HBD and they were analyzed together with other 6 patients who do not inherit the allele. Right: 4 of a
total of 50 patients were simulated to inherit two copies of a recent founder allele and they were analyzed together with another 46 individuals
who do not carry the allele. [Color figures can be viewed in the online issue, which is available at www.wiley.com/humanmutation.]
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Figure 3. A case–control study. A: The simulation process. Four individuals were simulated to have inherited two copies of a common
founder mutation allele. B: Input to HRRA. These four individuals were mixed with 396 others and they were analyzed by HRRA. All the
individuals were assumed to be unrelated. C: HRRA result on a representative simulation. Shown is an HRRA result on a representative
simulation whose P-value on the simulated region ranked at the 50th percentile among all the simulations. [Color figures can be viewed in the
online issue, which is available at www.wiley.com/humanmutation.]

Figure 4. Affected sib pairs. A: The simulation process. Three affected sib pairs were simulated to each have inherited two copies of a
recent founder mutation allele. B: Pedigree input to HRRA. This includes the sibling data on the three pairs who carry the simulated mutation
region and 27 other sib pairs who do not carry the mutation region. C: HRRA result on a representative simulation. For this case the P-value for
the simulated region ranked at the 50th percentile among all simulations. [Color figures can be viewed in the online issue, which is available at
www.wiley.com/humanmutation.]
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13 candidate genes [Hildebrandt et al., 2009]. For three of the six
cases, we detected the mutation region with corrected genome-
level P-values ranging from 10�3 to 10�25 (Fig. 5). For patient
F30-2 (Fig. 5A), the region where the mutated NPHP4 gene is
located is among a number of regions that had a P-value smaller
than 10�3, which may reflect the age of the mutation region or the
consanguinity of the population [Hildebrandt et al., 2009]. The
region where the NPHP5 gene is located showed impresssive
P-values in two other cases (Fig. 5B and C), indicating that recent
founder mutations may have accounted for these cases, although

both the two patients are from outbred populations with no
known consanguineous marriages.

Three other cases evaluated by HRRA did not show detectable
regions HBD in the chromosomal regions where the 13 known genes
are located. It is possible that the homozygous regions where the
mutations reside may be too short (reflecting longer history), or have
poor coverage by the genotyped SNPs (data on only 180,000 markers
overlapping the genotyping platform and HapMap are used in this
analysis). Although a slight mismatch between the cases (from various
Caucasian populations) and the controls (from HapMap CEPH) may

Figure 5. HRRA results on real cases. Shown are the HRRA results on real cases of NPHP disease with known homozygous mutations. The
arrows point to the regions containing the known mutated genes. The cases are F30-2 (A), F399-1 (B), and F408 (C) as in Hildebrandt et al. [2009].
[Color figures can be viewed in the online issue, which is available at www.wileycom/humanmutation.]
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partially explain the higher background we saw from the real cases
than from the simulations (for which both cases and controls are
from the same population), consanguineous marriages in either
families or populations (such as the case in Fig. 5A) are probably
playing a major role for the higher background seen. Comparison
between results from simulation and those from real cases points to
the benefit of good marker coverage as well as matching of
population background between the cases and reference controls.

Discussion

Genetics has seen successes in identifying causal mutations when
large pedigrees are available, and in identifying common susceptibility
alleles to complex diseases with large sample collections. However,
detecting the rare variants will continue to remain a challenge until
large-scale whole-genome sequencing becomes a reality. Rare variants
of relatively large effect size may be enriched in patients of certain
manifestations, such as patients with specific subphenotypes, early
onset age, or familial aggregation. Some of the rare variants may be
relatively new mutations and may affect multiple patients of
unknown relationship in a given population. Methodologies for
detecting these rare variants without the help of familial data and in
the face of genetic heterogeneity are still lacking and may have
significant impact on our endeavor in finding disease genes.

Homozygosity mapping has played a vital role in the
identification of many recessive causal mutations. Expanding the
framework of homozygosity mapping to samples without known
genealogy and with limited number of affected individuals (down
to a single case) remains a daunting challenge. It is also appealing
to extend this framework to multiplex family collections of
complex diseases, such as affected sib pairs. Many of the multiplex
families have been studied in the late 1990s with limited success,
probably due to lack of power and both locus and allelic
heterogeneity among families.

Numerous attempts have been made to evaluate homozygous
regions in patients in order to detect recessive mutations using
high-density SNP genotyping data [Carr et al., 2006; Seelow et al.,
2009; Wang et al., 2008]. However, few have explicitly utilized
population information, in terms of haplotype frequencies, in their
evaluation of homozygous regions. Most programs developed so
far are tools that allow visualization of such regions from SNP
genotyping data [Carr et al., 2006; Seelow et al., 2009; Woods et al.,
2004], which rely on the size of the homozygous regions. As shown
in Figure 1, size alone can be a poor parameter in evaluating
homozygous regions. Furthermore, numerous studies have pointed
out that long tracts of homozygous regions in our genome are
common, even in apparently outbred populations [Gibson et al.,
2006; Lencz et al., 2007; Li et al., 2006; McQuillan et al., 2008].

Hildebrandt et al. [2009] introduced modifications to the
traditional homozygosity mapping method, which allowed
detection of certain homozygous regions responsible for auto-
somal recessive diseases. PLINK [Purcell et al., 2007] is efficient in
detecting long haplotypes shared among patients due to shared
recent ancestry, but does not explicitly evaluate the probability of
HBD versus HBC for the detected regions. Runs of Homozygosity
(ROH) [Lencz et al., 2007] is designed particularly for detecting
homozygous regions unusually shared among patients compared
to controls, but is not designed to detect regions of recent
common ancestry. Both methods evaluate haplotype-sharing
through counting in cases versus in controls. BEAGLE-IBD
[Browning and Browning, 2010] provides sensitive detection of
regions HBD, but is limited to detection of pairwise sharing and
did not provide a comprehensive evaluation means.

HRRA explicitly uses population information in evaluating
homozygous regions through a Monte Carlo simulation process,
which not only provides detection of HBD, but also evaluation of
a relationship between a region HBD with an underlying disease
by calculating the chance of this region appearing in the host
population. Different marker density and coverage of rare alleles
among different regions in the genome may affect detection
sensitivity, and a much better covered homozygous region with
more rare markers genotyped may stand out compared to other
regions, generating spurious positive results. This is eventually
overcome by the simulation process introduced here, which
documents the best regions genome-wide in controls as the null
distribution of the homozygous regions.

From the results on simulated situations, it is obvious that the
total number of individuals sharing a homozygous region IBD is
important for detection, rather than the percentage of patients
who share the same mutation. Our methodology is able to detect
rare variants with allele frequencies of 1% or lower (Fig. 3),
indicating that genetic heterogeneity has little effect on mutation
detection. This also means that other issues, such as ascertainment
bias, misdiagnoses, or phenotypic heterogeneity may have
minimal effects on mutation detection by HRRA.

Making full use of population information in terms of allele
frequency and LD, the program can actually detect regions smaller
than 1 MB in certain cases. The power of detection is increased
when (1) the mutation occurred in a region with relatively low
recombination rate so that after tens of generations of recombina-
tion, a large enough haplotype is still conserved; (2) the haplotype
on which the mutation occurred is relatively rare; and (3) the
genotyping methodology has good coverage of rare variants to
reflect the rarity of the founder haplotype. The last point is
particularly important, because, unlike classical linkage methods
where the information provided by dense SNP genotyping plateaus
(e.g., updating a 100 K chip to a 500 K chip may not make much
difference), for HRRA, a denser coverage increases sensitivity in
detecting rare haplotypes shared among patients. The reason is
that, while the traditional linkage analysis methods make use of
familial data and therefore deal with recombination events in a few
generations, HRRA tries to detect regions shaped by recombina-
tions of tens of generations and does not rely on direct inheritance.
There is reason to believe that typing the rare variants identified by
next generation sequencing technology may further increase
detection resolution to regions much smaller than 1 cM.

For complex diseases in a case–control scenario, it is possible
that two or more individuals may have an unknown relationship
and the shared ancestry may not necessarily have intrinsic
connection with the underlying disease. This is unlikely the case
and can be dealt with for the following reasons. First, close
relationships (such as first and second degree relatives) should be
identified and compared only to individuals who are not from the
same family. Second, for distant relationships, the random chance
of sharing any autosomal region IBD is low. For example,
according to a previous simulation, the chance of sharing any
region IBD on the autosomes is 1.6% for two 10th cousins and is
0.5% for three 6th cousins [Yang et al., 2008]. Most importantly,
inheriting two copies IBD by one individual becomes much more
unlikely to occur by chance than sharing a single haplotype. All
considered, it is reasonable to conclude that HRRA preferentially
detects the homozygous regions shared due to their intrinsic
connection with the disease in question.

Without strong selection pressure against a recessive mutation
that may not affect the early survival and reproduction of an
individual, the mutation may persist in a population and affect
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individuals in a sporadic fashion. Therefore, the genetic cause of a
recessive disease may not even be suspected in many cases, and
more recessive mutations may exist than realized. The novel
algorithm introduced in this study may lead to discoveries of
unknown mutations of recent history, for both Mendelian diseases
and in certain circumstances, complex diseases.
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