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Shigella spp. and entero-invasive Escherichia coli (EIEC) can cause mild diarrhea to
dysentery. In Netherlands, although shigellosis is a notifiable disease, there is no
laboratory surveillance for Shigella spp. and EIEC in place. Consequently, the population
structure for circulating Shigella spp. and EIEC isolates is not known. This study
describes the phenotypic and serological characteristics, the phenotypic and genetic
antimicrobial resistance (AMR) profiles, the virulence gene profiles, the classic multi-
locus sequence types (MLST) and core genome (cg)MLST types, and the epidemiology
of 414 Shigella spp. and EIEC isolates collected during a cross-sectional study in
Netherlands in 2016 and 2017. S. sonnei (56%), S. flexneri (25%), and EIEC (15%) were
detected predominantly in Netherlands, of which the EIEC isolates were most diverse
according to their phenotypical profile, O-types, MLST types, and cgMLST clades.
Virulence gene profiling showed that none of the isolates harbored Shiga toxin genes.
Most S. flexneri and EIEC isolates possessed nearly all virulence genes examined,
while these genes were only detected in approximately half of the S. sonnei isolates,
probably due to loss of the large invasion plasmid upon subculturing. Phenotypical
resistance correlated well with the resistant genotype, except for the genes involved
in resistance to aminoglycosides. A substantial part of the characterized isolates
was resistant to antimicrobials advised for treatment, i.e., 73% was phenotypically
resistant to co-trimoxazole and 19% to ciprofloxacin. AMR was particularly observed
in isolates from male patients who had sex with men (MSM) or from patients that
had traveled to Asia. Furthermore, isolates related to international clusters were also
circulating in Netherlands. Travel-related isolates formed clusters with isolates from
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patients without travel history, indicating their emergence into the Dutch population. In
conclusion, laboratory surveillance using whole genome sequencing as high-resolution
typing technique and for genetic characterization of isolates complements the current
epidemiological surveillance, as the latter is not sufficient to detect all (inter)national
clusters, emphasizing the importance of multifactorial public health approaches.

Keywords: Shigella, EIEC, surveillance, genomic epidemiology, genetic characterization, phenotypic
characterization, antimicrobial resistance, virulence

INTRODUCTION

Shigellosis is an enteric disease, caused by the species Shigella
dysenteriae, Shigella flexneri, Shigella boydii, and Shigella sonnei.
Entero-invasive Escherichia coli (EIEC) is a pathotype of E. coli
with similar pathogenicity as Shigella spp., and they are
genetically similar (Kaper et al., 2004; Pettengill et al., 2015).
They can only be distinguished by combining a large amount of
classical phenotypic tests with classical O-serotyping or in silico
analyses of O-antigen genes. However, none of those methods can
distinguish all isolates accurately (Chattaway et al., 2017; van den
Beld et al., 2018).

In Netherlands, major risk factors for contracting an infection
with Shigella spp. or EIEC are traveling and, for men, sexual
contacts with other men (Pijnacker et al., 2017; van den Beld
et al., 2019b). Other countries reported that shigellosis amongst
men who have sex with other men (MSM) is often associated
with high-risk sexual behavior and co-infection with human
immunodeficiency virus (HIV; Hoffmann et al., 2013; Mohan
et al., 2018; Wu et al., 2019). Genomic epidemiology studies based
on whole genome sequencing (WGS) demonstrate that MSM-
associated clusters of S. sonnei and S. flexneri often coincide
with multi-resistance against antimicrobials (Hoffmann et al.,
2013; Baker et al., 2015, 2018b; Bowen et al., 2016; Mook et al.,
2016; Ingle et al., 2019). Antimicrobial resistance (AMR) of
Shigella spp. is encoded on multiple mobile genetic elements
(MGE) that can be horizontally transferred, including plasmids
such as spA or pCERC1, and chromosomal integrons such as
the SRL-MDRE island and ln2 and the transposon tn7 (Holt
et al., 2012; Baker et al., 2015, 2018a). In the United Kingdom
(UK) and France, it was demonstrated that MSM lineages of
S. sonnei and S. flexneri are associated with the presence of the
pKSR100 plasmid that contains genes involved in beta-lactam
and azithromycin resistance (Baker et al., 2018b). Next to these
horizontally transmitted AMR transferred by MGE, vertically
transferred chromosomal point mutations mainly conferring

Abbreviations: AMR, Antimicrobial resistance; ARG, Antimicrobial resistance
gene; CGE, Center for Genomic Epidemiology; cgMLST, Core genome multi-
locus sequence typing; CI, Confidence Interval; DNA, Deoxyribonucleic acid;
EIEC, entero-invasive Escherichia coli; HGT, Horizontal gene transfer; HIV,
Human Immunodeficiency Virus; IBESS, Invasive Bacteria E. coli-Shigella Study;
MALDI-TOF, matrix-assisted laser desorption/ionization- time of flight; MGE,
mobile genetic elements; MLST, multi-locus sequence typing; MMLs, medical
microbiological laboratories; MSM, men who have sex with men; OR, odds ratio;
PCR, polymerase chain reaction; PG, phylogroup; pINV, large invasion virulence
plasmid; PrEP, pre-exposure prophylaxis; SHI, Shigella island; Spp., Species; SRA,
Sequence Read Archive; ST, sequence type; STI, sexually transmitted infection;
T3SS, Type III secretion system; WGS, whole genome sequencing.

resistance to quinolones can be present (Chung The et al., 2016;
Ingle et al., 2019).

All species of Shigella and EIEC display a virulent phenotype
by which human epithelial cells are invaded and disrupted (Kaper
et al., 2004; Mattock and Blocker, 2017). Virulence genes are
encoded on chromosomal pathogenicity islands, SHI-1, SHI-
2, and SHI-3, the latter specifically for S. boydii (Mattock and
Blocker, 2017). Additionally, Shigella spp. and EIEC possess a
large invasion plasmid (pINV) that encodes virulence genes,
including the Type III secretion system (T3SS) that is important
for invasion, and the T3SS effectors that are secreted into host
cells to induce a regulated inflammation in the human host,
beneficiary for the bacteria (Lima et al., 2015; Mattock and
Blocker, 2017). Different species of Shigella are known to produce
Shiga-toxin, present in phage P27-, or POC-J13-related prophage
sequences on the chromosome (Gray et al., 2015; Mattock and
Blocker, 2017). One study was performed in which the presence
of virulence genes was linked to certain phylogenetic clades of
EIEC (Hazen et al., 2016). Many studies into virulence genes
of Shigella spp. were performed, however, they were never
associated with certain phylogenetic lineages to our knowledge.

Since 2012, the global population structure based on WGS was
unraveled for S. dysenteriae (Njamkepo et al., 2016), S. flexneri
(Connor et al., 2015), and S. sonnei (Holt et al., 2012) identifying
global lineages. Later, the presence or absence of specific
S. flexneri and S. sonnei global lineages in the United States of
America (Abelman et al., 2019), Latin America (Baker et al.,
2017), Australia (Ingle et al., 2019), United Kingdom, and France
(Baker et al., 2018a,b) were confirmed.

In Netherlands, as in many other countries, infections with
Shigella spp. are notifiable by law, while infections with EIEC
are not. Epidemiological surveillance of individual shigellosis
patients is in place as regulation for the control of shigellosis,
and contact tracing is performed in all cases. However,
no active laboratory surveillance is employed; consequently,
the population structure for Shigella spp. and EIEC isolates
circulating in Netherlands is not known.

During 2016 and 2017, a cross-sectional study was conducted,
and throughout this study 15 participating Dutch medical
microbiological laboratories (MMLs) sent all their Shigella
spp. and EIEC isolates to the study group. All isolates were
thoroughly characterized, both phenotypically and genotypically,
in conjunction with epidemiological data of the patients that
were infected. This is the first study that assessed the genomic
epidemiology of S. flexneri, S. sonnei, and EIEC isolates in
Netherlands within the perspective of the global populations.
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Furthermore, it is the first study that performed virulence gene
profiling in the context of phylogenetic clustering of isolates.

MATERIALS AND METHODS

Isolates, Phenotypic Characterization,
Antimicrobial Resistance, and
Epidemiological Data Collection
A total of 414 EIEC and Shigella spp. isolates were collected
by 15 MMLs in Netherlands that were participating in the
cross-sectional Invasive Bacteria E. coli-Shigella study (IBESS)
performed in 2016–2017 (van den Beld et al., 2019b). All
isolates were thoroughly characterized, both phenotypically,
and genotypically. Identification and Shigella and E. coli
O-serotyping of isolates was performed as described before
(van den Beld et al., 2018). In short, it was based on an
identification as either E. coli or Shigella using matrix-assisted
laser desorption/ionization- time of flight (MALDI-TOF) mass
spectrometry, and a positive PCR targeting the ipaH gene,
followed by profiling of established phenotypical and serological
features. Isolates were called provisional Shigella if the species
and serotype could not be determined due to auto-agglutination
or inconclusive combinations of antisera. Furthermore, isolates
were called provisional Shigella if a serotype could be assigned,
but the results of the phenotypical tests deviated from those
of the serotype-specific tests. Overall, phenotypic properties of
S. flexneri, S. sonnei, and EIEC were compared. To gather
the epidemiological data linked to the isolates, patients were
contacted by infectious disease nurses from the public health
services Groningen and Amsterdam to collect information on
demographics, travel history, sexual behavior, and indicators for
high-risk sexual behavior such as HIV status, presence of other
sexually transmitted infections (STI), and the use of pre-exposure
prophylaxis (PrEP) using a standardized survey by telephone
(van den Beld et al., 2019b).

Ethics Approval and Consent to
Participate
The IBESS-study was registered as an observational study
under number 23481 in the Dutch Trial Register. Patients were
informed about the study and subjected to a single survey after
their consent, to collect additional clinical and epidemiological
data. In case of minors, one of the parents or caretakers was
asked to participate in the survey. The medical ethics review
board (METC) in Utrecht, Netherlands, stated that this study
was not subject to “medical research with human subjects” laws
(protocol number 15-414/C). Data handling complied with the
Dutch Personal Data Protection Act and with the EU General
Data Protection Regulation.

Sequencing and Data Preparation
Based on the species designations and availability of patient
data, 348 of 414 isolates (Table 1) were selected for WGS using
Illumina R© technology as described previously (van den Beld et al.,
2018). Resulting raw reads were processed with an in-house

assembly pipeline,1 consisting of quality assessment using FastQC
v. 0.11.8 (Ewels et al., 2016), and MultiQC v. 1.7 (Brown et al.,
2017), read trimming using ERNE v. 2.1.1 (Del Fabbro et al.,
2013), contamination filtering using CLARK v. 1.2.5.1 (Ounit
and Lonardi, 2016), assembly using SPAdes v. 3.10.0 (Bankevich
et al., 2012), and assembly quality assessment using QUASTv.
4.4 (Gurevich et al., 2013). Completeness and contamination of
assemblies were checked using CheckM v. 1.0.11 (Parks et al.,
2015; taxonomy_wf: genus “Shigella”), draft genomes with good
quality, and completeness higher than 99% and contamination
lower than 2% were used in further analysis. All sequences were
submitted to the Sequence Read Archive (SRA) under study
number PRJEB32617.

1https://github.com/Papos92

TABLE 1 | Reference sequences used for detection of Shigella
virulence operons/genes.

Gene/operon Origin Accession number

SHI-1 PAI

sigA S. flexneri 2a str. 301 NC_004337.2

pic S. flexneri 2a str. 301 NC_004337.2

set S. flexneri 2a str. 301 NC_004337.2

SHI-2 PAI

iucA S. flexneri 2a str. 301 NC_004337.2

iucB S. flexneri 2a str. 301 NC_004337.2

iucC S. flexneri 2a str. 301 NC_004337.2

iucD S. flexneri 2a str. 301 NC_004337.2

iutA S. flexneri 2a str. 301 NC_004337.2

shiA S. flexneri 2a str. 301 NC_004337.2

shiB S. flexneri 2a str. 301 NC_004337.2

shiD S. flexneri 2457T AE014073.1

shiE S. flexneri 5 str. 8401 CP000266.1

T3SS machinery (pINV)

mxi-spa operon (mxiG-spa) S. flexneri 2a str. 301, virulence
plasmid pCP301

AF386526.1

T3SS effectors (pINV)

ipa-ipg operon S. flexneri 2a str. 301, virulence
plasmid pCP301

AF386526.1

virA S. flexneri 2a str. 301, virulence
plasmid pCP301

AF386526.1

ospB S. flexneri 2a str. 301, virulence
plasmid pCP301

AF386526.1

ospC1 S. flexneri 2a str. 301, virulence
plasmid pCP301

AF386526.1

ospC3 S. flexneri 2a str. 301, virulence
plasmid pCP301

AF386526.1

ospD3 (sen) S. flexneri 2a str. 301, virulence
plasmid pCP301

AF386526.1

ospE1 S. flexneri 2a str. 301, virulence
plasmid pCP301

AF386526.1

ospE2 S. flexneri 2a str. 301, virulence
plasmid pCP301

AF386526.1

ospF S. flexneri 2a str. 301, virulence
plasmid pCP301

AF386526.1

ospG S. flexneri 2a str. 301, virulence
plasmid pCP301

AF386526.1
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Antimicrobial Resistance
Phenotypic AMR profiling was performed by participating
MMLs of the IBESS study using their own, undisclosed
routine diagnostic protocols. In silico resistance profiling was
performed to assess the presence of antimicrobial resistance
genes (ARGs) and chromosomal point mutations. For this
purpose, the ResFinder and PointFinder databases and scripts
were obtained from the Center for Genomic Epidemiology (CGE)
repositories at Bitbucket.2 These scripts were integrated into a
local pipeline script for batch execution and were executed using
the default analysis settings and the applicable databases. Logistic
regression models were used to associate the presence of ARGs
with phenotypic resistance. Intermediate phenotypes were not
considered. Associations were expressed as odds ratios (OR) with
corresponding 95% confidence intervals (CI).

MLST and cgMLST Analysis
Classical MLST and a Core genome multi-locus sequence typing
(cgMLST) analyses were performed with Ridom SeqSphere+,
version 3.5.1 (Ridoml’ GmbH, Münster, Germany). The E. coli
Warwick MLST scheme, curated by MLST databases of the
University of Warwick (Wirth et al., 2006) and the E. coli cgMLST
genotyping scheme based on the EnteroBase Escherichia/Shigella
cgMLST v1 scheme were used. For global context, isolates
representing S. sonnei lineages I, II, III, IV, V, and the subclades
of lineage III; IIIa, global III, orthodox Jewish communities
associated (OJCA) III, Central Asia associated III, and MSM
clades 1 to 4 were added to the cgMLST (Holt et al., 2012;
Chung The et al., 2016; Baker et al., 2017, 2018b). For S. flexneri,
isolates were included that represent phylogenetic groups PG1
to PG7, including the PG3 major and minor MSM subclade
(Baker et al., 2018b) and S. flexneri 3a MSM sublineages A, B, C,
and Asia and Africa associated sublineages (Baker et al., 2015).
For EIEC, no global population studies were performed, but
isolates representing 3 different STs and 9 serotypes encountered
in England during 2005–2016 were included (Cowley et al.,
2018). Details about used reference genomes were summarized
in Supplementary Table 1. Trees were inferred based on
cgMLST in Ridom SeqSphere+, and visualized using iTOL v4.3.2
(Letunic and Bork, 2019).

Virulence Profiling
For assessment of virulence genes, the VirulenceFinder database
for E. coli virulence genes was used from the CGE (Joensen et al.,
2014). For Shigella virulence, genes present in the SHI-1, SHI-
2 pathogenicity islands as well as the genes responsible for the
T3SS machinery and effectors were used as reference (Table 1).
Reference genes were indexed based on gene name and accession
code obtained from the National Center for Biotechnology
Information (NCBI), to make a nucleotide comparison in a local
alignment. Both indexing of the reference genes and alignment
with the isolates were facilitated by the command line BLAST
application, used with default settings and identity cut-offs of 70%
(Camacho et al., 2009).

2https://bitbucket.org/genomicepidemiology/resfinder/src/master/

RESULTS

Phenotypic Characterization
414 isolates were collected during 2 years from 411 patients.
Three of these patients suffered from an infection with two
species. From those 414 isolates, 204 were isolated in 2016 and
210 were isolated in 2017. Both years displayed a comparable
species distribution (χ2, p = 0.69). In total, 232 isolates
were S. sonnei, 104 S. flexneri, 64 EIEC, 10 provisional
Shigella, 3 S. boydii, and one isolate was either EIEC or
S. flexneri, the distinction could not be made (Table 2). No
S. dysenteriae was identified.

For S. flexneri, serotype 2a was mostly identified (51%),
followed by serotype 6 (12%), 1c (7%), 3a (7%), 1b (5%), 4av
(3%), Xv (3%), Y (3%), 3b (2%), Yv (2%), and 1a (1%). For 6%
of S. flexneri isolates, the serotype could not be determined due
to undescribed combinations of reactions with antisera.

Of the 64 EIEC isolates, 24 (38%) were negative for E. coli
O1 – O188 antisera. The other 40 isolates were distributed over
16 different O-types, of which 32 (50%) EIEC isolates had O-types
that were described as EIEC-associated before (O42, O96, O121,
O124, O135, O136, O143, O159, and O164). Additionally, 8
(13%) of EIEC isolates had O-types that were not described as
EIEC-associated before (O8, O10, O17, O48, O73, O109, and
O141). Results from phenotypic tests for S. flexneri, S. sonnei, and
EIEC are summarized in Table 3.

Antimicrobial Resistance
A total of 180 out of 248 Shigella spp. and EIEC isolates
(73%) were phenotypical resistant to co-trimoxazole, 49 out
of 264 (19%) were resistant to ciprofloxacin, and 34 (14%)
were resistant to both. In silico determination of azithromycin
resistance genes erm(B) and mphA was performed, in 30 (9%)
out of all 348 genomes erm(B) was detected, in 37 (11%) mphA,
and in 29 (8%) both genes were detected. The detected ARGs
and their association with phenotypic resistance are shown
in Table 4. Presence of blaTEM-1b, as well as the presence
≥1 bla genes were significantly associated with phenotypic

TABLE 2 | Isolates and their identification, sequence status, and patient
data availability.

Species n total n (%)
sequenceda

n (%) patient
data available

n (%)
sequenced
and data

S. dysenteriae 0 0 0 0

S. flexneri 104 87 (84) 79 (76) 79 (76)

S. boydii 3 2 (67) 2 (67) 2 (67)

S. sonnei 232 190 (82) 168 (72) 168 (72)

Provisional Shigella 10 6 (60) 8 (80) 5 (50)

EIEC 64 62 (97) 33 (52) 32 (50)

EIEC/S. flexneri 1 1 (100) 1 (100) 1 (100)

Total 414 348 (84) 291 (70) 287 (69)

aAll EIEC isolates were sequenced, except for two that were not available anymore.
Other selection for sequencing was based on definitive species identification and
data availability.
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TABLE 3 | Phenotypic traits of S. sonnei, S. flexneri and EIEC, in
percentage of positives.

Phenotypic trait S. sonnei (n = 232) S. flexneri
(n = 104)

EIEC (n = 64)

Motilitya 0 0 30

LDCa 0 0 45

ODC 98 0 41

ADH 2 5 6

Esculina 0 0 8

Indole 0 16 77

Gas from D-glucose 0 0 72

Indole + gas from D-glucosea 0 0 59

ONPG 90 1 89

Fermentation of:

D-glucose 99 99 100

Lactose 2 1 69

D-sucrose 2 0 44

D-xylose 39 8 84

D-mannitol 81 96 97

Dulcitol 0.4 0 34

D-sorbitol 0.4 5 88

Salicina 0 0 5

D-trehalose 100 82 97

D-raffinose 0.4 8 45

Glycerol 9 3 50

aTests used for distinction of Shigella spp. from E. coli that are by definition negative
for Shigella spp.

resistance against ampicillin. Furthermore, blaTEM-1b, blaOXA-
1, and the presence of ≥1 bla genes were significantly associated
with phenotypic resistance against amoxicillin/clavulanic acid
(Table 4). Only one of the isolates phenotypically tested resistant
to piperacillin/tazobactam, but no bla genes were detected in
this isolate. Of the isolates that were phenotypically resistant
to 3rd generation cephalosporins, cefotaxime, and ceftazidime,
respectively, 100% and 86% contained one of the bla-CTX-M
genes or the blaDHA-1 gene (Table 4). Phenotypical resistance to
aminoglycosides gentamicin and tobramycin was not associated
with the presence of aac(3)-IId or aph(3)-Ia genes. Other
ARGs that confer resistance to gentamicin or tobramycin
were not detected. Phenotypical resistance to ciprofloxacin was
significantly associated with three chromosomal point mutations
that are known to confer resistance in the gyrA and par genes
(Chung The et al., 2016; Sadouki et al., 2017). All isolates that
displayed resistance to ciprofloxacin, except one S. sonnei isolate,
possessed two or more chromosomal point mutations, while
the presence of plasmid-mediated qnr genes or the presence
of one chromosomal point mutation was not associated with
the resistant phenotype. Phenotypic resistance to trimethoprim
perfectly correlated with the presence of one or more dfrA genes
(Table 4). All isolates that were phenotypically resistant to co-
trimoxazole, except one EIEC isolate, had one or more dfrA
genes, and the presence of one or more dfrA genes combined
with one or more sul genes was also significantly associated with
co-trimoxazole resistance (Table 4). None of the ARGs were
exclusively found in restricted periods.

MLST and cgMLST Analysis
With classical MLST typing, most S. sonnei isolates (96%) were
ST152, most S. flexneri serotype 1 to 5 isolates (91%) were ST245,
and all S. flexneri serotype 6 isolates were ST145. In contrast, STs
of EIEC isolates were diverse and distributed over 18 known STs,
and 5 unknown STs, the latter all consisting of different allele
combinations. Of the 18 known STs, 12 were assigned to single
EIEC isolates, while ST6 comprises 13 EIEC isolates (21%), ST99
9 isolates (15%), ST4267 8 EIEC isolates (13%), ST245 and ST270
6 (10%) EIEC isolates each, and ST311 3 isolates (5%).

In the cgMLST tree including all isolates, most of the genomes
clustered according to their species, although also clusters with
mixed species were formed (Figure 1). Three separate cgMLST
trees were created for S. flexneri, S. sonnei and EIEC including
context isolates. From 291 of the 348 (84%) sequenced genomes,
data about patient demographics, travel history, sexual behavior,
and indicators for high-risk sexual behavior as HIV status,
presence of other STIs and the use of PrEP was collected and
depicted in the cgMLST trees (Figures 2–4).

Based on cgMLST, S. flexneri and EIEC isolates clustered
predominantly according to their serotype or O-types,
respectively, (Figures 2, 4). Although for EIEC isolates, two
clusters had O135 interspersed by EIEC with O-types O8 and
O48 (Figure 4). Additionally, isolates with ST270 and O-type
O164 clustered with reference EIEC ST270/O124.

MSM Associated Clusters
Although for EIEC MSM associated clusters were not identified,
five S. flexneri clusters and three S. sonnei clusters were associated
with MSM (Figures 2–4). Four of these MSM clusters were
described in previous publications, i.e., S. flexneri 3a MSM
sublineage A, S. flexneri PG3 major MSM subclade (Baker et al.,
2015, 2018a; Figure 2), S. sonnei lineage III MSM clade 2
and S. sonnei lineage III MSM clade 4 (Baker et al., 2018b;
Figure 3). The additional four clusters were labeled flexneri-
MSM-1, flexneri-MSM-2, flexneri-MSM-3, and sonnei-MSM-
1. Four out of the five S. flexneri MSM clusters consisted of
S. flexneri serotypes 2a/Y and 3a that were earlier described
within MSM lineages, while flexneri-MSM-1 contained only
S. flexneri serotype 1c. The clusters flexneri-MSM- 1, flexneri-
MSM-2, and S. sonnei lineage III MSM clade 4 consisted of only
MSM, while percentages of reported MSM in cluster S. flexneri 3a
MSM sublineage A (67%), S. flexneri PG3 major MSM subclade
(86%), S. sonnei lineage III MSM clade 2 (89%), and sonnei-
MSM-1 (80%) were lower compared to the total number of cases
in these clusters (Figures 2, 3). Other isolates in these clusters
were from men that reported not having had MSM contact or
from women (Figures 2, 3). Most MSM-associated patients (79%
of S. flexneri and 78% of S. sonnei) were diagnosed with shigellosis
in the Amsterdam region, while the remaining MSM-associated
patients were spread throughout Netherlands. Clusters S. flexneri
PG3 major MSM subclade, flexneri-MSM-2, and S. sonnei lineage
III MSM clade 4 contained both isolates from the Amsterdam
region only. Clusters flexneri-MSM-2 and flexneri-MSM-3 were
both distantly related to the reference S. flexneri PG3 minor
MSM subclade, while flexneri-MSM-1 was not related to any of
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TABLE 4 | Phenotypic resistance of isolates, and the presence of associated antimicrobial resistance genes.

Resistant Sensitive OR (95% CI)a Resistant Sensitive OR (95% CI)a

phenotype phenotype phenotype phenotype

n % n % n % n %

Ampicillin (n = 241) 109 45 132 55 Gentamicin (n = 243) 17 7.0 226 93.0
blaTEM-1b 46 42.2 2 1.5 47.5 (11.2–201-8) aac(3)-IId 1 5.9 0 0
blaTEM-1c 2 1.8 0 0 aph(3)-Ia 1 5.9 0 0
blaTEM-30 1 0.9 0 0 ≥1 of aac or aph gene 2 11.8 0 0
blaDHA-1 1 0.9 0 0 Tobramycin (n = 238) 15 6.3 223 93.7
blaOXA-1 55 50.5 0 0 aac(3)-IId 1 6.7 0 0
blaCTX-M-15 10 9.2 0 0 aph(3)-Ia 1 6.7 0 0
blaCTX-M-32 1 0.9 0 0 ≥1 of aac or aph gene 2 13.3 0 0
blaCTX-M-55 2 1.8 0 0 Ciprofloxacin (n = 264) 49 18.6 215 81.4
≥1 of bla genes 106 97.2 2 1.5 2296.7 (376.8–13998.4) qnrB19 0 0 12 5.6
Amoxicillin/clavulanic acid (n = 227) 57 25 170 75 qnrB4 0 0 1 0.5
blaTEM-1b 19 33.3 23 13.5 3.2 (1.6–6.5) qnrS1 4 8.2 12 5.6
blaTEM-1c 0 0 2 1.2 gyrA S83Ab 0 0 1 0.5
blaTEM-30 1 1.8 0 0 gyrA S83Lb 48 98.0 36 16.7 238.7 (31.9–1785.5)
blaDHA-1 0 0 1 0.6 gyrA D87Gb 28 57.1 2 0.9 142.0 (31.6–638.3)
blaOXA-1 39 68.4 14 8.2 24.1 (11.0–52.8) gyrA D87Yb 2 4.1 3 1.4
blaCTX-M-15 2 3.5 2 1.2 gyrA D87Nb 18 36.7 0 0
blaCTX-M-32 1 1.8 0 0 parC S80Ib 48 98.0 1 0.5 10272.0 (631.3–167142.7)
blaCTX-M-55 1 1.88 0 0 parE S458Ab 12 24.5 0 0
≥1 of bla genes 56 98.2 39 22.9 188.1 (25.2–1403.1) ≥1 of qnr genes 4 8.2 25 11.6
Piperacillin/Tazobactam (n = 227) 1 0.4 226 99.6 1 point mutation 1 2.0 40 18.6
blaTEM-1b 0 0 43 19.0 ≥2 of point mutations 48 98.0 1 0.5 10272.0 (631.3–167142.7)
blaTEM-1c 0 0 2 0.9 ≥1 of genes/mutations 49 100 64 29.8
blaTEM-30 0 0 1 0.4 Trimethoprim (n = 181) 157 86.7 24 13.3
blaOXA-1 0 0 49 21.7 dfrA1 131 83.4 2 8.3 55.4 (12.3–250.2)
blaCTX-M-15 0 0 9 4.0 dfrA14 21 13.4 1 4.2
blaCTX-M-32 0 0 1 0.4 dfrA17 13 8.3 0 0
blaCTX-M-55 0 0 1 0.4 dfrA7 3 1.9 0 0
≥1 of bla genes 0 0 97 42.9 dfrA8 1 0.6 0 0
Cefotaxime (n = 241) 13 5.4 228 94.6 ≥1 of dfrA genes 157 100 3 12.5
blaCTX-M-15 10 76.9 0 0 Trimethoprim/sulfonamide

(cotrimoxazole; n = 248)
180 72.6 68 27.4

blaCTX-M-32 1 7.7 0 0 Sul1 24 13.3 1 1.5 10.3 (1.4–77.8)
blaCTX-M-55 2 15.4 0 0 Sul2 166 92.2 8 11.8 88.9 (35.5–222.6)
≥1 of blaCTX-M genes 13 100 0 0 n.c.c Sul3 1 0.6 0 0
Ceftazidime (n = 242) 7 2.9 235 97.1 dfrA1 143 79.4 36 52.9 3.4 (1.9–6.2)
blaDHA-1 1 14.3 0 0 dfrA14 30 16.7 0 0
blaCTX-M-15 3 42.9 4 1.7 43.3 (7.2–260.4) dfrA17 18 10.0 1 1.5
blaCTX-M-32 1 14.3 0 0 dfrA5 1 0.6 0 0
blaCTX-M-55 1 14.3 0 0 dfrA7 5 2.8 0 0
≥1 of blaDHA/CTX-M 6 85.7 4 1.7 346.5 (33.5–3584.1) dfrA8 1 0.6 0 0

≥1 of sul genes 172 95.6 9 13.2 140.9 (52.0–382.1)
≥1 of dfrA genes 179 99.4 37 54.4 150.0 (19.8–1133.4)
≥1 of dfrA and ≥ 1 sul
genes

172 95.6 3 4.4 465.8 (119.9–1810.0)

a If significant, odds ratio (OR) with 95% confidence interval (CI) are displayed. bChromosomal point mutation at position n. cNon-calculable because it perfectly predicts phenotypic resistence.
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FIGURE 1 | Core genome MLST tree of all isolates with species designations. 348 isolates, distance based on comparing 2315 alleles using the Enterobase
Escherichia/Shigella cgMLST v1 scheme. Missing values are an own category. Gray squares = results of decisive phenotypic tests or serology, box with border
only = negative, and filled square = positive. Phenotypic/serologic tests from inner to outer ring: motility, lysine decarboxylase, combination of gas and indole,
esculin, salicin fermentation, and inconclusive Shigella serology.

the MSM reference isolates (Figure 2). PrEP use was exclusively
reported by patients infected with isolates located in the MSM
clusters. HIV infections were mostly reported by patients in
the MSM clusters, except for only 2 out of 19 patients infected
with S. flexneri and one EIEC-infected patient (Figures 2–4).
For patients related to MSM-associated S. flexneri clusters, the
percentage of HIV infections or PrEP use ranged from 43% in
the S. flexneri PG3 major MSM subclade cluster to 100% in the
S. flexneri 3a MSM sublineage A cluster (Figure 2), while in the
S. sonnei lineages III MSM clade 2 and MSM clade 4, 50% of
patients had HIV or another STI and in cluster sonnei-MSM-
1 this percentage was 30% (Figure 3). All MSM-related clusters
contained isolates from both 2016 and 2017, indicating that these
clusters were not restricted to a specific period. Additionally,
all patients with isolates within the MSM clusters had no travel
history or they had traveled within Europe (Figures 2, 3).

Travel Associated Clusters
Travel-related clusters were present for S. flexneri, S. sonnei
and EIEC (Figures 2–4). Most patients (80%) with S. flexneri
serotype 6 reported travel to Africa. Three other small clusters

of S. flexneri were travel-related; a cluster of two serotype 4av
isolates linked to Africa, one cluster of two serotype1b isolates
linked to Central America, and one cluster containing serotype
Xv and a provisional Shigella was related to travel to South
America (Figure 2). None of the S. flexneri isolates in our study
were closely related to the travel-related references from 3a Africa
and 3a Asia sublineages, nor were they restricted to certain time-
periods within the 2 years of surveillance. For S. sonnei, three
isolates that were distantly related to lineage IIIa reported travel
to South America, the region to which lineage IIIa was associated
(Baker et al., 2017; Figure 3). Four small S. sonnei clusters were
related to travel to Central America (n = 4 to 8), four other small
clusters (n = 2 to 9), and one large cluster (n = 22) were related
to travel to Asia, and five clusters were related to travel to Africa
(n = 4, 8, 13, 14, and 33). Furthermore, two out of the four
clusters that were travel-related to Central America were from
February to August 2016 and June to October 2016, respectively.
For EIEC, two clusters were related to travel to Asia (n = 3, 5),
one larger cluster (n = 9) was related to travel to Africa and one
smaller cluster was related to South America (n = 4; Figure 4).
The latter only contained isolates cultured from February to May
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FIGURE 2 | Core genome MLST tree of S. flexneri, including context isolates. 101 isolates, distance based on comparing 2315 alleles using the Enterobase
Escherichia/Shigella cgMLST v1 scheme. Missing values are an own category. Red text = MSM-associated clusters. Black text = serotype; prov = provisional
Shigella. Qnr genes left to right = qnrB19, qnrB4, qnrS1; SHI-1 left to right = sigA, pic, set; SHI-2 left to right = iucA, iucB, iucC, iucD, iutA, shiA, shiB, shiD, shiE;
and T3SS effectors left to right = ipa-ipg operon, virA, ospB, ospC1, ospC3, ospD3, ospE1, ospE2, ospF, ospG. Further features are explained in the legend within
the figure.

2016. Although other isolates were also travel-related, no other
distinct clusters were found.

Resistance Associated Clusters
Ciprofloxacin resistance was mainly observed in the flexneri-
MSM-3 cluster, sonnei-MSM-1 cluster, and the S. sonnei Asian
cluster (Figures 2, 3). These isolates possessed the three known
chromosomal point mutations in the gyrA and parC genes.
Moreover, isolates in the flexneri-MSM-3 cluster contained an
extra point mutation in the parE gene that is also related

to phenotypical ciprofloxacin resistance (Figure 2). The other
isolates in a cluster related to flexneri-MSM-3 were also
ciprofloxacin resistant, of which two isolates were from patients
that reported travel to Asia and other isolates were from patients
that reported no travel (Figure 2). Both azithromycin resistance
genes were present in twenty S. flexneri and S. sonnei isolates and
were only observed in MSM-clusters. A total of 18 of these isolates
also displayed the bla-TEM1b gene, indicating the presence of
the MSM-associated pKR S100 plasmid (Figures 2, 3). For EIEC,
phenotypical AMR showed no specific cluster-related pattern.
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FIGURE 3 | Core genome MLST tree of S. sonnei, including context isolates. 203 isolates, distance based on comparing 2315 alleles using the Enterobase
Escherichia/Shigella cgMLST v1 scheme. Missing values are an own category. Red text = MSM-associated clusters. Black text = serotype; prov = provisional
Shigella. Qnr genes left to right = qnrB19, qnrB4, qnrS1; SHI-1 left to right = sigA, pic, set; SHI-2 left to right = iucA, iucB, iucC, iucD, iutA, shiA, shiB, shiD, shiE;
and T3SS effectors left to right = ipa-ipg operon, virA, ospB, ospC1, ospC3, ospD3, ospE1, ospE2, ospF, ospG. Further features are explained in the legend within
Figure 2.

Overall, EIEC isolates were less resistant than S. flexneri or
S. sonnei isolates (Figure 4).

Virulence Profiling
In our study, none of the Shigella or EIEC isolates sequenced
contained genes that encode for the Shiga-toxin E. coli
virulence genes.

For S. flexneri, all but one isolate had the set gene located on
the SHI-1 island. The pic gene was only present in S. flexneri 2a
or Y, and the sigA gene was present in S. flexneri serotype 2a, Y,
and 6 and with a lower identity percentage in S. flexneri serotype
3a and 3b (Figure 2). All isolates that possessed all genes present
in the SHI-1 island were from PG3 (Figure 2). Isolates in the 3a
MSM sublineage A cluster and S. flexneri serotype 6 possessed

none of the shi genes in SHI-2. Three S. flexneri isolates lacked all
genes encoding for the T3SS machinery and effectors (Figure 2).
One isolate had the Osp genes, but lacked the mxi-spa operon, the
ipa-ipg operon and the virA gene.

Almost all S. sonnei isolates had the sigA and pic genes from
the SHI-1 island, while the set gene was present in approximately
half of the isolates (Figure 3). All isolates had all genes present in
the SHI-2 pathogenicity island, except for the shiD gene, which
was present in only two isolates that clustered apart from other
isolates in lineage III. More than half of the S. sonnei isolates
did not own the genes encoding for the T3SS machinery and
effectors (Figure 3).

In the analysis of virulence genes of the EIEC isolates, 54
isolates (84%) contained the set gene located on the SHI-1 island,
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FIGURE 4 | Core genome MLST tree of EIEC, including context isolates. 71 isolates, distance based on comparing 2315 alleles using the Enterobase
Escherichia/Shigella cgMLST v1 scheme. Missing values are an own category. Red text = MSM-associated clusters. Black text = serotype; prov = provisional
Shigella. Qnr genes left to right = qnrB19, qnrB4, qnrS1; SHI-1 left to right = sigA, pic, set; SHI-2 left to right = iucA, iucB, iucC, iucD, iutA, shiA, shiB, shiD, shiE;
and T3SS effectors left to right = ipa-ipg operon, virA, ospB, ospC1, ospC3, ospD3, ospE1, ospE2, ospF, ospG. Further features are explained in the legend within
Figure 2.

all in combination with the sen (ospD3) gene encoded on the
pINV plasmid (Figure 4). Ten EIEC isolates (16%) harbored no
genes encoding for the T3SS machinery or effectors, of which
three isolates also contained none of the genes present in the SHI-
1 island (Figure 4). The other seven isolates contained the sigA,
and/or the pic genes. The lineage that comprises isolates with ST6
and the lineage that comprises the ST99/O96 and ST4267 isolates
did not contain SHI-2 or only a smaller number of genes present
in this island. Only 11 EIEC isolates (17%) contained the shiA
gene on this island, and none contained the shiE gene (Figure 4).

DISCUSSION

This study shows that S. sonnei, S. flexneri, and EIEC are the most
prevalent Shigella/EIEC species in Netherlands. A substantial part
of the collected Shigella spp. and EIEC isolates collected during

the study is resistant to one or more of the first- and second-
line antimicrobials for treatment. Identification with phenotypic
methods and serotyping is challenging, as EIEC had no
specific key characteristics and serotype switching is common in
S. flexneri (The et al., 2016). Additionally, strains of MSM clusters
from other countries were also identified among MSM-associated
clusters in Netherlands, and those that were travel-related mostly
clustered together. We confirm the overlap of MSM-associated
clusters with patients that reported HIV infection and with
AMR to azithromycin and ciprofloxacin. Moreover, isolates
from domestically acquired infections sometimes belonged to
travel-related clusters, indicating secondary transmission of
imported isolates.

Phenotypic characteristics of the pathotype EIEC were
described based on 64 isolates in this study. If EIEC isolates
display one of the phenotypic characteristics that are by definition
negative for Shigella spp., the distinction is uncomplicated. In
contrast, when EIEC isolates display the more inactive Shigella
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phenotype, distinction is challenging (van den Beld and Reubsaet,
2012). Identification and distinction of Shigella spp. and EIEC
is not always possible, even with the thorough phenotyping and
serotyping that was performed. Because of their relatedness, other
commonly used techniques for microbiological identification,
as MALDI-TOF mass spectrometry and molecular detection
of species-specific genes, cannot distinguish Shigella and EIEC
(Hale, 1991; van den Beld and Reubsaet, 2012). One isolate
in our study could not be assigned to the genus Shigella or
Escherichia and ten Shigella isolates could not be assigned to a
species. Moreover, in the cgMLST tree combining all species,
clusters with multiple species were formed. This was most likely
due to deviating phenotypic features or inconclusive serotypes
that influenced their identification. All provisional Shigella
isolates lacked specific serological characteristics. Therefore it is
impossible to determine the species, but they clustered mostly
with S. flexneri (Figure 1). Six of the eight EIEC isolates that
clustered within S. flexneri fitted phenotypically EIEC as well as
S. flexneri. However, they all had an inconclusive Shigella serotype
(Figure 1). The E. coli somatic antigen type for these six isolates
was O135, known to be EIEC-associated and also known to
have cross-reactions with multiple S. flexneri serotypes (DebRoy
et al., 2016). Taken the phylogeny into account, it is plausible
that these isolates are, in fact S. flexneri, but for an unknown
reason, they lack to display parts of the serological features.
The two remaining EIEC isolates within S. flexneri had multiple
phenotypical characteristics that do not fit the description of
Shigella, e.g., motility and LDC production. Additionally, one
EIEC isolate clustered within S. sonnei, and seems to be a hybrid
isolate. Phenotypically, it is classified as EIEC because the isolate
is motile and produces indole and gas from glucose. However,
based on the serotype it can be classified as S. sonnei. One
S. flexneri serotype 2a isolate clustered with EIEC. Phenotypically,
it could be classified as both S. flexneri and EIEC. However, it
did not have the E. coli somatic antigen type O1 until O188.
These mixed-species clusters with inconclusive serotypes and
hybrid isolates confirms the close genetic relationship among the
species of Shigella and EIEC that was described before in multiple
studies (Kaper et al., 2004; Lan et al., 2004; Pettengill et al., 2015;
Hazen et al., 2016).

The large diversity of EIEC isolates in the United States
(Pettengill et al., 2015) was also confirmed in Netherlands, as
diverse E. coli O-types and Warwick MLST types were found to
be circulating. Additionally, in the cgMLST, EIEC isolates showed
more diversity than S. flexneri or S. sonnei.

Shigella flexneri and EIEC isolates clustered mostly according
to their serotype in the cgMLST. An exception were two S. flexneri
Yv isolates forming a separate cluster probably since they relate
to the different phylogroups PG1 and PG6 as shown in the
cgMLST tree (Figure 2). It was described that serotypes can
belong to multiple PGs, although the association of S. flexneri
Yv with PG1 was not found before (Connor et al., 2015).
However, because S. flexneri can switch their serotype due to
the exchange of O-antigen genes via horizontal gene transfer
(HGT; The et al., 2016), a plausible hypothesis is that the
more isolates are sequenced, the more serotypes per PG will
be found. The clustering of five O164 isolates with reference

EIEC genome ST270/O124 can be explained by the strong
resemblance between O164 and O124 antigens (31). Although
isolates cluster roughly on serotype-level and serotyping is used
for the description of individual isolates, some serotypes form
multiple clusters and serotype switching is common. Therefore,
techniques with a higher resolution as WGS provide more
information for communication and surveillance purposes or
outbreak investigations.

Without support of bacterial typing, contact tracing and
outbreak investigations amongst the MSM population in
particular can be complicated due to high numbers of sexual
partners and anonymous sex, making it difficult to establish
epidemiological links between cases (Gilbart et al., 2015;
Pijnacker et al., 2017). With our study, we proved that
isolates related to international MSM-clusters are circulating
in Netherlands. Additionally, we found one MSM-associated
S. sonnei cluster and three MSM-associated clusters in S. flexneri
not related to international reference isolates that were included
here. One of the clusters consisting of Dutch isolates only,
contained only S. flexneri serotype 1c, and to our knowledge,
this study is the first that associates S. flexneri 1c with the
MSM population. The fact that in our study, MSM-associated
S. flexneri and S. sonnei clusters also contained isolates from men
that reported no sexual contact with other men or isolates from
women, could indicate spillover to the non-MSM population,
or (partially) due to misclassification of MSM as non-MSM.
The allocation of isolates from 2016 and 2017 to all S. flexneri
and S. sonnei MSM clusters provides evidence for prolonged
circulation of these (inter)nationally MSM-associated Shigella
isolates in Netherlands.

Outbreak investigations and other surveillance studies have
indicated a large overlap between shigellosis amongst MSM
and HIV (Mohan et al., 2018; Ingle et al., 2019). This was
confirmed by our study for the Dutch situation. This coexistence
of shigellosis amongst MSM and HIV is thought to have multiple
causes, as specific sexual practices, substance use or the use of
social media that might cause serosorting based on HIV status,
enhanced by increased shedding of bacteria due to high numbers
of multidrug resistance (Mohan et al., 2018; Ingle et al., 2019).

While 97% of MSM-associated shigellosis cases were domestic
or acquired from travel to other European countries only, 71%
of shigellosis cases in the non-MSM population were related to
travel outside of Europe. Clusters related to travel were displayed
in S. flexneri as well as S. sonnei. For EIEC, limited data on travel
history for patients was available. Within the clusters related to
travel, also domestically acquired isolates were present, indicating
secondary transmission of imported isolates in Netherlands.

In Dutch guidelines, cotrimoxazol, ciprofloxacin and
azithromycin are advised for treatment of shigellosis cases
(SWAB, 2014). Azithromycin was not tested by any of the
laboratories, because clinical breakpoints are not known from
EUCAST guidelines (EUCAST, 2019). However, in silico
determination of azithromycin resistance genes erm(B) and
mphA revealed the presence of azithromycin resistance in
isolates from Netherlands. In a vast majority of the isolates in
which both azithromycin resistance genes were present, the
bla-TEM1b gene was also present. This combination of genes
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was only observed in isolates within the MSM clusters. All these
genes were described to be present on the pKSR100 plasmid
that is associated with HGT within MSM lineages before (Baker
et al., 2018b). Our study confirms the association of ciprofloxacin
resistance with isolates from MSM and travel to Asia (Chung
The et al., 2016; Ingle et al., 2019). Furthermore, the resistance to
advised treatments cotrimoxazol, ciprofloxacin and azithromycin
was present throughout the collection period in our dataset,
and was predominantly lineage-specific, confirming earlier
observations that the acquirement of ARGs through HGT drives
the epidemiological outcomes and success of certain lineages
(Holt et al., 2012; Baker et al., 2018b).

Our study confirmed observations made earlier in E. coli
and S. sonnei, that correlation of detected ARGs to phenotypic
outcome is significant, except for the aminoglycosides (Stoesser
et al., 2013; Zankari et al., 2013; Tyson et al., 2015; Sadouki
et al., 2017). Although none of the gentamicin and tobramycin
susceptible isolates contained one of the aac(3)-IId or aph(3)Ia
genes, only low percentages of resistant phenotypes had one or
more of these genes. Presumably, another resistance mechanism
not identified by the methods used in our study causes resistant
phenotypes, which requires further investigation. Additionally,
our study confirmed that the presence of two or more
chromosomal point mutations in the gyrA and par genes was
significantly associated with phenotypic ciprofloxacin resistance,
while the presence of the plasmid-mediated qnr genes or only
one chromosomal point mutation, predominantly gyrA S83L,
was not significantly associated with phenotypic resistance to
ciprofloxacin (Chung The et al., 2016). The presence of point
mutation gyrA S83L was thought to be a precursor for the
full ciprofloxacin resistant phenotype, requiring at least one
additional chromosomal point mutation (Chung The et al., 2016;
Sadouki et al., 2017).

Almost all S. flexneri and EIEC isolates possessed virulence
genes present in the pINV plasmid, while these genes were only
detected in approximately half of the S. sonnei isolates. It is
known that in S. sonnei, the pINV plasmid is frequently lost
during subculturing (The et al., 2016). S. flexneri and EIEC
isolates were present that lacked the genes encoding for the T3SS
machinery and effectors. This is probably due to the excision
of parts of the T3SS region. This phenomenon was described
before and is thought to result from the high fitness costs of
this region for the bacteria while being outside the human
host (Pilla et al., 2017). In an earlier study, the presence of
virulence genes in EIEC isolates was described (Hazen et al.,
2016). Compared to our study, we examined some differences.
First, in our study, almost all (84%) EIEC isolates contained
the set gene, in contrast to the 15% of EIEC isolates described
in the earlier study (Hazen et al., 2016). Second, in our study,
EIEC isolates containing the shiA gene in the SHI-2 island were
observed, while the earlier study described this gene as absent
from all EIEC (Hazen et al., 2016). These differences can be
explained because different isolate sets were used from different
geographical origins. Another observation from our study is that
some lineages of EIEC did not have the SHI-2 pathogenicity
island at all, which seems to be lineage specific. They might
possess another pathogenicity island, containing genes involved

in the same processes as the genes located on SHI-2 in S. flexneri
and S. sonnei. Another explanation could be that these EIEC
isolates are precursors of Shigella spp. and are in transition to gain
full virulence potential as hypothesized earlier (Lan et al., 2004).
Nonetheless, these EIEC isolates were capable of causing disease,
because all isolates were collected from patients with symptoms.
From 72% of these patients EIEC was the only detected pathogen
(van den Beld et al., 2019b).

A strength of this study is that we combined microbiological
characteristics of Shigella spp. and EIEC isolates with detailed
epidemiological data of the patients. In addition, our study
is representative for the Shigella spp. and EIEC isolates in
Netherlands, as they were collected from MMLs geographically
distributed over the country.

Limitations of this study are that epidemiological data was
collected by interviewing patients, and was therefore not an
objective measurement. Although this probably does not have a
major effect on the reported sexes of patients or travel history,
MSM contact and HIV or STI status might be underreported.
Furthermore, for EIEC isolates the cluster formation was not
as distinct as for S. flexneri and S. sonnei, probably due
to the diversity of the isolates and to limited availability of
epidemiological data. Moreover, as in only half of the shigellosis
cases an isolate can be obtained (de Boer et al., 2010; Liu et al.,
2016; Van Lint et al., 2016) and not all Shigella spp. and EIEC
isolates detected in Netherlands in 2016 and 2017 were available
for this study, the observed clusters probably were substantially
larger, and some clusters might have been missed.

In Netherlands, thorough shigellosis case investigations
are routinely performed, which results in a comprehensive
knowledge of epidemiological data. However, the current
guidelines, in which no laboratory surveillance of Shigella
spp. is conducted, are not sufficient to detect all national and
international clusters due to the low resolution of serotyping
and due to the challenging contact investigations of MSM
groups in particular. This study emphasized that epidemiological
and laboratory surveillance are complementary to each
other. Furthermore, multifactorial public health approaches
for (inter)national surveillance purposes and outbreak
investigations are important, particularly when combined
with thorough characterization of isolates using techniques
with high discriminatory power such as WGS. Our study
was a snapshot in time, but it is important to monitor these
(inter)national patterns for Shigella spp. over longer periods to
enable outbreak detection, following improved prevention and
targeted responses by public health authorities.
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